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ANALYTIC AUTOMORPHISMS OF BOUNDED
SYMMETRIC COMPLEX DOMAINS

HELMUT KLINGEN

In a former paper [2] I determined the full group of one-to-one
analytic mappings of a bounded symmetric Cartan domain [1]. Those
investigations were incomplete, because it was impossible to treat the
second Cartan-type of n(n — l)/2 complex dimensions for odd n by this
method. The present note is devoted to a new shorter proof of the
former result (n even), which furthermore covers the remaining case of
odd n.

Take the complex n(n — l)/2-dimensional space of skew symmetric
w-rowed matrices Z. The irreducible bounded symmetric Cartan space
in question is the set 8n of those matrices Z, for which

1+ ZZ>0 , Z' = -Z,

is positive definite. Here I is the n by n unit matrix. Obviously 62 is
the unit circle. It is easy to see that analytic automorphisms of 6n are
described by the group φ of the mappings

(1) W = (AZ + B)(-BZ + A)'1 ,

where the n-rowed matrices A, B fulfill

M*KM=K with M ={_%%, K=yQ_L

Here Λf * denotes the conjugate transpose of M. For n = 4

W= Z

is a further analytic automorphism, where Z arises from Z by inter-
changing the elements zu and z23,

I ^ ^12 ^13 ^ 2 3 \

^ ^12 ^ ^14 ^24

Z ^ —« — z 0 z
<vi3 ^14 v ^34

\ ^23 ^24 ^34 "

For T^ΐΓ and ZZ have the same characteristic roots. But this mapping
is not contained in φ, since CZ — ZD cannot be satisfied identically in
Z by non-singular constant matrices C, D. On the other hand the fol-
lowing theorem holds.
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THEOREM. Each analytic automorphism of 6n can be written as
W = f(Z) or W = f(Z) (only for n = 4) with feφ.

Therefore the group φ is already the full group of analytic auto-
morphisms for n Φ 4. Only in the exceptional case n = 4 there are
the further mappings W = f(Z), which together with φ form the full
group of analytic automorphisms. The proof of this theorem consists
of two parts. The first analytic part is a reproduction of my former
proof [2], which will be given here again for completeness, the second
part is of algebraic character.

The group φ acts transitively on <Sn. For take an arbitrary point
Zλ of <?„, choose the matrix A such that

and define B = —AZX. Then (1) maps Z into 0. Therefore it is suf-
ficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping W = W(Z) of
6n with the fixed point 0 is linear. For an arbitrary point Zx e <Sn let
fi> , f», 0 ί§ rx ^ ^ rn < 1, be the characteristic roots of ZXZ*.
Then also tZλ belongs to 6n, if ί is a complex number with ttrn < 1.
Consequently there exists a power series expansion

(2 ) W(tZλ) = Σ ** Wk(Z,) , ttrn < 1 .

The elements of the skew-symmetric matrices W^ZJ are homogeneous
polynomials of degree k in the independent elements of Z±. Because of
1 + WitZJWitZJ > 0 for tt = 1, one obtains from (2)

t
Σ W>(ZJ Wt(Zd > 0Σ

and in particular I + W^ZJW^ZJ > 0. Therefore the linear function
Wλ(Z) is an analytic mapping of £n into itself. Its determinant D is
at the same time the Jacobian of the function W(Z) with respect to Z.
By interchanging Z and W it can be assumed DD ^ 1. Consequently
W(Z) is an analytic automorphism of 6n and even maps the boundary
onto itself. Take now in particular

(4) Z^

with an unitary matrix U, m = [n/2], P shall be the matrix, which is
built up by the two-rowed blocks p1F, , pmF and possibly by the ele-
ment 0 along the main diagonal. Zx belongs to the interior of 6n, if
— 1 < pk < 1 (k — 1, , m), and to the boundary, if — 1 ^ pk g 1 (k =



ANALYTIC AUTOMORPHISMS OF BOUNDED SYMMETRIC COMPLEX DOMAINS 1329

1, , m) and pfc = ± 1 for at least one k. Now 11 + W1(Z1)W1| is a
polynomial in pu , pm of total degree 4 m and on the other hand (see
[2], Lemma 4) the square of a polynomial. As 11 + W1(Z1)W1 | vanishes
on the boundary of βn, this polynomial is divisible by

Because the constant terms and the degrees of both polynomials are
equal, one obtains

(5) | / + W1(Z1)W1\ = \I+Z1Z1\

even identically in Zλ\ for each skew-symmetric matrix Zλ permits a rep-
resentation (4) (see [2], Lemma 3). On account of (5) and the linearity
of W1 the matrices W1Wι and ZZ always have the same characteristic
roots and this implies

( 6 ) Wλ{Z) = U'ZU

with unitary U, which for the present still depends on Z.
Put now

X= U[, [e^F, , e'SrF, (0)] Ulf O^u^l,

with real variables ξlf « ,fr. Then Ze£n and by (6)

for all u between 0 and 1. Because of (3) one obtains

UMI+ W1W1+ WtWJU'UlX) (fc = 2 , 3 , . . . ) -

If u tends to 1, one gets

+ UXUW,W,U'U[ > 0 ,

hence W^X) — 0. As Wk is a polynomial, Wk(Z) even vanishes iden-
tically in Z. Therefore the stability group of Sn is linear.

The investigation of W = WX{Z) is now a purely algebraic problem.
The representation (6) shows that rank W = rank Z and beyond this
the equality of the characteristic roots of WW and ZZ. These proper-
ties will be used in order to determine W(Z) explicitly. We have to
prove

( 7) W(Z) = U'ZU or W(Z) = ί/'ZEf
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with unitary constant U, where the second type only occurs for n = 4.
The proof of this fact will be given by induction. The assertion (7) is
trivial for the unit circle (n = 2). Let us assume its correctness for
2, 3, , n — 1 and consider 6n. Write the linear mapping W(Z) of 6n

onto itself as

W = Σ £ A
Tc<l

with constant skew-symmetric n by n matrices Akl. Because of the
equality of the characteristic roots of WW* and ZZ* the hermitian
matrix AklAkl has 1,1, 0, , 0 as characteristic roots. Therefore after
unitary transformation of W we can assume A12 = E12J where in general
Ekl denotes the skew-symmetric matrix the elements of which are all
zero besides the element in the fcth row and ίth column and the ele-
ment in the ίth row and fcth column, which are 1 respectively •—1.
Since tr(A12Akl) = 0 for (h, I) Φ (1, 2), one obtains

Λ(2) * \
λ "", I) Φ (1, 2) .

A12 = E12 does not change, if W is transformed by

vo v)

with unitary U, V, \ U\ = 1. Therefore

°(2) •B^ B = (hί °

can be assumed. From rank W = rank Z identically in ^ one obtains
possibly after unitary transformation A18 = £713.

For A14 = (akl) we get two possibilities. First the equation tr(A12A14) =
tr (AUAU) = 0 implies α12 = α13 = 0. After unitary transformation all the
elements of the first row besides α14 are zero. Then take only the ele-
ments 212, 213, J?14 of ^ distinct from zero; from rank W = rank Z = 2 one
sees

A14 = Eu or A14 = £723 .

By a similar consideration Alv turns out to be 2£lv or JE?23. But actually
for v > 4 the second possibility Alv = E2d may not occur. For Au = Λlv =
^ is impossible because of tr (A14A1V) = 0. If A14 = Eu, Alv = J^a3, choose
only the elements 21V, ^i4 ^ 0, then rank Z = 2 but rank W = 4. Therefore
Alv = JE71V (y ^ 4), A14 = !EΊ4 or E23. Furthermore A14 = E23 may only hap-
pen if n = 4. For assume A14 = ΐ723, A15 = E15 and take only the elements
zu, z15 Φ 0. This implies rank Z = 2 but rank W = A.
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Let us summarize our results. After a suitable unitary transforma-
tion W can be written as

-( ° z'\
\-z Zj '

) Z(
-z L(QZ0)J ' \-z Z

besides the exceptional case n = 4, Au = 2?23. Now L(Z0) is an analytic
automorphism of Gn^ with the fixed point 0. For % = 3we know L{Z^) =
e^ί/i with a real constant ξ. Therefore W — U'ZU with a constant
unitary matrix U, which is the theorem for n — 3. For n > 5 the in-
duction hypothesis shows

0 z'U'

with constant unitary U. From the equality

rank W — rank Z

U turns out to be a diagonal matrix. Finally consider the sum of the
two-rowed principal minors of WW and ZZ. These two quantities are
equal identically in Z because of the fact that WW and ZZ have the
same characteristic roots. By this identity one obtains U = a I with
a complex number a of absolute value 1, which again proves our theorem.

There still remain the cases n = 4 and 5. For n = 4, A14 = Eu we
can use the reasoning above. Let Au = E23; since

tr (A1VA23) = tr (A1VA24) = tr (A1VAM) = 0 (u = 2, 3, 4)

W only differs from Z in the last row, where a linear combination of
223> £24, ̂ 34 appears. The identity between the ranks of Z and W shows
wu = aλz2Zy wM = α2 zM, wu = α3^34. Now it is easy to compute the sum
of the two-rowed principal minors of WW and ZZ. This computation
shows again the assertion for n = 4.

For w = 5 we know by the induction hypothesis

L(ZQ) = 17% tf or L(Z0) = 1^%^

with constant unitary U. The first case can be treated as above. In
the second case one obtains

Choose once only zu, z2i Φ 0, then only zu, z34, zi5 Φ 0. In any case
rank Z = 2, hence rank T7 = 2. But this implies that all the elements
of the third column of U vanish, which is a contradiction to the unitary
character of U. This final remark completes the proof.
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