Pacific Journal of Mathematics

RELATION OF A DIRECT LIMIT GROUP TO ASSOCIATED VECTOR GROUPS

PAUL DANIEL HILL

Vol. 10, No. 4

December 1960

RELATION OF A DIRECT LIMIT GROUP TO ASSOCIATED VECTOR GROUPS

PAUL D. HILL

A set M with a binary, transitive relation < is said to be directed if for each pair a, b in M, there is a c in M such that a < c, b < c. Let $\{G_a\}_{a \in M}$ be a collection of groups indexed by a directed set $M = \{a, b, \cdots;$ $<\}$, and for each a < b in M let h_b^a be a homomorphism of G_a into G_b . The homomorphisms are assumed to satisfy the relations

(i) $h^b_c h^a_b = h^a_c$ if a < b < c

and

(ii) if a < a, then h_a^a is the identity.

We call such a system a direct system of groups and define a direct limit group of this system in the following manner. Two elements $g_a \in G_a$ and $\bar{g}_b \in g_b$ are said to be equivalent if there is a c > a, b such that $h_c^a(g_a) = h_c^b(\bar{g}_b)$. Let g_a^* denote the collection of elements which are equivalent to g_a . Now given any two equivalence classes g_a^* and \bar{g}_b^* , there exists a c and elements g_c , \bar{g}_c in G_c such that $g_a^* = g_c^*$ and $\bar{g}_b^* = \bar{g}_c^*$. We define $g_a^* \cdot \bar{g}_b^* = (g_c \bar{g}_c)^*$. This multiplication is a well defined binary operation on the set, G^* , of equivalence classes. And it may be shown that G^* is a (multiplicative) group, which we define to be the direct limit group of the given system.

Let $G = \prod G_a$ be the restricted direct product of the given groups G_a , and consider the groups G_a as subgroups of G. An element in G of the form $g_a^{-1}h_b^a(g_a)$ is called a relation. Let H be the subgroup generated by the relations of G. Note that the inverse of a relation is a relation. By a "last" element of M we mean an element b such that a < b for all a in M. If M contains no last element, it is immediate that given a_1, a_2, \dots, a_k in M, there exists a $b \in M$ with the property $a_i < b, a_i \neq b$ for $i = 1, 2, \dots, k$.

LEMMA 1. If M contains no last element, the commutator group K of G is contained in H.

Proof. Let $x = g_{a_1}g_{a_2}\cdots g_{a_k}$ and $y = \overline{g}_{b_1}\overline{g}_{b_2}\cdots \overline{g}_{b_j}$ be arbitrary elements of G, where $a_m = a_n$ or $b_m = b_n$ implies that m = n. First choose a with the property that $a_i < a, a_i \neq a$, and $b_i \neq a$ for all i. Then choose b such that $b_i < b, b_i \neq b, a_i \neq b$, and $a \neq b$. We have

$$xyx^{-1}y^{-1} = \prod_{i=1}^{k} g_{a_i} \prod_{i=1}^{j} \overline{g}_{b_i} \prod_{i=k}^{1} g_{a_i}^{-1} \prod_{i=j}^{1} \overline{g}_{b_i}^{-1}$$

Received September 8, 1959, and in revised form September 11, 1959.

$$\begin{split} &= \prod_{i=1}^{k} g_{a_{i}} \prod_{i=1}^{k} h_{a}^{a_{i}}(g_{a_{i}}^{-1}) \prod_{i=1}^{j} \overline{g}_{b_{i}} \prod_{i=1}^{j} h_{b}^{b_{i}}(\overline{g}_{b_{i}}^{-1}) \\ &= \prod_{i=k}^{1} g_{a_{i}}^{-1} \prod_{i=k}^{1} h_{a}^{a_{i}}(g_{a_{i}}) \prod_{i=j}^{1} \overline{g}_{b_{i}}^{-1} \prod_{i=j}^{1} h_{b}^{b_{i}}(\overline{g}_{b_{i}}) \\ &= \prod_{i=1}^{k} g_{a_{i}} h_{a}^{a_{i}}(g_{a_{i}}^{-1}) \prod_{i=1}^{i} \overline{g}_{b_{i}} h_{b}^{b_{i}}(\overline{g}_{b_{i}}) \prod_{i=k}^{1} g_{a_{i}}^{-1} h_{a}^{a_{i}}(g_{a_{i}}) \prod_{i=j}^{1} \overline{g}_{b_{i}}^{-1}(\overline{g}_{b_{i}}) \end{split}$$

Thus $xyx^{-1}y^{-1} \in H$. Since H is a group, the lemma follows.

COROLLARY 1. If M contains no last element, then H is a normal subgroup of G.

The following example shows that H may not be normal in G if M contains a last element.

EXAMPLE. Suppose that M is $\{1, 2; \leq\}$. Let G_2 be the symmetric group on the set $\{1, 2, 3\}$, and let G_1 be the subgroup of G_2 of those elements fixing 3. Define h_2^1 to be the identity isomorphism of G_1 into G_2 . Then H, a cyclic group of order 2, is generated by ((1, 2), (1, 2)). It is, therefore, not normal in G.

LEMMA 2. If g_a in G_a is in H, then there exists a b such that $h^a_b(g_a) \in K_b$, the commutator group of G_b .

Proof. In general, if x_a in G_a is the product $x_{a_1}x_{a_2}\cdots x_{a_n}$ where $x_{a_i} \in G_{a_i}$ and if b > a, a_i for $i = 1, 2, \dots, n$, then $h_b^a(x_a)$ can be written as the product of the elements $h_b^{a_1}(x_{a_1})$, $h_b^{a_2}(x_{a_2})$, \dots , $h_b^{a_n}(x_{a_n})$ in some order. This fact is easily proved by induction on n. If n > 1, by the induction hypothesis we may as well assume that the factors x_{a_i} are nontrivial. Thus two of the factors must be contained in a single group G_{a_i} . And the product $x_{a_1}x_{a_2}\cdots x_{a_n}$ can be contracted to a product of the same form with one less factor by taking one of the new factors to be the product of two of the old and letting the other factors remain unchanged (except, possibly, for the order in which they appear).

Since g_a is in H, it can be written in the form $\prod_{i=1}^{k} g_{a_i}^{-1} h_{b_i}^{a_i}(g_{a_i})$. Choose b such that b > a, b_i for $i = 1, 2, \dots, k$. Then

$$egin{aligned} h^a_b(g_a)K_b &= \prod\limits_{i=1}^k h^{a_i}_b(g_{a_i}^{-1})h^{b_i}_bh^{a_i}_b(g_{a_i})K_b \ &= \prod\limits_{i=1}^k h^{a_i}_b(g_{a_i}^{-1})h^{a_i}_b(g_{a_i})K_b = \mathbf{1}_bK_b = K_b \;, \end{aligned}$$

which proves the lemma.

THEOREM 1. If H is a normal subgroup of G, then G/H is a homomorphism image of G^* , where the kernel of the homomorphism is contained in the commutator subgroup, K^*

REMARKS. The theorem is well known [1] in case the groups G_a are abelian. In this case H is necessarily normal and $K^* = 1$ is the identity. Thus $G^* \cong G/H$, and we have two equivalent definitions for the direct limit.

Proof of theorem. Let f be the mapping of G^* into G/H, defined by: $g_a^* \to g_a H$. In order to show that f is single-valued, let $g_a^* = \bar{g}_b^*$. There exists c > a, b such that $h_c^a(g_a) = h_c^b(\bar{g}_b)$. Thus $g_a^{-1}\bar{g}_b = g_a^{-1}h_c^a(g_a)h_c^b(\bar{g}_b)^{-1}\bar{g}_b$. Since $h_c^b(\bar{g}_b)^{-1}\bar{g}_b = \bar{g}_b h_c^b(\bar{g}_b^{-1})$, we have $g_a^{-1}\bar{g}_b \in H$, which implies that f is independent of the representative of g_a^* . The multiplicative property of f is immediate. We next show that f is onto. Let $gH \in G/H$ and let $g = g_{a_1}g_{a_2}\cdots g_{a_k}$, where the a_i 's are distinct. Choose b such that $a_i < b$ for $i = 1, 2, \dots, k$. If $a_i = b$ for some i, we may as well assume that i = k since the g_{a_i} 's commute. For each $i, g_{a_i}^{-1}h_c^{b_i}(g_{a_i}) \in H$. Thus

$$ar{g} = \prod\limits_{i=k}^1 g_{a_i}^{-1} h_b^{a_i}(g_{a_i}) = \prod\limits_{i=k}^1 g_{a_i}^{-1} \prod\limits_{i=k}^1 h_b^{a_i}(g_{a_i})$$

is in *H*, which implies that $g\bar{g}H = gH$. But $g\bar{g} = \prod_{i=k}^{1} h_b^{a_i}(g_{a_i})$ is in G_b . Hence $f((g\bar{g})^*) = gH$, and *f* is onto. Since $g_a \in K_a$, the commutator group of G_a , implies that $g_a^* \in K^*$, it follows from Lemma 2 that the kernel of *f* is contained in K^* .

THEOREM 2. If M contains no last element, then $G^*/K^* \cong G/H$.

Proof. By Corollary 1, H is normal in G. Thus by Theorem 1, we need only show that the kernel of f is the whole commutator group, K^* . However, if g_a^* is a commutator of G^* , then there exist a b and a commutator $\bar{g}_b \in K_b$ such that $g_a^* = \bar{g}_b^*$. Since $K_b \subseteq K$, by Lemma 1 $\bar{g}_b \in H$. Thus $f(g_a^*) = H$, and the theorem follows.

The limit group G^* is abelian if and only if for every a in M and for every commutator g_a of the group G_a , there exists a b > a (depending on g_a) such that $h_b^a(g_a) = 1_b$. Also, under this condition the commutator subgroups, K_a , of the groups G_a are contained in H, and H is normal in G since the conjugate of a generator of H transformed by a general element of G

$$egin{aligned} &\{x_c\}_{c\in\,{}_{M}}g_a^{-1}h_b^a(g_a)\{x_c\}_{c\,\in\,{}_{M}}^{-1}=x_ax_bg_a^{-1}h_b^a(g_a)x_a^{-1}x_b^{-1}\ &=x_ag_a^{-1}x_a^{-1}g_a\cdot g_a^{-1}h_b^a(g_a)\cdot h_b^a(g_a)^{-1}x_bh_b^a(g_a)x_b^{-1} \end{aligned}$$

remains in H.

COROLLARY 2. If the limit group G^* is abelian, then $G^* \cong G/H$. Moreover, the converse holds if M contains no last element. A directed set $M = \{a, b, \dots; <\}$ is said to be completely directed if for every a in M all but a finite number of b's in M satisfy the relation a < b. In particular, the positive integers are completely directed by <.

Letting $G' = \prod' G_a$ be the complete direct product of the given groups G_a , we have

LEMMA 3. If M is completely directed and has no last element, then G^* is contained (in the sense of isomorphism) in the factor group G'/G.

Proof. Define a mapping h of G^* into G'/G by: $g_a^* \to \{x_b\}_{b \in \mathfrak{M}} G$, where $x_a = g_a$ and a < b implies that $x_b = h_b^a(g_a)$. The coordinate x_b may be chosen as an arbitrary element of G_b if b fails to satisfy $a \leq b$. It may be shown that h is a homomorphism with trivial kernel, which proves the lemma.

Letting F be the inverse image of $h(G^*)$ under the natural homomorphism of G' onto G'/G, we observe

COROLLARY 3. Let M satisfy the conditions of Lemma 3, and let G^* be abelian. Then in the chain

$$G'\supseteq F\supseteq G\supseteq H\supseteq 1$$

we have $F/G \cong G/H \cong G^*$.

Reference

1. S. Lefschetz, *Algebraic Topology*, New York, American Mathematical Society Colloquium Publications, 1942.

AUBURN UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	E. HEWITT	M. OHTSUKA	E. SPANIER
T. M. CHERRY	A. HORN	H. L. ROYDEN	E. G. STRAUS
D. DERRY	L. NACHBIN	M. M. SCHIFFER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON * * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of inverting a linear			
bounded operator in Hilbert space	1107		
Nesmith Cornett Ankeny, Criterion for rth power residuacity			
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I			
Frank Featherstone Bonsall, Positive operators compact in an auxiliary topology			
Billy Joe Boyer, Summability of derived conjugate series			
Delmar L. Boyer, A note on a problem of Fuchs	1147		
Hans-Joachim Bremermann, The envelopes of holomorphy of tube domains in infinite			
dimensional Banach spaces	1149		
Andrew Michael Bruckner, Minimal superadditive extensions of superadditive			
functions	1155		
Billy Finney Bryant, On expansive homeomorphisms	1163		
Jean W. Butler, On complete and independent sets of operations in finite algebras	1169		
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution	1181		
Paul Civin, Involutions on locally compact rings	1199		
Earl A. Coddington, <i>Normal extensions of formally normal operators</i>	1203		
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval	1211		
Shaul Foguel, Weak and strong convergence for Markov processes	1221		
Martin Fox, Some zero sum two-person games with moves in the unit interval	1235		
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic functions	1243		
Branko Grünbaum, Partitions of mass-distributions and of convex bodies by			
hyperplanes	1257		
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces	1263		
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigroup of integers</i>			
modulo m	1291		
Paul Daniel Hill, Relation of a direct limit group to associated vector groups	1309		
Calvin Virgil Holmes, Commutator groups of monomial groups	1313		
James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expansive homeomorphisms</i>			
on a closed 2-cell	1319		
John William Jewett, <i>Multiplication on classes of pseudo-analytic functions</i>	1323		
Helmut Klingen, Analytic automorphisms of bounded symmetric complex domains	1327		
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups	1333		
Marvin David Marcus and N. A. Khan, On a commutator result of Taussky and			
Zassenhaus			
John Glen Marica and Steve Jerome Bryant, <i>Unary algebras</i>	1347		
Edward Peter Merkes and W. T. Scott, <i>On univalence of a continued fraction</i>	1361		
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationary measures	1371		
John William Neuberger, <i>Concerning boundary value problems</i>	1385		
Edward C. Posner, Integral closure of differential rings	1393		
Marian Reichaw-Reichbach, Some theorems on mappings onto	1397		
Marvin Rosenblum and Harold Widom, <i>Two extremal problems</i>	1409		
Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential-difference			
1	1419		
Charles Robson Storey, Jr., <i>The structure of threads</i>	1429		
J. François Treves, An estimate for differential polynomials in $\partial/\partial z_1, \dots, \partial/\partial z_n$	1447		
J. D. Weston, On the representation of operators by convolutions in legrals	1453		
James Victor Whittaker, Normal subgroups of some homeomorphism groups	1469		