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1. Introduction. Let ξ> be a Hubert space. If T is any operator
in ξ> its domain will be denoted by ©(ϊ7), its null space by %l(T).
A formally normal operator N in ξ> is a densely defined closed operator
such that ®(ΛΓ) c ®(ΛΓ*), and \\Nf\\ = ||ΛΓ*/|| for all / e ®(iSΓ). Inti-
mately associated with such an ΛΓ is the operator N which is the
restriction of ΛΓ* to 2D(JV). The operator N is formally normal if and
only if N is. A normal operator N in ξ> is a formally normal operator
for which SE(JV) = SD(i\Γ*); in this case JV=JV*. A densely defined
closed operator JV is normal if and only if N*N = NN*.1

Let JV be formally normal in φ. Since NaN* we have NaN*,
where iV* = (JV)*. Thus we see that a closed symmetric operator is a
formally normal operator such that N = N, and a self-adjoint operator
is a normal operator such that N = N ( = AT*). If a closed symmetric
operator has a normal extension in ξ), this extension is self-adjoint. It
is known that a closed symmetric operator may not have a self-adjoint
extension in ξ>. Necessary and sufficient conditions for such extensions
were given by von Neumann.2 However, until recently, conditions under
which a formally normal operator N can be extended to a normal one
in ξ> were known only for certain special cases.3'4 Kilpi5 considered the
problem in terms of the real and imaginary parts of N. It is the pur-
pose of this note to characterize the normal extensions of N in a manner
similar to the von Neumann solution for the symmetric case.

If Ni is a normal extension of a formally normal operator N in ξ>,
then it is easy to see that NaNxa N*, and NaN? <zN*. In Theorem
1 we describe ®(iV*) and ®(ΛΓ*) for any two operators N, N satisfying
N c N*, iVciV*. With the aid of this result a characterization of the
normal extensions iVΊ of a formally normal N in φ is given in Theorem
2. It is indicated in Theorem 3 how the domains of normal extensions

Received January 13, 1960. This work was supported in part by the National Science
Foundation and the Office of Naval Research.

1 See, e.g., B. v. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilberts-
chen Raumes, Ergeb. Math., 5 (1942), 33.

2 Ibid; p. 39.
3 Y. Kilpi, "Uber lineare normale Transformationen im Hilbertschen Raum", Annales

Academiae Scientiarum Fennicae, Series A-I, No. 154 (1953).
4 R. H. Davis, "Singular normal differential operators", Technical Report No. 10, De-

partment of Mathematics, University of California, Berkeley, Calif., (1955).
5 Y. Kilpi, "Uber das komplexe Momentenproblem", Annales Academiae Scientiarum

Fennicae, Series A-I, No. 236 (1957).
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can be described by abstract boundary conditions.
I would like to thank Ralph Phillips for instructive conversations

during this work.

2. Domains.

THEOREM 1. Let N, N be two closed densely defined operators in
a Hilbert space £> such that ΛΓc JV*, ΛΓciV*. Then

2ft , ®(ΛΓ*) = ®(ΛΓ) + 2ft ,

where 2ft = 31(1 + JV*JV*), 2R = 5R(J + iV*ΛΓ*). flere I is tfcβ identity
operator, and £/&e s%ms are direct sums.

Proof. Let JV, ΛΓ be any two closed densely defined operators in £
such that NczN*, N c iV*. Then (ΛΓ/, 0) - (/, Λfc) for all / e ®(ΛΓ),
g € ®(JV). Define an operator ^f" in the Hilbert space ξ>2 = § 0 ξ> with
domain ® ( ^ ) the set of all / = {flf f2} with Λ e S)(iV), /2 e ®(JV), and
such that ^ f / = {ΛΓ/2, iV/Ί}. Then ^ ^ is closed symmetric. Indeed
® ( ^ ) is dense in ξ> © ξ), and, if / = {/lτ /2}, 9 = {glf g2} are in
we have

/ f 9) = (iV/2, ft) + (iV/i, ft) = (/1, % 2 ) + (Λ,

Since iV and N are closed, so is ΛT. The adjoint ^//^* of ^r has
domain ®(^/^*) the set of all g = {g19 g2} such that gx e S)(JV*), flf2 e ®(iV*);
and ^r*g = {N*g2, N*gx}.

We now show that the defect spaces of ^ Λ namely,

g ( - i ) = {ψ e

have the same dimension. We have φ = {φ1? φ2} e ®( + i) if and only if
φx e ®(iV*), φ2 e ^(N*), iV*φ2 = iφlf N*ψ± = iφ2. The latter is true if
and only if iV*(—φ2) = —iφi, JV*^ = —i(—φ2). Thus we see that the
unitary map ^ of ξ>2 onto itself given by ^{f19 f2} = {/1, —/2} carries
6f(—i) onto @( + i) in an isometric way. This proves dim @( + i) = dim @(—i).

We note that {&, φ2} e ®( + ί) if and only if & e © ( # * # * ) ,
(/ + N*N*^ = 0, and φ2 - -iJV*φ lβ Alternatively {̂ , φ2} 6 ®(+i) if
and only of φ2 e ®(iV*iV*), (7 + iV*iV*)φ2 = 0, and & = -iN*φ2. Thus
we see that the algebraic dimensions of the spaces 2ft = $1(1 + iV*JV*),
TO = 5ft(7+ iV*ΛΓ*), @( + i), and @(-i) are all the same. Further it is
easy to see that ΛΓ* maps 9Ji one-to-one onto 2K, the inverse mapping
being — iV* restricted to 2ft.

Since dimC^ + i) = dim©(—i) the operator Λr has self-ad joint
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extensions in ξ>2. They are in a one-to-one correspondence with the iso-
metries of Qf( —i) onto Gf( + i). If & is a self-ad joint extension of Λ"
there is a unique isometry ^ of G?( — i) onto G?( + ΐ) such that ®(,9^) =
®(^//) + ( ^ — ^")@( —i), where ^ is the identity operator on £>2.
Let us consider that self-adjoint extension £f of ^ determined in this
way by the isometry — <%/ restricted to G?(—i). Then we have fe e © ( ^ )
if and only if ft = / + ψ + <̂ Λ/r, for some / e ©C^K*), ^ e ®(-ί) . If
ft = {Λi, h), f = {/i, /2}, ^ = WΊ> Ψ̂ K this means hλ = /x + 2 ^ , ft2 = /2,
where Λ e ©(JV), ^ e 501, f2 e ©(JV)._ Thus © ( ^ ) is the set of all
{hlf h2) with ftx e ®(ΛΓ) + 9Dΐ, fe2 e ®(iV). Now the operator ά{ with
domain all {̂ , h2} with ^ e ®(iV*), h2 e S)(JV), and such that £ζ{h19 h2} =
{iV/ι2, N*^}, is readily seen to be a self-ad joint operator in £>2 satisfying
j / ^ c y c ί f c ΛΓ*. Hence ^ = ,£f, and we see that ®(N*) =
®(ΛΓ) + SίJί. The sum is a direct one, for if / e ®(JV) Π 501, 0 =
(/ + ΛΓ*iV*)/ - / + iV*ΛΓ/implying 0 - (/ + ΛΓ*iV/, /) - | | / | | 2 + || iV/||2,
or / - 0.

A similar argument shows that the self-adjoint extension Sf of ^r
determined by the isometry 5^ equal to <%s restricted to ©( — i) has
domain the set of all {h19 h2} with h, e ®(iV), fea e SD(JV) + SK. This
operator is equal to the self-adjoint extension of ^K having domain the
set of all {h19 h2} with hx e ®(JV), h2 e Φ(iV*), implying that ®(ΛΓ*) =
®(iV) + 50Ϊ, a direct sum. This completes the proof of Theorem 1.

Note added in proof. The results of Theorem 1 can be obtained
more directly, although some of the discussion given in the proof above
is required for our proof of Theorem 2. Let ®(T) denote the graph of
an operator T. If A, B are any two closed operators with dense domain,
and Ad B, then it is easy to see that @(2?)Q®(A) is the set of all
{u, Bu} e ®(B) such that ue%l(I+ A*B). Since

®(B) = ®(A) 0 [®(B) θ ©(A)],

we have ® ( £ ) = ® ( A ) + 9 Ϊ ( / + A * J S ) , a direct sum. This implies Theorem 1.

3 Normal extensions.

THEOREM 2. If Nλ is a normal extension of a formally normal
operator N in a Hubert space ξ>, then there exists a unique linear
map W of 9Ji onto itself satisfying

( i ) W* = I,
(ii) HΦII2 + II JV*φ| | 2 - II Wφ\\> + \\N*Wφ\\\ (φ e 501),
(iii) (I - WW - N*(I + WβJl,
(iv) || JSΓ*(J - W)φ || - || N * ( I - W)φ II, (φ e 501).

In terms of W we have

NJ = N*f , (/
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Conversely, if W is any linear map of 2ft onto 2ft satisfying (i)—
(iv) above, then the operator Nx defined by (1) is a normal extension of
N in ξ>.

REMARKS. Condition (i) implies that Px = (l/2)(7 + W) and P2 =
(l/2)(/ — T7) are projections (not necessarily orthogonal) in 3ft, and 2JΪ
is the direct sum of 3ftx = Px3ft and 2Ji2 = P22J£. If φ e 3ft, then φ e 23^
if and only if Wφ — φ, and φ e 2ft2 if and only if Wφ = — φ.

Condition (ii) implies that if φ, φ' e 2ft then

(φ, φ') + (N*φ, N*φ') = (PFφ, W ) + (iV*PFφ, iV* W ) .

If Φ e mif Φ' e 2Jΐ2 we see that (φ, φ') + (N*φ, N*φ') = 0, which means

that the graph of iV* restricted to SD̂  is orthogonal to the graph of N*

restricted to 5ϋl2.

Since iV* is one-to-one from 5tJl onto 2JΪ, condition (iii) implies that

3Ji2 == ^*5Πi1 c 9JΪ Π Sϊ, and 9Ji2 has the same algebraic dimension as 3Wle

In particular the dimension of 2Jί must be even.

Proof of Theorem 2. Let Nλ be a normal extension of the formally
normal operator JV in £>. Then we have iVcΛΓxCiV*, N a N? c N*.
Let the operator ^ in ξ)2 be defined with domain all {h19 h2} such that
hx e ®(iV0, h2 e ®(N?), and so that Λ\{K h} = {iVf^, JVΆ}. Then it is
easily seen that Λζ is a self-adjoint extension of the operator ^ ^ de-
fined in the proof of Theorem 1.

Let *Λ<[ be any self-ad joint extension of ^A^, and let 5^ be the
unique isometry of @( — i) onto @( + i) such that S ( ^ ί ' ) = S ( ^ ^ ) +
(J 2" — ^")@( —i). Then we may write ^ " = *WW, where ^ is the
isometry defined on G?( —ΐ) to @( + i) by ^{ψlfψ2} = (ΨΊ, — ψ ah a n d ^ ^
is a unitary map of ®( + i) onto itself. For {Φi, φ2} e @( + i) let
3P~{Φi, Φ*} = {Xi, L}. Then φu χx e 3Jί and φ2 = -iJSΓ*^, χ2 = -iN*Xx.

Define the map W of 9Jί into 9Jί by TΓΦx = χlβ Then W is linear, and
since <W~ is unitary, W is onto, and

|| {φ, -iN*φ} ||2 = !| {T7φ, -iN*Wφ} | | 2 , (φ e 2K) ,

or

( 2 ) I I Φ I Γ + | | i V * φ | | 2 = II WΦIΓ + | | J V * W φ | | 2 , (φ

Conversely, suppose W is a linear map of 3ΪΪ onto'3ft satisfying (2).
Then for φ = {φ, -ίiV*φ} e (ϊ( + i) define <Wφ = {Wφ, -iN*Wφ}. Then
W maps @( + i) onto ®( + i) and (2) implies that W" is unitary. Thus
we see that the self-ad joint extensions ^4\ of Λ" are in a one-to-one
correspondence with the linear maps W of 3Jί onto 9Jί satisfying (2).
We have h — {hlf h2} e ®(^Γ) if and only if h can be represented in
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the form K = f + ( ^ - W~?/)ψ, where / - {flf f2} e S ( , f ) , ψ =
{φ, iN*φ} e ©(-i). This means h,= f1 + (I-W)φf h2 = f2 + iN*(I+W)φ,
where fx e ® ( t , r ) , /, e £>(iV), φ e TO.

The self-adjoint extension <Λζ arising from the normal extension
Ni of N has the property that if h = {hlf h2) e ®( /f) then so does
^h = {hlf 0}. It will now be shown that a self-adjoint extension Λ\
of isir has this property if and only if the W corresponding to <s\ζ
satisfies W2 == /. First suppose &{h e ®(^Γ) for all h e ®(^/f). Letting
hί=f1 + (I - W)φ, h2= f2 + iN*(I + W)φ as above, we see that this
implies that there exist elements f[ e ®(iV), f'2 e ®(JV), Φf e TO, such
that

fl + (I- W)φf ,

0 = /; + iN*(I + W)φ' .

Since ®(iV) + -3JΪ and ®(iV) + Φί are direct sums these equations imply
that fx - //, (/ - W)φ = (I - T W , // - 0, and N*(I + W)φ' = 0. The
last equation implies (/ + W)φ' = 0 since iV* is one-to-one from 3Jί to 3Dΐ.
Thus we have

( 3 } Φr + Wφf = 0 ,

φ' - Wφf - Φ - WΦ ,

from which results 2φ' — {I — W)φ. Returning to the first equation in
(3) we obtain (/ + W)(I - W)φ = (/ - W2)φ = 0 for all φ e 9Jί, showing
that l^2 = /. Conversely, suppose W2 = / on TO. Then if fe = {̂ , /̂ 2} 6
Φ(^Γ), ^ - /, + (I - W)φ, h2=f2 + iN*(I + W)φ, define φ' -
(l/2)(/— W)φ. Then equations (3) will be valid, implying that

f1 + (I~ W)φ\

0 - 0 + iN*(I + W)φf ,

which shows that ^{h = {fcx, 0} e ® M f ) .
If ^//^ is any self-adjoint extension of ^//^ for which W2 = /, then

® ( ^ ί ) consists of those {hlf h2} such that K = fλ + (I — W)φ, h2 = /2 +
iJV*(/ + ΐΓ)φ', for some Λ 6 ®(iSΓ), /2 e ®(iV), and φ, φ' e TO. The point
is that φ and φf need not now be the same element. Indeed, if h19 h2

have such representations let φ" = (1/2)(I - ίΓ)φ + (l/2)(ί + W)φr. Then
(7 - W)φ = (/ - TDΦ", and (/ + W > ' = (/ + WΓ)φ", which implies that
{fei, h2} e ®(>1) . For such an ^ ί define ^ to be the operator in § with
®(JVΊ) = S5(JV) + (/ - TF)TO, and ΛΓA = JSΓ*^ for hλ e ^(N,). Similarly
define N2 on 25(ΛΓ2) = ®(iV) + JV*(/ + TF)TO by NJι2 = ΛΓ*̂ 2 for h2 e
S)(iV2). In terms of Nx and AΓ2 we have {hl9 h2} e ® ( ^ " ) if and only if
fex e ©(JVi), fe2 e £(ΛΓ2), and ^ { ^ , /̂ 2} = {N2h21 NJi^. A short computation
shows that ®p/Γ*) is the set of all {g19 g2} such that gx e S(iV2*),
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g2 e S)(iVί), and Λf*{glf g2} = {N*g2, NfgJ. But since Λl = <sK* we
obtain N2 = Nf. Hence ®(-^Γ) consists of all {hlf h2} with hλ e
A2 6 ©(JV;*), and ^ f {Aj, A2} = { N ^ , JVA}. Here

- N*(I ~\

and NaNiCzN*, NaN? aN*. Thus any self-ad joint extension ^ς
of Λ ^ having the property that W2 = I determines a unique operator
Ni in φ as above, which is easily seen to be closed. In particular, if
# ! is a normal extension of N, then the equalities (4) hold.

It remains to characterize those ^Ϋ{ such that W2 = I for which
Nx is normal, that is ©(JVj) = ^S)(N*) and || AΓ̂ H == || iV̂ /z, ||, k e
We claim that this is true if and only if

( 5 ) (/ - W)m = N*(I + W)$Sl ,

and

(6) || N*(I - W)φ || = || N*(I - W)φ \\ , (φ

If (5) is valid then (4) implies that ©(iVO = ©(i^*), since ®(iV) =
Let h e ©CNi), Λ = / + (/ - TΓ)ψ, / e Φ(AΓ), Φ e SίJί. Then (/ -

3ϊί n 2R, and we have ΛΓΛ = Nf + N*(I- W)φ, N*h = Nf+N*(I- W)φ.
Thus

|| ΛΓΛ ||» = II iV/ll2 + (ΛΓ/f N*(I - W)φ) + (N*(I - W)φ, Nf)

+ \\N*(I- W)φ\\\

and

\\N*h ||2 = || iV/1|2 + (#/, N*(I - W)φ) + (N*(I - W)φ, Nf)
+ \\N*(I- W)φ\\>.

Since N is formally normal \\ Nf \\ = \\ Nf \\. Moreover N*(I - W)φ e
implies that (NfLN*(I - W)φ) = (/, N*N*(I - W)φ) = - ( / , ( / -
and similarly (Nf,N*(I- W)φ) = - ( / , ( / - W » . Using (6) we see
that \\NJi\\ = \\Nfh\\ for all h e ©(iVΊ), proving that Nx is normal.

Conversely, suppose iVj is normal. Then (6) is clearly valid, for
(/ - W)Φ € ©(iVJ by (4). Suppose h e ®(M) = ®(N*) and h = f +
(I - TF> = / ' + iV*(/ + W)Φ' with /, / ' e ©(iV), Φ, φ' e TO. We show
that / = / ' and (/ - W)φ_= N*(I + W)φ'. Applying this to / = 0
we obtain (/ - W)W c N*(I + W)ϊΰl, and with / ' = 0 we get
N*(I + W)Tt c (/ - Wβϊl, proving (5). Now for any g e ®(iV) we have

= (N*h, N*g), or

, Ng) + (N*{I - TΓ)Φ, Ng) =
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Since (Nf, Ng) = (Nf, Ng) and (if*(I - W)φ, Ng) = -((I - W)φ, g),
this yields

(Nf, Ng) - ((I - W)φ, g) = (Nf, Ng) - (if* (I + W)φ\ g) ,

or

(N(f - f)f Ng) + (N*(I + W)φ> -(I- W)φ, g) = 0 .

But N*(I + W)φ' - (I - W)φ =f-f, and hence

(N(f-f),Ng) + (f-f,g) = 0

for all g e S(iV). Letting g = / - / ' we obtain / = / ' as desired. This
completes the proof of Theorem 2.

4«. Abstract boundary conditions. For u e ®(iV*), v e ®(iV*) de-
fine (uvy = (if*u9 v) — (u, N*v).

THEOREM 3. If Nt is a normal extension of the formally normal
operator N such that ©(Λ )̂ = ®(iV) + (I - W)Sΰl, then Φ(JVX) may be
described as the set of all u e ®(iV*) satisfying (uay = 0 for all
ae(I

REMARK. For differential operators the conditions (uay — 0 become
boundary conditions. They are self-ad joint ones, that is, (aafy = 0 for
all a, a' e (I - W)m. Indeed a, a! e ®(N,) = S)^*) and for any
a e ©(iVO, a! e X(Nλ*) we have (ΛΓ*α, a') = (Nτa, a') == (α, ΛΓ^α') =
(α, ΛPO.

Proo/ o/ Theorem 3. If u e ©(ΛΓO, α e (I - WW c 3 W ) , the
above argument shows that <uα> = 0. Conversely suppose u e ®(iV*)
and (uay = 0 for all a e (I - W)m. Let u = f + (I - T7)φ + (/ + W)φ,
where / e ®(ΛΓ), φ e Wl. We note that < > is linear in the first spot,
and / + (I - W)φ e ®(Nλ). Thus <(I + W)φ ay = 0 for all α_e (I -
Let a = iV*(/ + TΓ)φ e (/ - ΐ^)3Ji, since (/ - W)m = iV*(/ +
Then

0 = <(/ + W)φ N*(I + T7)Φ> = (N*(I + W)φ, N*(I + W)φ)

which proves that (I + W)φ = 0, and hence u e ®(Λ/Ί) as desired.

UNIVERSITY OF CALIFORNIA,

Los ANGELES

6 A result similar to Theorem 3 appears in the report by Davis (4) for the case when

dim (Φ(ΪV*)/Φ(iV)) < oo.
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