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RELATION OF A DIRECT LIMIT GROUP TO

ASSOCIATED VECTOR GROUPS

PAUL D. HILL

A set M with a binary, transitive relation < is said to be directed
if for each pair α, b in M, there is a c in M such that a < c, b < c. Let
{GJαeM be a collection of groups indexed by a directed set M = {α, δ, •;
<}, and for each <x < 6 in M let Λ," be a homomorphism of Gα into Gδ.
The homomorphisms are assumed to satisfy the relations

(i) h\h% = ha

c \ί a <b <c
and

(ii) if a < α, then /&£ is the identity.
We call such a system a direct system of groups and define a direct

limit group of this system in the following manner. Two elements
ga e Ga and gb e gb are said to be equivalent if there is a c > a, b such
that h%ga) = h\{gb). Let #* denote the collection of elements which are
equivalent to ga. Now given any two equivalence classes g* and gb,
there exists a c and elements gc, gc in Gc such that gt — gt and gt — g*.
We define #* c/* = (gcgc)* This multiplication is a well defined binary
operation on the set, G*, of equivalence classes. And it may be shown
that G* is a (multiplicative) group, which we define to be the direct limit
group of the given system.

Let G = ΐ[Ga be the restricted direct product of the given groups
Ga, and consider the groups Gα as subgroups of G. An element in G of
the form g^KiQa) is called a relation. Let H be the subgroup generated
by the relations of G. Note that the inverse of a relation is a relation.
By a " last" element of M we mean an element b such that α < b for
all α in M. If Λf contains no last element, it is immediate that given
alf a2, , αΛ in M, there exists a b e M with the property α2 <C b, at Φ
b for i = 1, 2, , k.

LEMMA 1. If M contains no last element, the commutator group
K of G is contained in H.

Proof. Let x = gaiga2 gaja and y = ^δlg&2 <?δj be arbitrary ele-
ments of G, where am — an or bm = 6W implies t h a t m = n. First choose
α with the property t h a t at < a,a^ a, and bt Φ a for all i . Then
choose 6 such t h a t bt <bfbtΦ δ, αέ =£ &, and a Φ b. We have

xyx-'y-1 = f[gai ίlgH ίlΰal

Received September 8, 1959, and in revised form September 11, 1959.

1309



1310 PAUL D. HILL

= Π flfϊ Π ΛS ίflΓβ.) Π m

Thus xyx-ty-1 e H. Since i ϊ is a group, the lemma follows.

COROLLARY 1. If M contains no last element, then H is a normal
subgroup of G.

The following example shows that H may not be normal in G if M
contains a last element.

EXAMPLE. Suppose that M is {1,2; ^}. Let G2 be the symmetric
group on the set {1, 2, 3}, and let Gλ be the subgroup of G2 of those
elements fixing 3. Define h\ to be the identity isomorphism of Gλ into
G2. Then H, a cyclic group of order 2, is generated by ((1, 2), (1, 2)).
It is, therefore, not normal in G.

LEMMA 2. If ga in Ga is in H, then there exists a b such that
ha

b(ga)eKb, the commutator group of Gb.

Proof. In general, if xa in Ga is the product xaκa2 %an where
xa. 6 Ga. and if b > a, at for i = 1, 2, , n, then hb(xa) can be written
as the product of the elements Kι(xai), hρ(xa), '"fhb

n(xan) in some or-
der. This fact is easily proved by induction on n. If n > 1, by the
induction hypothesis we may as well assume that the factors xH are
nontrivial. Thus two of the factors must be contained in a single group
Gα.. And the product xaxa^ %an can be contracted to a product of the
same form with one less factor by taking one of the new factors to be
the product of two of the old and letting the other factors remain un-
changed (except, possibly, for the order in which they appear).

Since ga is in H, it can be written in the form Π t i ^ 1 ^ ^ ) -
Choose b such that b > a, bt for i = 1, 2, , k. Then

k

K(ga)Kb = ΐlhpigalW^hlKga.)^
4 = 1

k

— ΐίhb

ί{g^)hli(ga.)Kb — lbKb = Kb
ί = l * l

which proves the lemma.

THEOREM 1. If H is a normal subgroup of G, then GjHis a homo-
morphism image of G*, where the kernel of the homomorphism is con-
tained in the commutator subgroup, K*
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REMARKS. The theorem is well known [1] in case the groups Ga are
abelian. In this case H is necessarily normal and K* — 1 is the identi-
ty. Thus G* = G\H, and we have two equivalent definitions for the
direct limit.

Proof of theorem. Let / be the mapping of G* into G/H, defined
by: gt —> gaH. In order to show that / is single-valued, let g* = g*.
There exists c>a, b such that ha

c(ga) = hh

c(gb). Thus g~λgb = gά^ig^h^g^g^
Since /^(fi^)"1^ = gbh\{gb

ι), we have g^g^eH, which implies that / is
independent of the representative of #*. The multiplicative property of
/ is immediate. We next show that / is onto. Let gHeG/H and let
g = gajga2 gajc, where the αέ's are distinct. Choose 6 such that a% <b
for i = 1, 2, , k. If at = b for some i, we may as well assume that
i — k since the ga.'s commute. For each i, gaffiKQa) € H. Thus

is in iϊ, which implies that ggH = gH. But ^^ = Π i=» fe?4^) ί s ί n Gb.
Hence f{{gg)*) — gH, and / is onto. Since ga e Ka, the commutator group
of Ga, implies that g% e K*, it follows from Lemma 2 that the kernel
of / is contained in K*.

THEOREM 2. If M contains no last element, then G*/iί* ~ G/H.

Proof. By Corollary 1, H is normal in G. Thus by Theorem 1,
we need only show that the kernel of / is the whole commutator group,
K*. However, if #* is a commutator of G*, then there exist a b and
a commutator gbeKb such that gt = gt. Since iΓ& c if, by Lemma 1
gb e H. Thus f(g*) = IT, and the theorem folllows.

The limit group G* is abelian if and only if for every a in M and
for every commutator ga of the group Gα, there exists a b > <x (depend-
ing on ga) such that Λ?(flfα) = lδ. Also, under this condition the commu-
tator subgroups, Kaj of the groups Ga are contained in H, and H is
normal in G since the conjugate of a generator of H transformed by
a general element of G

remains in if.

COROLLARY 2. If the limit group G* is abelian, then G* = G/fl".
Moreover, the converse holds if M contains no last element.
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A directed set M = {α, δ, •; <} is said to be completely directed
if for every a in M all but a finite number of δ's in M satisfy the
relation a < 6. In particular, the positive integers are completely direct-
ed by <.

Letting G' = U'Ga be the complete direct product of the given
groups Gα, we have

LEMMA 3. If M is completely directed and has no last element,
then G* is contained (in the sense of isomorphism) in the factor group
GΊG.

Proof. Define a mapping h of G* into G'jG by: g*
where xa = ga and a < b implies that xb = K(ga). The coordinate #6

may be chosen as an arbitrary element of G6 if & fails to satisfy a S b.
It may be shown that h is a homomorphism with trivial kernel, which
proves the lemma.

Letting F be the inverse image of h(G*) under the natural homo-
morphism of G' onto G'lG, we observe

COROLLARY 3. Let M satisfy the conditions of Lemma 3, and let
G* be abelian. Then in the chain

we have F/G = GjH^G*.
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