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In this note we establish a local version of the following result:
a locally compact connected partially ordered non-degenerate semigroup
S with unit contains a non-degenerate linearly ordered local subsemi-
group (containing the unit). This is an extension of a result of Gleason
[2; 664] who proved a similar theorem under the additional hypotheses
that

(1) S is a semigroup with right invariant uniform structure and
(2) for any compact neighborhood U of the identity there are nets

{ccj in S and {nt} integers such that x,t —> e and xfι 0 U. A consequence
of our theorem is the fact that a nondegenerate compact connected
partially ordered semigroup with unit contains a standard thread join-
ing the unit to the minimal ideal.

By a local semigroup S we mean a Hausdorff space with an open
subset U and a multiplication m: U x U—>S which is continuous and
associative insofar as is meaningful. A unit is an (unique, if it exists)
element u of U satisfying ux = xu — x for all x e U. A local subsemi-
group of S is a subset L containing the unit such that for some open
set V about the unit, (Ffl L)2 a L. We say that the local semigroup
S is partially ordered if the relation ^ defined by a g b if and only if
a = be is reflexive and antisymmetric. In case S is a semigroup, S is
partially ordered if and only if each principal right ideal has a unique
generator, i.e. (assuming a unit) that aS — bS implies a — b. In this
case, ^ is also transitive.

Closure is denoted by *, the null set by D, the boundary of V by
F(V), and the complement of B in A by A\B.

As in [4] we use the following topolopy for the space S^(X) of non-
empty closed subsets of the space X: for open sets U and V of X, let
N(U,V) = {A\Ae^(X),AaU,AnVΦ •}; take {N( U, V) \ U, V open}
for a sub-basis for the open sets of S^(X). It is easy to see that if
X is compact Hausdorff, so is

THEOREM 1. Let S be a locally compact partially ordered local
semigroup with unit u, and let UQ be a non-degenerate open connected
set about u with U6

Q defined. Then S contains a non-degenerate com-
pact connected linearly ordered local sub-semigroup L with ueLaU0.
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Proof. Let U1 be an open set containing u with U* compact and
Ut c Uo. Define g on Uf x Z7? by: α ^ 6 if and only if α = be for
some ce U*. From the compactness of U* it is easily seen that Graph
(^) is closed in U* x Z7*. We show first that ^ is transitive on some
neighborhood of u. Let U2 be an open set about u with Ϊ72. c Uλ. We
claim there is an open set U containing u, U c C/2, such that if α, 6 e J7*
with a = be for some ce Uf, then ce ί72. If this is false, then for any
open set U with ue U c £/2, there are elements a and 6 of E7* with
a — be for some ce U*\U2. Hence there are nets α^ and 6* converging
to u with αΛ = ba cΛ where eae U*\U2. It follows that eΛ must also
converge to u, a contradiction. Since U\ c 27Ί it follows that ^ is
transitive on U*. Also the restriction of ^ on £7* x Z7* is closed and
hence Ϊ7* is locally convex [6], We show next that there exists an
open set Vx with ue VΊ a Usuch that β2 = ee V1 implies eUoe Φ e. Sup-
pose the contrary; we can then find a net of idempotents ea —> u with
βa>UQea = eΛ. Let # e C/o; then eΛ = ^ e * converges to î α;̂  = x, so that
a? = u and Z70 is degenerate, a contradiction. Let F be a convex open
set with u e V c 7 * c (F*) 2 c F x . Then e2 = β e 7 implies eUQe Φ e.

Let ^ denote the collection of all closed chains C in Z7* with %eC,
C Π S \ F ^ D, and (C n F) 2 c C. Note that ^ Φ D, for if α6.F(F),
then the elements u and α constitute an element of c^.

(i) ^ is closed in S^(U*). We will show that c^ is an intersec-
tion of closed set. Since the collection of all closed chains which con-
tain u and meet S\V is closed [4], it remains to show that the collection
of closed chains C satisfying (C Π F) 2 c C is closed. Suppose A is a
closed chain with (̂ 4. Π F) 2 ζz! A; then there are elements a and b of
A Π F with α& e S\A. Hence there exist open sets Ua, Ub, and W con-
taining α, 6, and A respectively, with Ua Ub Π W = D Now iV(TΓ, ί7α) Π
iV(PΓ, Ub) is an open set about A, and contains no chain C with (C Π
Vf(zC. This establishes (i).

A s i n [ 4 ] , w e d e f i n e L(x) = { y \ y ^ x } f M(x) = { y \ χ <^ y } , a n d (x, y) =
{z I x < z < y}. Let δ be an open cover of £7*, and define a subset Mδ

of ^ ( Ϊ 7 * ) by: C e M8 if and only if C is a closed chain in J7*, and for
any x and # in C with a? < 7/ and (x, y) Π C = Π> there exists D e δ
such that D* meets both L(x) Π C.

(ii) Mδ Π c<^ Φ Π /^^ any open cover δ of U*. Let δ be an open
cover of ί/*, and let ^ be the collection of all closed chains C with
ueC a Uy Ce M5, and ( F Π C)2 c C. Let τ be a maximal tower in ^ ,
and let T= Uτ. Then Γ* is a closed chain, % e f c 17*, and (FίΊ ϊ 7*) 2 c
ϊ 7*. As in [4], T*eikfδ, and it remains to show that Γ ^ e ^ 7 , i.e., that
T* n S\V Φ •• Suppose Γ* c F; (note then that Γ = Γ*) then since
(T Π F) 2 c T, T is a compact chain and a semigroup. Let e = inf T.
Since e2 g e and e2 e Γ we have e2 = e. We show next that e is a zero
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for T. Let yeT, then eyeT and ey <̂  e, so ey = e and e is a left zero
for T. Hence the minimal ideal K oi T consists of left zeros for T
[1], Let / e i ί ; then e ^f so there exists c e ί7f with e = / c . There-
fore f = fe = e, and e is the unique left zero, and hence a zero for T.
Let We δ with e e W. If eUQe f] W f] V contains an idempotent g Φ e,
then T U g is a semigroup: for if a? e Γ then x# = x(eg) = eg — g and
## — (ge)x — g(ex) — ge — g. Also T U 0 is a chain, so by the maximali-
ty of τ, Γ = T lj 0, a contradiction.

Hence we may assume that e Uoe Π W Π F has a unique idempotent
e. Since ^ is antisymmetric, the maximal subgroup of S containing e
is e. Also eUoe is a local semigroup with unit e, eUoe Φ e, and e is not
isolated in eUoe which is the continuous image of Uo and hence con-
nected. Hence [5; 122] there is a non-degenerate one parameter local
semigroup A with e e A c eUoe Π W Π F; let α e A with a Φ e and α2 e A.
Define α° = e and let ί?fc = ( J L Φ , #]> B^ = \Jζ=oa

n[a, e] where [α, β]
denotes the sub-arc of A from α t o e . We assume temporarily that all
products involved in forming Bh and B^ are defined. Each of the sets
an[a, e] is a compact connected chain (hence an arc) with minimal ele-
ment an+1 and maximal element an. Hence J5fc is a compact connected
chain from αfc+1 to e. Also B^ is a connected chain, hence Bt is a closed
connected chain. Using the easily established commutativity of Bk and
Bί it follows that for x e T and b e Bk (or £*) then cc6 = φί>) = (xe)b =
e6 = δ, and similarly δx = b. Hence [(Γ U J5D Π F f c Γ u (B£ Π F) 2

and similarly with Bk replaced by JB*. We distinguish two cases:

Case 1: For some k ^ 0, α*+16 F and ak+2 0 F. Then since V is con-
vex, α°, α, , αfc+1 are in F and all products involved in forming Bfc are
defined, so that BkaV and Bk+1 <£ V. We show first that BlΠVa
Bk. Let ze Bl Pi F; then z — xy with a?, 2/ € 1?̂ , so x = α/V and /̂ = αmi/'
with a?' and y' in [α, e]. Hence xy = am+nx'y'. If x'y'e A, then since
2: e F it follows that m + ^ fg ^. If ^V' 0 A, then # V = αί for some
teA, so a?2/ = am+n+1t and m + n + 1 ^ ifc. In either case, then, z e Bk.
Note that (T U Bky e M8 since B\ is a connected chain. Also [(T U 5|) Π
F] 2 c T u (J5J n F) 2 c T U BL so that T\j B2

ke&r. This contradicts
the maximality of τ.

Case 2: afc e F for each k ^ 0. Using the convexity of F we see
that all products involved in forming B^ are defined, and B^ = Bi a V,
hence Bt = Bί2. Since J5* is a connected chain, it follows that T U
# * e M8. Also [(ϊ7 U Bί) Π F ] 2 c T U -Bί, so that Γ u K e ^ , a con-
tradiction to the maximality of τ. The proof of (ii) is now complete.

(iii) Mδ n r<έ? is closed for each finite open cover 8 of U*.
This proof is similar to that in [4], and is omitted.

For any finite open cover δ of [/*, let P δ = M8 Π ^ . The collec-
tion of sets {Pδ} is a descending family, so f\Pδ φ •• If Cef)Pδ,
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then as shown in [4], C is an arc. Clearly C is a local semigroup, and
the proof is complete.

In what follows, a standard thread is a compact connected semi-
group irreducibly connected between a zero and a unit. The structure
of standard threads is known [5; 130]. The example in [4] shows that
a compact connected semigroup with zero and unit need not contain
a standard thread joining the zero to the unit. The problem of finding
standard threads joining zero to unit has an affirmative solution in case
either

(1) S is compact, connected, and one-dimensional [3], or
(2) S is compact, connected, and each element is idempotent [4].

A third solution is given by the following corollary.

COROLLARY 1. If S is a non-degenerate compact connected par-
tially ordered semigroup with unit u, then the minimal ideal K con-
sists of left zeros for S, K consists of the set of minimal elements,
and some elements of K can be joined by a standard thread to the
unit.

Proof. Note that Graph (^) is closed since S is compact. Let G
be a compact group in S, with unit e. Since x2 ^ x for each xe S,
then for xeG we have e ^ x ^ x2 ^ , and {xn} clusters at an
idempotent, which must be e. We conclude that x = e, and hence that
each compact group in S is trivial. From this fact it is clear that K
is proper, for otherwise K — S would be a compact group [1]. From
the fact that aS = bS implies a = b we conclude that each minimal
right ideal is a single element, hence each element of K is a left zero
for S [1]. Since a minimal element x of S is characterized by the
equality xS = x, it is clear that K consists of the set of minimal ele-
ments of S, and hence that S\K is convex. In the proof of the Theorem,
we take S = UQ = Ux — U2 = Z7, and V — S\K. Hence there is a com-
pact connected linearly ordered local semigroup L containing u, with
L Π S\V Φ Π Since the elements of K are minimal it follows that L
is a semigroup, and hence a standard thread.
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