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SOME ZERO SUM TWO-PERSON GAMES WITH
MOVES IN THE UNIT INTERVAL

MARTIN FOX

Introduction. Consider the following zero sum two person game.
The players alternately choose points tt e [0,1] for i = 1, 2, •• ,n, the
choice being made by player I if i is odd and by player II if i is even.
After the ith move the player who is to make the (i + l)st move ob-
serves the value of φt(t19 t21 , tt) where φt is some function on the i-
dimensional closed unit cube to some set At. The payoff is f(t19t2, , tn)
where / is a continuous, real-valued function.

If all the φi are constant we have the case of no information. Ville
[1] showed that in this case such a game has a value. At the other
extreme, if the φt are all one-to-one we have the case of perfect infor-
mation so the game has a value.

The purpose of the present paper is to show that, in general, games
of the form introduced in the first paragraph do not have values and
to consider two cases in which they do. The counter-examples to be
presented will be compared with Ville's classical example of a game on
the unit square which has no value.

It is shown in §2 that the games considered always have values
when n — 2.

An example of a game with no value is presented in § 3. In this
example n = 3 and the φt take only a finite number of values.

In § 4 it is shown that the additional hypothesis of continuity of
the φt is not sufficient to guarantee existence of a value. In that ex-
ample n = 4. The case n = 3 with continuous φt remains unsolved.

Section 5 deals with a special case for which n is arbitrary and
yet the game has a value. In this case the φt each take only a finite
number of values and each is constant on sets which are finite unions
of ί-dimensional generalized intervals.

1. Preliminary remarks* In this section the notation to be used
in this paper will be introduced. This will be facilitated by the intro-
duction of the normal forms of the games under consideration.

A pure strategy for player I is a vector x = (x19 x2, , £t?[(n+1)/2])
where xλ e [0, 1] and the x% for i — 2, 3, , [(n + l)/2] are functions on
A2i-2 to [0,1]. If moves t19t2, •• ,ί 2 t- 2 have been made, then the i th
move made by player I (the (2ΐ — l)st move in the game) will be
MίiΦzi-ϊitu U> # ^2ί-2)). His first move will be xx.
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A pure strategy for player II is a vector y = (y19 y2, , yίnii]) where
each j/4 is a function on A2ί^ to [0,1], If moves t19t2, , ίSi-i have
been made, then the ith move made by player II (the (2i)th move in
t h e g a m e ) w i l l b e y i ( Φ 2 i - 1 ( t l f t2, • ••, t 2 i ^ ) ) .

When player I uses the pure strategy x and player II uses the pure
strategy y let tt(x, y) be the ith move made in the game. The tt are
defined recursively as follows:

tnix, y) = j/iW>2i-i(*i(a, v), Ux, i/), , ί2i_i(a?, y)))

for i = l , 2 , « , N 2 ]

ί-i0&, 2/) = XtiΦn-ϊfoix, y), t2(x, y), , ί2i_2(a?, 2/)))

for ϊ = 2 ,3 , . . . , [ ( w

The payoff function is given by M(x, y) = f(tλ(x, y), t2(x, 2/), , tn(x, y)).
The payoff as a function of mixed strategies will also be denoted by M.

In our case, since the moves are points in [0,1], the strategy spaces
X and Y are products, usually infinite dimensional, each coordinate space
being [0,1], Hence, the choice of a strategy by player I is equivalent
to the choice of a distribution function F on X. It will be convenient
to let the space P of mixed strategies for player I be the family of all
distribution functions on X which assign probability 1 to a finite subset
of X. The same will be done for Q, the space of mixed strategies for
player II.

If H is a distribution function on the real line and S is any subset
of the real line which is Borel measurable, we will let HS be the
probability assigned to S by H.

For FeP we let FitOύ denote the marginal distribution function of
the coordinate of player Γs strategy which corresponds to his ith move
when φ2ί_2 = a. Similar notation will be used for GeQ.

2. The case n = 2Φ In this section it will be shown that any game
^ of the type given in the introduction for which n = 2 has a value.
It is not even necessary to assume that φx is a measurable function.

For any aeA1 let &(a) = (Φϊ\a), [0,1], Ma) where M* is/ restricted
to Φϊ\a) x [0,1]. It follows by the proof used for Ville's minimax theorem
that each &(a) has a value v(a). Let

v = sup v(ά) .

Fix ε > 0 and let α* be such that v(a*) > v — ε. For each a e Ax let
F{cύ) and G(oύ) be ε-good strategies for players I and II, respectively, in
2^(α). The distribution function Fw assigns probability 1 to a finite
subset of Φϊι{a). Since F^ is a distribution function on [0,1] which
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is the strategy space for player I in 2^ it can also be used as a strategy
in K Let y be any pure strategy for player II in K Since ^(α*) e [0,1],
it follows that y^a*) is a pure strategy for player II in ^(α*) . Hence,

> v(a*) - ε > v - 2ε .

Let Cr be any strategy for player II in %? such that Glta=G{a>) for all
aeA±. Let a? be any pure strategy for player I in K For some aeA±

it must be true that x e Φϊ1^) so that x is also a pure strategy for
player I in g^(α). Then,

- f MΛ(x, t)Gw{dt)

< v(a) + ε <^ v + e .

From the two inequalities obtained above it follows that the value of
*& is v.

3. A counter-example for n = 3. In this section the counter-
example for n = 3 will be given. The functions φt (i = 1, 2) each take
only a finite number of values. The similarity of this example to Ville's
example will be discussed.

For this example let

φ1(t1) = 0

' - 1 if tλ = 0 or 0 < min (ί2, 1 - ί2) ^ ίx

ί2 if ί2 = 0 or 1 and ^ ψ 0

2 if 0 < tx < t2 < —

_ 2

3 if 0 < ίx < 1 - ί2 < —

f(t1,t2,t3)= - | ί s - ί a | .

Let ί7 be any strategy for player I. Fix ε > 0 and let δ e (0, ε) be
sufficiently small so that i^(0, δ) < ε. Let G{S} = G{1 - δ} = 1/2. Then,
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M(F, G) <; - 1 (FH8, ί, - δ

+ j I ί, - (1 - δ) IJV-^ί,)

— ε

so that

Let G be any strategy for player II. Fix ε > 0 and let xx e (0,1/2)
be sufficiently small so that G(0, xλ] + G[l — x191) < ε.
Let

α if α = 0 or 1

A if α = 3
4

Let x = (*!, *a) so that x is a pure strategy for player I. Then,

M(G, x)^-\ ( i - φ(dί2) - ( (ί, - -i-)
J ( ] \ 2 / J B - ^ , 1 ) V 2 /

(o,ϊ1]

J [0,1/2]
1 - t,
4 J (1/2,1]

> - ε -

so that

inf sup M(F,G) ^ - —
G F 4

and the game has no value.
In Ville's example the payoff function is such as to force each

player to attempt to choose a point closer to 1 than does his opponent
without actually choosing 1. It is impossible for either player to
guarantee he will achieve this with any preassigned positive probability
no matter what pure strategy his opponent may use. In the example
just presented a similar situation arises on the first two moves. In Ville's
example the competition to choose a point close to the endpoint is.
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a direct competition over payoff. In the present example this competi-
tion is over the information player I will receive, which, of course, helps
determine the payoff. If on his first move player I chooses a point
closer to 0 (but not 0) than the choice of his opponent is to both 0 and
1, then he will obtain more accurate information about the location of
his opponent's choice than would be the case otherwise. Player II is
prevented from choosing an endpoint since to do so would be to give
his opponent perfect information.

4 A counterexample with continuous Φ4 In this section a coun-
ter-example will be presented in which the functions φt are all con-
tinuous. In this example n = 4. Again a comparison will be made with
Ville's example.

Let

Φi(ίi) - 0

0 if min (tlf 1 — ίx) ^ t2 ^ max (tly 1 — tλ)

1
- *2>(*1 ~ U)

^2)1^1 ( 1

f(t1912, ί8, ί4) = I *χ - ί41 - 10 I ίa - ί81 .

if ί2 < t, < ±

or - ί < tx < t2
Δ

if -i- ^ ίx < 1 - ί,
£1

or 1 - ί, < ίx ^-±-
Li

Assume t2ΦQ or 1. Then, φ3(ί1, ί2, ί8) > 0 for min(ί2, 1 — ί3) < tx < 1/2
while φs(t1912, t3) < 0 for 1/2 < ^ < max(ί 2 ,1 — t2). On the other hand,
Φs(*i> *a» *β) = 0 otherwise.

Let .F be any strategy for player I. Fix ε > 0 and let δ e (0, ε) be
sufficiently small so that ^ ( 0 , δ] + F^l - δ, 1) < ε. Let

4 if a > 0
4

— if a < 0 .
4

Let G assign probability 1/2 to each of the pure strategies (δ, 2/3) and
(1 - δ, 2/2). Then,
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M(F, G)^[ (—- tλF^dt,) + [ U-

J ( δ , l |
1-1

4

- 10̂ (0} + ™i[γjl δ -

i . j 11 - δ - ί, I F2,0(dt3)]

+ ^{l}][(γ - δ) + (l - δ - i-)]

- 2δ) - i

+ llε

so that sup*. inίθM(F, G) ^ 1/4.
Let G be any strategy for player II. Fix ε > 0 and let δ e (0, ε) Π (0,1/2)

be sufficiently small so that Gli0(0, 8) + Gli0(l — δ, 1) < ε. Let x2(a) =
α/[δ(l — δ)] and let F assign probability 1/2 to each of the pure strategies
(δ, »„) and (1 — δ, x2). When player I uses the strategy F the value of
the nonpositive term in / will always be zero. Thus,

M(F, G) ^ [ l - G1>0(0, δ) - G U I - δ, 1)]

x [γ\ I δ - U I G2,0(dQ + i - j 11 - δ - u I G2,0(cίί4)]

so that inίG sup FM(F, G) Ξ> 1/2 and the game has no value.
Here again the primary competition between the players is to make

their first moves as close to the endpoints as possible without actually
choosing the endpoints. If player I is successful in choosing a point tλ

at least as close to one of the endpoints as is player IPs choice, then
player II will have less information about tx than would be the case
otherwise. Player I is prevented from choosing an endpoint by the fact
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that if he does so he will get no information about his opponent's first
move so that he cannot guarantee that he can keep the negative term
close to zero. Player II is prevented from choosing an endpoint by the
fact that when he does so the function φ3 will take the value zero no
matter what his opponent does so that he will have no information about
player Γs first move.

5* The case of information sets which are unions of generalized
intervals* The case to be considered here is that in which each φt takes
only a finite number of values and each is constant only on sets which
are finite unions of ί-dimensional generalized intervals. This is the only
case considered in this paper in which n remains arbitrary.

Let the values of φt be 1, 2, , m4. Let P3φι\k) be the projection
on the jth coordinate of Φi\k) where j = 1, 2, , i. The interval [0, 1]
can be subdivided into disjoint sets Bn, Bj2, •' ,BJlj such that for each
B3l there exist i19 ί2, , ir and klf k2, , kUJ all integers, such that
t e B3l if, and only if, t e P3φι\k) whenever i e {ilf i2, , ίr) and
k e {klf k2, , ku) while t $ P3Φι\k) otherwise. Suppose j is even so that
player II makes the jth move. Let y = (y19 y2, ,yίnm) and y' =
(vΊ* Vί, , yrίnm) be any strategies for player II such that yt = y\ for
i Φ j/2 and if ym(k) e Bn, then yrjί2{k) e Bn. For any pure strategy x for
player I we have ίt(#, y) = tt(x, y') for i = 1, 2, , j — 1 since for these
values of i player IΓs moves are unchanged. If tj(x,y)eBJl, then
tj(x, yf)eBn. Hence,

ΦAUx, y), t2{x, y), , tj(x, y)) = ΦάUx, y'), t2(x, y'), , tj(x, y'))

so that tJ+1(x, y) = tJ+1(x, y'). Suppose that tt(x, y) = tt(x, yr) for i =
j + 1, j + 2, , v Then, Φh(tx{x, y), t2(x, ί/), , th(x, y)) = Φφ^x, y')y

Ux, y')9 ' •» tio(x> V')) so t h a t ίίo+1(a;, y) = ίίo+i(a;, y'). Thus, tt(x, y) =
tt(x, yf) for all i φ j .

For each j = 1,2, , n — 1 fix 8j > 0 and select points tjlf tj2, , tjΌ

such that for any t3 e Bn there exists tjΌ e B3l such that for any t1912, ,
tj-lf tj.hl, •••, tn w e h a v e

I f\yi> t2, , ίj-i, tj, tj+1, , tn)

f it'll ^2) " ' * y tj-19 ^jυi tj+li ' * f in) I ^ Vj

Select the tjυ in such a way t h a t as δ̂  [ the set of all the tjυ increases
monotonically.

Let the game 5f (Sx, δ2, . . , δ4) = (X(S19 δa, , δ,), Γ(δ l f δ2, . . . , δt),
-M81,82,....8<) be our original game with the jth move for j = 1, 2, « , i
restricted to ^ , ίJ2, , ί^. In S^(δx, δ2, , δn_i) the player who makes
the (n — l ) s t move has only a finite number of strategies so t h a t

δi, δ2, •••, δn_χ) has a value (see Wald [2]).
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Suppose &(819 δ2, , δ,-!, δ4) has a value for all St > 0. It follows,
by a proof similar to Ville's, that &(819 S29 , 8^) has a value. Thus,
by induction, gf will also have a value.

Acknowledgment. The author wishes to express his gratitude to
Professor David Blackwell for suggesting the problem treated here and
for his continued interest in its solution.
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