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Lipman Bers [1, 2] has formulated a theory of solutions of linear
elliptic partial differential equations in terms of classes of psuedo-analy-
tic functions on a plane domain D. The theory for each class of psuedo-
analytic functions is based on the notion of a generating pair of Holder
continuous complex valued functions F' and G defined on D and satisfy-
ing Jm[F(2)G(z)] > 0 in D.

If w is any function defined on D, then there exist two real valued
functions ¢ and 4 such that w can be written uniquely as

(1) w(z) = $()F(2) + (2)G(2)

A function w defined on D is said to be (¥, G)-psuedo-analytic (of
the first kind) if a certain generalized derivative exists or equivalently
if the equations

(2) ¢zF1_¢yF2+‘I’zG1—‘l’sz:0
¢yF1 + ¢xF2 + ’lll\yGl + '\zl":cG2 = O

are satisfied in D, where the subscripts # and y refer to partial deri-
vatives with respect to 2 and y and the subscripts 1 and 2 refer to the
real and imaginary parts of the functions F and G. If F=1 and
G = 1, these equations reduce to the Cauchy-Riemann equations.

Given a generating pair (F, G) let B denote the class of all func-
tions which are (F, G)-psuedo-analytic. If FF =1 and G = ¢, then B is
the class of analytic functions on D, which will be referred to in this
paper as A.

Any B has many of the properties of the ring of analytic functions.
In particular very close analogues of the identity theorem, the Cauchy
theorem, the Cauchy integral formula, the standard convergence theorems,
and power series expansions have been proved.

With each class B is associated a class B’ of psuedo-analytic func-
tions of the second kind. This association is made by a mapping 7 of
B into B’ defined by

NPF + YyG) = ¢ + i .

On the class A of analytic functions this mapping is clearly the
identity.

Each class B is a vector space with the usual definition of addition
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of functions and multiplication by scalars and 7 is a vector space isomor-
phism of B onto B’. The class A is a ring under the usual pointwise
multiplication of functions. Since the classes of psuedo analytic func-
tions each bear such marked resemblances to the class A of analytic
functions, the question arises as to whether there exist for other classes
appropriate generalizations of the ordinary multiplications of function.
We shall prove that if such a multiplication bears a certain slight re-
semblance to the point wise multiplication, then B is multiplicatively
isomorphic to A under the mapping » and conversely.

We denote the ordinary multiplication of functions by juxtaposition.
Let m denote any mapping from B x B to the set of all functions from
D to the plane. In particular let m, be the mapping defined as follows:
if w=¢F+ G and w' = ¢'F + G, let

my(w, w') = (b — YY) + (S + ' P)G .

THEOREM. Let B be a system of psuedo-analytic functions on the
plane domain D and let m be a multiplication on B (any mapping from
B x B to the set of all functions from D to the plane). Let m be as-
soctattve and bilinear with respect to addition in B. Then a necessary
and sufficient condition for the mapping 7 to be a multiplicative iso-
morphism of B onto the ring A of all analytic functions on D is that
there exists a mnon-constant w in B such that m(w, G) = m,(w, G) and
m,(w, G) € B.

The proof of this theorem will be preceded by a lemma.

LEMMA. Suppose that for all w and w' in B, m(w, w') = my(w, w').
Then the mapping 7 defined above is an isomorphism of B onto the ring
A of analytic functions on D if and only if F, =G, and F,= —G,.

Proof of Lemma. A simple calculation shows that » is an isomor-
phism of B onto B’ if and only if m = m,. So the condition concerning
isomorphism in the lemma is that B’ = A.

By adding and subtracting terms involving +r the system (2) is seen
to be equivalent to

(3) F1(¢)m‘—¢y) _F2(¢y+‘i’"x) +‘PV(F1'—G2) + ‘P‘m(Fz‘{‘ Gl) =0
F1(<}51,+ ‘#x) +F2(¢z""‘;’y) + ‘PV(FZ'I" Gl) _‘I"x(Fl—Gz) =0.

First suppose F, = G, and F, = —G,. Then this system becomes

Fl((i):c'— l1’1,/) - F2(¢y+",l"x) =0
F1(¢1/+"P‘;u) +F2(¢)1_"\,l"«y) :0 .

It is clear that if w™ = ¢ + 44 is analytic, then 7 *(w*) satisfies
the system (4). Therefore A ¢ B’

(4)
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Suppose then that B’ contains a function w = ¢ + ¢+ which at some
point z of D does not satisfy the Cauchy-Riemann equations. For this
point the system (4) is a system of homogeneous algebraic equations
with a non zero determinant whose value is

[$.(2) — V(R + [$4(2) + 4, (2)] .
Hence the only solution at z is the zero solution and thus
Sm[F()G(R)] = Fi(2) + Fiz) =0

which contradicts the definition of generating pair. Thus B’ A and
we have proved that A = B'.

Conversely suppose that » is an isomorphism onto 4 so that A = B’.
Let w* = ¢ + 44 be a non constant analytic function in B’. Then the
system (3) becomes for this w*

(5) Vo(Fy = G) + (B, + G) = 0
o (Fy + Gy) — o Fy — G) = 0 .

If for some z the equations F\(z) = Gy(2) and F,(z) = —G.(z) do not
both hold, then the determinant of this system is non-zero at z and
hence by continuity of F' and G the determinant is non-zero in some
neighborhood of z and hence +r, = 4, = 0 on this neighborhood. By the
identity theorem for harmonic functions +r, and +r, must then be zero
everywhere so that +r is constant. A similar argument demonstrates
the constancy of ¢ so that w™ is constant contrary to assumption. This
completes the proof of the lemma.

Proof of Theorem. Suppose first that » is a multiplicative isomor-
phism of B onto the ring A of analytic functions in D. Then as before
m is identically equal to m, so that for w = ¢F + yGeB we have
m(w, G) = —F + ¢G. Substituting this function for ¢F + G in the
system (1) yields that m(w, G) is in B if and only if

(6) — B+ P, + 0,6 — d,G, =0
— By — A F, + o,G, + .G, =0 .

By the lemma F, = G, and F, = —(G,. Using this to substitute for
the G’s in the system (6) we obtain the system (4) and this system must
be satisfied because ¢ + iy is analytic. Thus if w is in B then so is
m(w, G) and the condition of the theorem is necessary.

Conversely suppose that there exists a non-constant w in B such
that m(w, G) = m,(w, G) = —yF + ¢G and this function is in B. Then
¢ and + satisfy both (1) and (6) and since w is non-constant there must
exist a z such that this system of four equations has a non-zero solu-
tion, i.e., the determinant of this system must be zero.
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The determinant of this system is
(7) [(F, — G + (Fy + G)I(F, + Go)* + (F. — G .

Now Jm (FG) = F\G, — F,G, which must be everywhere positive since
F and G form a generating pair. If the second factor of (7) is zero,
then it follows that

Sm(FG) = —F: — F1<0.

Hence the first factor must be zero and the lemma implies that 7 is
an isomorphism of B onto A.
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