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1. Introduction. Throughout this paper, m denotes a fixed
integer >1. The set of all residue classes modulo m is denoted by S,,.
For an integer %, [x] denotes the residue class containing %. Under the
usual multiplication [x]-[y] = [*y], S, is a semigroup. The subgroup of
S,, consisting of all residue classes [x] such that (x, m) =1 is denoted
by G.,.

We write m = []5_, 3/, where the p, are distinct primes and the
a, are positive integers. Following the usual conventions, we take void
products to be 1 and void sums to be 0.

In 2.6-2.11 of [2], the structure of finite commutative semigroups
is discussed. In §2, we work out this structure for S,. In §3, we
give a construction based on [2], 3.2 and 3.3, for all of the semicharacters
of S,,. In §4, we prove that if X is a semicharacter of S,, assuming a
value different from 0 and 1, then e, 2([2]) = 0. In §5, we compute
x([z]) explicitly in terms of the integer x, for an arbitrary semicharacter
x of S,. In §6, we discuss the structure of the semigroup of all semi-
characters of S,,.

Our interest in S,, arose from seeing the interesting paper [4] of
Parizek and Schwarz. Some of their results appear in somewhat dif-
ferent form in § 2. Other writers ([1], [5], [6], [7]) have also dealt with
S,, from various points of view. In particular, a number of the results
of §2 appear in [6] and in more detail in [7]. We have also benefitted
from conversations with R. S. Pierce.

2. The structure of S,,. Let G be any finite commutative semigroup,
and let ¢ denote an idempotent of G. The sets T, ={rx:2eG, 2™ =a
for some positive integer m} are pairwise disjoint subsemigroups of G
whose union is G. The set U,={x:xe T, o' = for some positive
integer I} is a subgroup of G and is the largest subgroup of G that
containg @. For a complete discussion, see [2], 2.6-2.11. 1In the present
section, we identify the idempotents a of S, and the sets T, and U,.
We first prove a lemma.

2.1 LEMMA. Let x be any mon-zero integer, written in the form
11 v, B;=0,(m)=1.
Jj=1
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Then there is an integer ¢ prime to m such that

x EJI_:IIp}J-c (mod m),
where N, = min (@, B;)) (=1, «++, 7). If

X

i

,ﬁ pii-d (mod m) ,

where 0 < 4, = oy (J=1, +++,7) and (d, m) =1, then p, =), (=1, --

However, it may happen that d % ¢ (mod m).

Proof. Let b = ][ p;, Then we have

J
@j=Bj
x + bm = pfl cee pfra + pP ... p:rb
= [I pp»«sf2. (Aa + B),
Jj=1
where

A — H p‘;na,x(O.(ﬂj—wj))

J=1

and
B — ﬁ p;nax(o,(wj—ﬁj)).b .
j=1
Then it is easy to see that (Aa + B, m) =1, so that

r
z = [I pP*@»E2.¢c (mod m) ,
Jj=1

7).

where ¢ = Aa + B is prime to m. The last two statements of the

lemma are also easily checked.

2.2 THEOREM. Consider the 2" sequences {3, «-+, 8.}, where &, =0
or a,(j =1, ---,7r). Corresponding to each such sequence, there is ex-
actly one idempotent of the semigroup S,, and different sequences give

different idempotents. The idempotent corresponding to {5, - -

be written as
[1154],
J=1

where d 1s any solution of the congruence

I p-d =1 (mod 11 p?‘ﬁ‘”) .
J=1 j=1

-, 6,} can
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Proof. An element [x] of S, is idempotent if and only if
2= (mod m). If x is written as in 2.1, this congruence becomes
15 p29-¢* = 115, p}¥¢ (mod m), which is equivalent to

(1) [T py-c=1 (mod ITp1).
J=1 J=1
The congruence (1) has a solution ¢ if and only if [/, p}/ is relatively

prime to I[7-, »77~*, that is, if and only if \;=0or a; (=1, -+, 7).
If ¢, is a solution of (1), then all solutions of (1) are given by

¢c=¢ +yllp™,
Jj=1
where y is an integer. Plainly

[FLve] =12

for all such e.
We have thus proved the existence of a unique idempotent

[fi-]

corresponding to a sequence {J;, ---, 5,}, where §;,=0ora; (j =1, «++, 7).
If {8,.-+,8,} and {8, ---, 8]} are distinct such sequences, the corre-
sponding idempotents are distinct by 2.1.

2.21 COROLLARY. Let

[f7-¢]

and
ez

be idempotents in S,, written as in 2.2. Then their product 1s the
idempotent

[ﬁ p?ax(aj.53>,drl] ,
Jj=1
as i Theorem 2.2.

This follows directly from 2.1 and the obvious fact that products
of idempotents are idempotent.

We next determine the sets T, and U, defined above.

2.3 THEOREM. Let
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(o] = [ 11 e

be any element of S,, where 0 =N Za; (j=1,-++,7) and (c,m) = 1.
Then [x]e T,, where the idempotent

a=[ 11 pd],
1sjsr
Aj>0

and d s as in 2.2.

Proof. The idempotent a such that [x]e T, has the property that
[x]** = @ for some positive integer &k and all integers » = some fixed
positive integer n, (see [2], 2.6.2). For % = n,max(a, -+, a,), 2.1
implies that

a = [x]nk — [wnk] — ]11[:1 p}zku.cnk] — [;I:Il p}nin(nk)\j,wj).dl] — [ﬁ:l pﬁf-d] ,

where 6, =0if X\, =0 and §;, = «; if A, > 0, and d’ and d are relatively
prime to m.

2.4 THEOREM. Let
J=1

be any idempotent of S,, written as in 2.2. The group U, consists of
all elements of S,, of the form

it

where (¢, m) = 1.

Proof. Let [x]e U,. Then for some integers I >1 and k=1 and
all integers n = n,, we have [z} = [#] and [z]*™ = a. This implies that
[2] = [z]™**'. Writing 2 as in 2.1 and using 2.1, we now have

r 7
11 pr-c = T p™Pem+t = T pyreh (mod m)
J=1 J=1 1sJs7

Ay
]>0

provided that n is sufficiently large; here (k, m) = 1. From 2.1 we infer
that A, =0 or @, (j =1, -+-, 7). Since [x] e U,c T,, 2.3 now implies that
N=8 (F=1,«,7).

Now let = = [[}-, p}’-c, where (¢, m) =1. Then 2.3 shows that
[x]e T,. To prove that [x]e U,, we need to find an integer [ > 1 such
that [#]* = [#]. This is equivalent to finding an ! such that
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r I3 7
(1T pv-c) = L pr-c (mod m)
J=1 J=1
and this congruence is equivalent to the congruence
r -1 7
(H 1031-0> =1 (mod 11 p‘;‘f‘”) .
Jj=1 J=1

Since

o

p?l.c
J

Il

1

is relatively prime to the modulus, such an ! exists.
We now identify the groups U,.

2.5 THEOREM. Let

aQ = [17:[ pg]-d]

be any idempotent of S,, written as in 2.2. Let
A= T] p2rs .
j=1

The group U, is tsomorphic to the group G..

1295

Proof. For every integer z, let [z] be the residue class modulo A
to which x belongs. For [x] e S, let 7({x]) = [#]’. Plainly 7 is single-
valued and is a homomorphism of S,, onto S,. We need only show that

T is one-to-one on U,. If (¢, m) = (¢*, m) =1 and

([ ftmee]) = <[ o-er]).

then

11 pi-c = 11 p+c* (mod A),
j=1 j=1

which implies that ¢ =c¢* (mod A), because (IIi, P}, A) =1. Since
Tl pY-A = m, we can multiply the last congruence by T[’_, p¥ to obtain

I p¥7+c =TT p%7-¢* (mod m) .
Jj=1 J=1

3. A construction of the semicharacters of S,. A semicharacter
of S,, is a complex-valued multiplicative function defined on S,, that is
not identically zero. The set X, of all semicharacters of S,, forms a
semigroup under pointwise multiplication, since [1] is the unit of S,



1296 EDWIN HEWITT AND H. S. ZUCKERMAN

and x([1]) = 1 for all x e X,,. In this section, we apply the construction
of [2], 3.2 and 3.3, to obtain the semicharacters of S,. In §5, we will
give a second construction of the semicharacters of S,, more explicit
than the present one, and independent of [2]. This construction will
enable us to identify X, as a semigroup (§ 6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters
of S,, in terms of the groups U,. Let X, be any character of the group
U, We extend X, to a function on all of S,, in the following way:

0 if ab # a for the idempotent b such that [x] e T}

(1) 2u=D =
{Xa([x]a) if ab = a for the idempotent b such that [x] e T;,.

The set of all such functions ¥ is the set X,,.
3.1 THEOREM. The semigroup X,, has exactly
],YI:I1 (1 + P37 — pi™)
elements.

Proof. For each idempotent a = [pdr --. pir¢] as in 2.2, (1) yields
as many distinct semicharacters of S, as there are characters of the
group U,. The group U, has just as many characters as elements. By
2.5, U, consists of

#(ILpy*) = T {pr"(v, — 1}

8§ =r
J

o

elements. Also, distinct idempotents ¢ and b of S,, yield distinct semi-
characters of S,, under the definition (1). Therefore the number of
elements in X, is

(2) ;dgmﬂﬁzgwﬁémﬁ 2(H¢@D

O+WWD=ﬁ( pww

n}:js

The sums in (2) are taken over all sequences {8, --+, 5,} where each &,
is 0 or a;.

3.2 THEOREM. Let X be a semicharacter of S, as given in (1) with
the idempotent a = [ph « -+ pid], and let X' be a semicharacter with the
idempotent a = [pli --- p¥d']. Then the semicharacter XX’ is given by
(1) with the idempotent o'’ = [pPin®1:3D ... poinG.30d],

This theorem follows at once from 2.21 and the definition (1).

We now prove two facts needed in §4.
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3.3 THEOREM. Let X be a semicharacter of S, that assumes some-

where a value different from 0 and 1. Then ) assumes a value different
Sfrom 1 somewhere on G,,.

Proof. Definition (1) implies that the character X, of U, assumes
a value different from 1. It is also easy to see that G, = Uy For
[x] € G, definition (1) implies that x([z]) = X.(e[2]). We need therefore
only show that the mapping [x] — a[«x] carries G, onto U,.

Write a = [ph +-- p¥d]. Every element of U, can be written as
[Pl - pic] where (¢, m) =1, by 2.4. We must produce an [x]eG,
such that af[x] = [pd --- p¥¢]. That is, we must produce an integer =«
such that

(3) f[pji-doczﬂpﬁf-c (mod m)
j=1 j=1
and (z, m) =1. The congruence (3) is equivalent to
(4) dr=c (modﬁp}i*5i> .
J=1
Since d is relatively prime to the modulus in (4), the congruence (4)
has a solution z,, We determine x as a number
zo + LTI 03
Jj=1
where [ is an integer for which
7o + LT 93 =1 (mod T #3) .
J=1 J=1
Clearly
@ = @, + LI
Jj=1

:satisfies (3) and the condition (z, m) = 1.

3.4. Let {\, --+,\,} be a sequence of integers such that 0 =\, = «;
(=1, .--,7), and consider the set V(x, +++,),) of all [pit.-- pra]e S,
with (x, m) = 1. It is easy to see that this set is contained in T,
where a is the idempotent

L 11 p?f-d]-

<j=r

A
]>0

3.5 THEOREM. Given M\, +++,\,, there is a positive integer k such
that the mapping [x] — [p}t <+ pyx] of G, onto V(\, ++-,\,) s exactly
k to one.
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Proof. Let u be any integer such that (u,m)=1, and let [x],
+o+,[2,] be the distinet elements of G, such that [pj* ... prx)] =
[pM ++. pru]. That is,

Moo P, =P oo pyt (mod M) (F=1,---,k,).

Let u* be any solution of wu* =1 (mod m). If (v, m) =1, then we
have

Moo p?ru*q)xj = plt ... pv (mod m) .

Since (u*vz,,m) =1( =1, -+, k,) and the elements [u*vz,], « -, [u*vxku]’
are distinct in G, it follows that k, =< k,. Similarly, we have k, < k,.

4., A property of semicharacters of S,. It is well known and
obvious that if H is a finite group and X is a character of H, then
Seer X(x) = 0 or o(H) according as X # 1 or y =1. This result does
not hold in general for finite commutative semigroups. As a simple
example, consider the cyclic finite semigroup 7'={x, 2%, «++, %, +++, 2"},
where ¢*** = &/, and I and [ + k are the first pair of positive integers
m, n, m < n, for which 2™ = x”. The following facts are easy to show,
and follow from the general theory in [2]. The subset {«’, 2™+, .., 2™}
is the largest subgroup of 7. Its unit is the element z**, where the
integer u is defined by I < uk <l + k. The general semicharacter of
T is the function ) whose value at 2" is exp (2wihj/k), where j = 0,
1,.-,k—1. For j=1,2, .+, k —1, the sum >+ x(x*) is equal to

1 — exp <2m'(lck+ l)j)

1 — exp < 27;:7 >
which is 0 if and only if k/(k,[) divides 7. Hence the sum of a semi-
character assuming values different from 0 and 1 need not be 0.

Curiously enough, the above-mentioned property of groups holds for
the semigroup S,,.

4.1 THEOREM. Let X be a semicharacter of S, that assumes some-
where a value different from 0 and 1. Then Siaes, X([x]) = 0.

Proof. It is obvious from 2.1 that the sets V(:, ---,)\,) of 3.4
are pairwise disjoint and that their union is S,,. We therefore need
only show that >iaern,...ay X([#]) =0 for all {\,.--,\}. By 3.3, %
assumes a value different from 1 somewhere on the group G,,, so that
Simtea,, X([2]) = 0. (Note that X on G, is a character of the group G,,.)

Thus we have 0 = Xpee,, X([P1 - - 2P DA(2]) = Singea, X([DI1 -« - Da]) =
k> x(ly]), where [y] runs through V(\, -+, ),).
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5. A second construction of semicharacters of S,,. In this section,
we compute explicitly all of the semicharacters of S,,. The case m even
is a little different from the case m odd. When m is even, we will
take p, = 2. To compute the semicharacters of S,,, we need to examine
the structure of S, in more detail than was done in §8. For this
purpose, we fix once and for all the following numbers.

5.1 DEFINITION. For 7 =1, , 7, let

g, = a primitive root modulo p¥ if p; 18 odd;

=51 n=2

h, = g, + y;p37 where y; is such that h, =1 (mod m/p5d);

hy = — 1 + y,p* where y, is such that h, =1 (mod m/p®);

g, = p; + 2,057 where z; 18 such that ¢, =1 (mod m/p5?);
For j=1,«-- 7,1 =1,ce, 7,51, and p, odd, let k;, be a positive
integer such that p, = gin (mod pj1).
For 1 =2,++,7 and p, = 2 let

ky be a positive integer such that p, = (—1)*""1g*n (mod pi).

Plainly v, 1, *++, ¥, and 2z, +--, 2, exist. For p, odd, the integers
I, exist because ¢, is a primitive root modulo p¥:. For p, = 2, the
integers k,, exist for a; = 3 by [3], p. 82, Satz 126. For a;, =1 or 2,
k; can be any positive integer.

5.2. Let x be any integer #0. Then x = []j, p* .a(x), where
Bix) = 0 and (a(x), m) = 1. Plainly the numbers 8, = 8,(x) and ¢ = a(z)
are uniquely determined by . For j =1, ..., and p, odd, let
e; = e¢,(x) be any positive integer such that

a(2) = g (mod p) .
The number e¢,(z) is uniquely determined modulo ®(p$7). For p, = 2, let
e, = e,(z) be any positive integer such that
a(x) = (=1)=2lgp® (mod pf) .

For a, = 3, e,(x) exists and is uniquely determined modulo pf*~? (see [3],
p. 82, Satz 126). For a, =1 or 2, e(x) can be any positive integer.
If m is even, let

0 = ([ o )

J=1

'-'v-

If m is odd, let

(1) Aw) = (1T n

H
w;q
?7‘
&
~—
g
==
L=
T
o
~—
TN
="
]
=8
~—
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If m is even, it is easy to see from 5.1 that

r

(2) A = (IT(—)eree (1T gt )pp(—1)“"gzt (mod pi)

J=2

1l

(TT (—1yorvingen ) pp(—1ye—vrege
= j[[zﬁwp?la = (mod p{),
and, if n =2, +--, 7,

A(w) = TI g&%sm-plngin = T pfr-pira = o (mod pi) .
= i
Therefore A(x) = 2 (mod m) if m is even.
If m is odd, then for n =1, -+, 7, we have

r

Ax) = JE[I ghiEin. phngn = jl} piiepara = @ (mod prn) .
J#n J#n

Therefore A(x) = (mod m) if m is even or odd.

5.3. Suppose that ) is any semicharacter of S,. Let + be the
function defined for all integers x by the relation +(x) = X([xz]). Then
+r is obviously a semicharacter of the integers under multiplication, and
() = Y(y) if =1y (mod m). We will construct the semicharacters
of S, by finding all of the functions +» with these properties. As 5.2
shows, 4 is determined by its values on hy, ki, +++, k, and q,, -+, q,.
We now set down relations involving the %’s and ¢’s which restrict the
values that «» can assume on these integers.

5.4, If p, is odd, then

h?(p?j) =1 (mod pY), h?(p‘;j) =1 <m0d mj) ;
Y

hence
R =1 (mod m) .

Also,

k=1 (mod »?), =1 (mod > ) ;
it

hence h} =1 (mod m).

If p,=2and a, =1, then h,=1 (mod 2), 7, =1 (mod m/2); hence

hy =1 (mod m).
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If p, =2 and a;, =1 or 2, then

h, =5=1 (mod p{*), h, =1 (mod m/p); hence h, =1 (mod m).

If p, =2 and a, = 3, then

B =1 (mod p=), h™ =1 (mod m/p*); hence B =1 (mod m).

(The first congruence on the line above is proved in [3], p. 81, Satz 125.)
For =1, ---,r, we have

=0, qyh; =0, ¢ =0 (mod p}’),

¢r=1, qvh,=1, q¢=1 (mod ﬂj) .
Dy

Therefore we have
qy = q3h; = q37™ (mod m) .
Also, if p, = 2, we have
=0,  ¢Phy=0 (mod p),

@=1, qoh=1(mod ™).
e

Therefore we have
= q%h, (mod m) .

5.5 If 4ris to be a function on the integers such that r(x) = x([x])
for some semicharacter X of S,, then the choices of the values of 4 at
the h’s and ¢’s are restricted by the congruences modulo m derived in
5.4. Thus, since x([1]) = 1, we have

Ylhy)#Wi" =1 if p, is odd;
Y(he) = = 1, and (k) =1 if &, =1 and p, = 2;
Y(h) =1if p,=2 and'a;, =1 or 2;
Wby =11if p, =2 and a, = 3.
Also we have
(@)™ = P(g)"r(hy) = r(g)™ ™ for g =1, -+, 7.
If p, = 2, we have

‘1"(%)“1 = \l’(%)wl‘P(ho) .

The last two equalities give us:

Y(q;) # 0 implies Yr(h;) = Y(q,) = 1;

and
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(q,) # 0 implies (k) = 1 if p, = 2.

5.6. To construct our functions +r, we now choose numbers @,
@, +++,®, and f, <+, 1, which are to be (h,), Y(h,), +--,Y(h,) and

¥(qy), +++, ¥(q,). The relations in 5.5 show that we must take these
numbers such that:

@i =1if j=1,.-.,r and p, is odd;

w,==+1, w,=11if p, =2 and a, = 1, or if m is odd;
w, =11 p,=2and o, =1 or 2;

@7 =1if p,=2 and o, = 8;

t;=0o0r1if j=1,cc,7;

w, =11 ¢, =1,7=1,+-,7;

w,=11if p,=2 and 1, = 1.

Formulas (1,) and (1,) of 5.2 now require us to define (zx) for non-
zero integers x as follows:

3.) Y(x) = (jf_[zz wg(Dj“Nﬁj(z)ﬂ)( H 81 x)kjl><j]i£ #gj(x)>

=1 j=1
. @11 <H ew) if m is even?

ﬂj(l?)ka)( ‘uﬂj(x)>< (L)?f(x)> if m is Odd-

,,.

(3) W) = (H

\-.
Nr—-

Finally, we define y+(0) = y~(m).

The ¢’s, h’s, and k’s appearing in (1) and (3) were fixed once and
for all in terms of m. The w’s and ¢’s are at our disposal and serve
to define Yr. The B’s are determined uniquely from 2x; but the e’s are
not. As noted in 5.2, e, is determlned modulo @(p§7) if p, is odd, and
e, is determined modulo p®—2 if p, =2 and a, = 3. Since wy?? =1 if

p,is odd, @™ =1 if p,=2 and &, =3, and w, =1 if p,=2 and
o, = 2, we see that 4 is uniquely defined by the formulas (3,) and (3,).

5.7. We now prove that yr(xy) = (@) (y). Since + is obviously
bounded and not identically zero, this will show that 4 is a semicharacter.
Suppose first that « = 0,y = 0. Then we have

v =1l pf'a(@), y=1TI00"aly), ay=IIpH"*Y. a(x)a(y) .
Jj=1 J=1 J=1

1 We take wyp =1 when m is odd merely as a matter of convenience. Actually, as will
shortly be apparent, wy does not appear in the definition of ¢ if m is odd.
2 We take 00 =1.
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Therefore a(xy) = a(x)a(y) and B,(xy) = B,(x) + By) for j =1,
Also we have

957" = alwy) = a(@)aly) = g7gyY = ¢+ (mod pj7)

if p, is odd. Since g, is a primitive root modulo p3¥ and w7 =1, it
follows that e,(xy) = e¢,(x) + e,(y) (mod @(p3?)) and W™V = WY DWWV if
p; is odd (j=1,.-+,7). If p, =2, then a(x) and a(y) are odd, and
plainly

aey) —1 _ a(x) —1 a(y) — 1
5 = 2 + 7 (mod 2) .

Therefore we have

wo(a(m/)fl)lz — wo(a(x)—l)ﬂwo(u(y)al)/z
for both admissible values of w,. Furthermore,

( 1)(a 2Y) — /del(ﬂl = a(x)a(y)
—= (_l)m(z 1)/2 el(x)( 1)(11 (mOd o 1) ’

if p, = 2. Therefore we have
g = gp@+a® (mod p) ,

if p, = 2.
Hence, if @, = 3 and p, = 2, we have e, (xy) = e, (x) + e,(y) (mod py~?),
as follows from [3], p. 82, Satz 126 (recall that ¢, =5, p, = 2). Hence

WA = @h@ aw) ifa,=38,p,=2.

The last equality also holds if «, <2 and p, = 2, since w, =1 in this
case.

The foregoing computations, together with (3), now show that
Y(xy) = yr(@)p(y) if xy = 0.

We next show that yr(zy) = y(@)W(y) if 2y = 0. We compute yr(m).
Since Bym) =a;, >0 for j =1, --+, 7, we have

f[ Bj(m):{lif#]_:...:#r:l,

= 0 otherwise.

If gy =+.+ =p, =1, then by 5.6, we have oy =0, =+ =0, =1, so
that y(x) =1 for all . In this case, we have +y(xy) = (20 (y) for
all z and y. If some py; =0, then y(m) =0, and hence (0) =0. In
this case, Yr(xy) = ()Y (y) if xy = 0.

5.8. We now prove that y(z) = y(y) if © =y (mod m). Suppose
first that @y = 0 and 2 =y (mod m). Then
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I %% .a(x) = ﬁ 5% a(y) (mod m) .
J=1 J=1

From this, we see that B,(x) > 0 if and only if B,(y) > 0. If, for some
J, we have B,(x) > 0 and g, = 0, then B,(y) > 0 and Y(x) = 0 = Y (¥).

Now we can suppose that g, =1 for all j such that B,(x) > 0.
Then w, =1 if Byx) >0 (G =1, ---,7) and w, =1 if By(x) > 0. If m
is odd, or if m is even and 53,(x) > 0, we have

(4) v@ = ( I Dop=s)( 1T o),
Bl(l;io = ,sjf;)io

(5) Yr(y) = ( 11 wa](y)ka>< H a)?](ﬂ)) .
b5 o b e

If m is even and B,(x) = 0, we have

r

(6) \1/'(-7/') — (ﬁ wo(pj—l)ﬁj(z)ﬂ)( ﬁ H w?;(z)kﬂ>wo(a(as)—l)/2< ﬁ w;](:&)) s
Jj=2 J=1

=1 J=1
B (.t) Oﬁj(z)>0 ,Bj(a:) =0

(7)) = ([Lowrewm)( [T 11 eposo,eose T opo).

=1
Bl(x)=0 Bj(z)>0 J( =0

Since © =y (mod m), we see from 5.2 that A(x) = A(y) (mod m)
and hence
(8) A(x) = A(y) (mod p2») for n =1, «--, ¢

The congruence

(9) Aw) = JT br="m-gfe=hin™ (mod pie)

J#n

holds if p, is odd. To verify this, use (1,) and (1,) together with 5.1.
Notice that for n» = 1, we use only (1,).

The congruences (8) and (9), together with the fact that B,(x) =0
if and only if B,(y) = 0, now show that

y
Hhﬁj(z)kﬂ hen(x thjw)kj"'hﬁ”w) (mod pzn)
J=1

j#n J#n

if p, is odd and B,(x) = 0. This implies that

3 Bi@sn + @) = 3B, + en(y) (mod #(pi) ,
J#n J#n

and

y r

(10) H wg;(:c)kjn_w;n(y) — jII ng(ﬂ”ﬂm.w;n(v) ,
j=1 =1
J#n J#n
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if p, is odd and B,(x) = 0.
Similarly, if p, = 2 and B(x) = 0, in which case g, = 5, (2) implies
that

(11) A(x) = <.;|E[ (___1)(11_1—1)Bj(x)/2><ﬁ 53_1(2)1611)(_1)(a(m)~1)/25el(z) (mod 2@1) .
=2 j=2

The congruences (8) and (11), together with the fact that B.(y) = 0,
now show that

r

% 5 (b= DBs) + 50 =1)_ % Bioks+es) _
(-2 5/

ﬂmlm@+—mwl>zm@+mw
= (—-1)> 5= (mod 2%)

From this congruence, we find that

510, - D8 + Haw) - 1) =

550 = VAW + Lal) — 1) (mod 2)

if a; =2, and

j% Bj(x)kjl + e(x) = ]’;2 Bj(y)kﬂ + e(y) (mod 2012

if ¢, =8. Since wy,=1if ;=1 and w,=11if a,=1 or 2, we now
have

-

(12) H wo(pjfl)ﬂj z)/2, a) (a(x)—1)/ H a) (pj—DBjsty)/2, a) aly)—1)/2
J=2 J=

if ¢, =21, and

<

-
(13) H wlﬂj(x)kjl N wil(-’c) — H wlﬁj(y)kjl .wfﬂy)
J=2

if @, = 1. Multiplying (10) over the relevant values of %, we have

(14) ( H Hwﬂj kjn>< n]i[l a);nm) < 1:11 ga)ﬁjy)kjn)( ﬁ a);in(v)),

n=1
Bn(z)=0 H&n Bn(x):ﬂ ﬂ z) =0 Bn(x):()

Dy >2 D,>2 D, >3 0,>2

If m is odd, or if m is even and B(x) > 0, (14), (4), and (5) show that
Y(x) = Y(y). If m is even and B,(x) =0, we multiply (12), (13), and
(14) together. Comparing the result with (6) and (7), we find that
Yr(x) = +r(y) in this case also.

We have therefore proved that y(z) = (y) if x =y (mod m) and
2y + 0. If x =0 (mod m) and « # 0, then Y(x) = Yr(m). Since Y(0) =
Yr(m) by definition, the proof is complete.
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5.9. The foregoing construction of the functions +, and from these
the semicharacters X of S,, X([%]) = y(x), clearly gives us all of the
semicharacters of S,. As the @’s and ¢’s of 5.6 run through all admissi-
ble values, each semicharacter X appears exactly once. We could show
this by exhibiting, for each pair + and ', a number x such that
Y(x) # ¥'(x). Rather than do this, we prefer to count the +’s and
compare their number with the number obtained in 3.1.

For p, odd, the number of possible values of w, is @(p) if ¢, =0
and 1 if g, =1. Hence this number is @(pj?"~*”). For p, =2, there
are several cases to consider (¢, =0or 1, o, =1, a, =2, &, = 3). In
each case, it is easy to see that the number of admissible pairs {w,, o}
is @(@ni-w) Thus, for each sequence {z, ---, 4}, the total number of
sequences {w,, w,, +++, ®,} is equal to

TT (pgre-sry .
J=1

Summing this number over all possible {t, -+, &}, We obtain
05—, (1 + p7 — p37), as in Theorem 3.1.

6. The structure of X,,.

6.1. Let X and X’ be any semicharacters of S, and let (¢, « -+, t,;
Wy, Wy, »++, w,) and (Y, «--, t; 0, @), -+, ®.) be the parameters as in
5.6 that determine ¥ and X', respectively. The product XY’ then has
as its parameters

( 1 ) (ﬂl#{y cc ﬂrﬂl"; (Uo(l)é, W@, <, (Ur(l);‘) .

Thus, all of the X’s in X, for which the s are a fixed sequence of
0’s and 1’s form a group, plainly the direct product of cyclic groups,
one corresponding to each zero value of ¢. These are maximal subgroups
of X,, and X,, is the union of these subgroups. The multiplication rule
(1) shows clearly how elements of different subgroups are multiplied.
The rule (1) shows also that X, resembles a direct product of groups
and {0, 1} semigroups. It fails to be one because of the condition in
5.6 that ¢, =1 implies o, = 1.

6.2. The characters modulo m of number theory (see [3], p. 83)
are of course among the semicharacters that we have computed. They
are exactly those for which f4, = 4, = +++ = ¢, = 0. In the description
of §3, they are the semicharacters that are characters on the group
G., and are 0 elsewhere on S,.

6.3. We can also map X, into S,,, and represent X,, as a subset
of S,, with a new definition of multiplication. Let X be in X, and let
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X have parameters (f4, +«, th; @y, @y, +++, ®,). For m odd and j = 0, 1,

cee,70or m even and j =0,2,3, .-+, 7, let w, be any integer such that

w; = exp Qmiw,/®(p}?)). For m even and a;, =1 or 2, let w, = 0; for

m even and «, = 3, let w, be any integer such that @, = exp (2riw,/2%17%),
We now define the mapping

(2) X— 7)) = [hgvoﬂ—m) fI (h}vj(l—uﬁq}zjw)] ,
Jj=1
which carries X,, into S,,. Evidently = is single-valued.

6.4 THEOREM. The mapping T ts one-to-one.

Proof. Suppose that X and )’ are semicharacters of S,, with para-
meters as in 6.1. Suppose that (X)) = 7(X’), that is,

(8)  hyou—m T (psw0ggoms) = hest=rd T (o359 q2w5) (mod m) .
Jj=1 J=1

This congruence, along with 5.1, implies that
B piin = e priki (mod  pi)

for I =1, .--,7 and p, odd. Since (k,, p,) =1, and y; and 2 are 0 or
1, it is obvious that g, = p. If p, = p] =1, then from 5.6, we have
w,=w,=1. If g, =y =0, then A= kYt (mod pf), so that w, = w;
(mod @(p?)) and hence w, = w;.

If p, =2, (2) implies that

(4) R R = R pE (mod )

Again, we have p, = . If g, = pf =1, then 5.6 states that o, = 0] =
w, =, =1. If a, =1, then 0w, =0} =1, also by 5.6. If a, =2 and
¢ = i = 0, then (3), along with 5.1, shows that (—1)* = (—1)*s (mod 4),
and hence w, = w). If @, = 3 and ¢, = ¢} = 0, then we have (—1)5* =
(—1)#5%1 (mod 2%1), Once again, [3], p. 82, Satz 126 shows that (—1)*° =
(—1)* and that w,= w] (mod 2*+%). Hence w, = w} and , = wi.
Therefore 7 is one-to-one.

6.5. The set 7(X,,) consists of all the elements [p} :++ pia] of S,
for which 8, =0 or «a; and (¢, m)=1. It is evident from (2) that
7(X,,) is contained in the set {[p} --. p¥a]}. The reverse inclusion is
established by a routine examination of cases, which we omit.

6.6. The mapping 7 plainly defines a new multiplication in (X,):
(0¥t = (X’). Every residue class 7()) contains a number

,
@ = b= I (pr=ro ggovs) .
Jj=1
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If 2’ is another number of this form, then it can be shown that [x]*[«x]
is equal to [xx'/1] q7/], where the product [[ ¢/ is taken over all j,
j=1,++,r, for which p,|xx’. We omit the details.
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