Pacific Journal of Mathematics

ON A COMMUTATOR RESULT OF TAUSSKY AND ZASSENHAUS

MARVIN DAVID MARCUS AND N. A. KHAN

Vol. 10, No. 4 December 1960

ON A COMMUTATOR RESULT OF TAUSSKY AND ZASSENHAUS

MARVIN MARCUS¹ AND N. A. KHAN²

1. Introduction and results. Let M_n denote the set of *n*-square matrices over a field F. For A, B in M_n let [A, B] = AB - BA', where A' is the transpose of A and define inductively

$$[A, B]_k = [A, [A, B]_{k-1}].$$

If $P^{-1}JP = A$, then

$$[A, X] = [P^{-1}JP, X] = P^{-1}[J, PXP'](P^{-1})',$$

and similarly

$$[A, X]_k = P^{-1}[J, PXP']_k(P^{-1})'.$$

Now for a fixed A let T be the linear map of M_n into itself defined by

$$(1.3) T(Y) = [A, Y]$$

and (1.1) implies that

$$T^{k}(Y) = [A, Y]_{k}$$
.

In a recent paper [1], Taussky and Zassenhaus showed that A is non-derogatory if and only if any nonsingular X in the null space of T is symmetric. In this note we investigate the structure of the null space of both T and T^2 for arbitrary A.

Enlarge the field F to include λ_i , $i=1,\dots,p$, the distinct eigenvalues of A, and let $(x-\lambda_i)^{e_{ij}}$, $j=1,\dots,n_i$, $e_{i1}>\dots>e_{in_i}$, $i=1,\dots,p$ be the distinct elementary divisors of A where $(x-\lambda_i)^{e_{ij}}$ appears with multiplicity r_{ij} . Set $m_i=\sum_{j=1}^{n_i}r_{ij}e_{ij}$, the algebraic multiplicity of λ_i . Let $\eta(T)$ denote the null space of T, $\sigma(T)$ denote the subspace of symmetric matrices in $\eta(T)$, and $\gamma(T)$ denote the subspace of skew-symmetric matrices in $\eta(T)$. We show that

(1.4)
$$\dim \eta(T) = \sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left(r_{ij}^2 e_{ij} + 2 r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right) \right],$$

(1.5)
$$\dim \sigma(T) = \frac{1}{2} \sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left\{ r_{ij} (r_{ij} + 1) e_{ij} + 2 r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right],$$

Received December 17, 1959. The work of this author was supported by U. S. National Science Foundation Grant, NSF-G5416. The second author is a Postdoctorate Fellow of the National Research Council of Canada. The authors are grateful to Professor O. Taussky for her helpful suggestions.

(1.6)
$$\dim \eta(T^2) = \sum_{i=1}^p \left[\sum_{j=1}^{n_i} \left\{ r_{ij}^2 (2e_{ij} - 1) + 4r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right],$$

$$(1.7) \quad \dim \sigma(T^2) = \frac{1}{2} \sum_{i=1}^p \left[\sum_{j=1}^{n_i} \left\{ r_{ij}^2 (2e_{ij} - 1) + r_{ij} + 4r_{ij} \sum_{k=j+1}^{n_i} r_{ik} e_{ik} \right\} \right].$$

In case A is nonderogatory, $n_i = 1$, $r_{ij} = 1$, $i=1, \dots, p$ and (1.4) and (1.5) reduce to

$$\dim \eta(T) = n = \dim \sigma(T)$$
.

Thus every matrix X satisfying

$$(1.8) AX = XA'$$

where A is non-derogatory is symmetric, the result in [1]. Moreover, if every matrix X satisfying (1.8) is symmetric then dim $\eta(T) = \dim \sigma(T)$. Using the formulas (1.4) and (1.5) we see that this condition implies that

$$\sum\limits_{i=1}^{p}\sum\limits_{j=1}^{n_{i}}(r_{ij}^{2}-r_{ij})\!e_{ij}+2\sum\limits_{i=1}^{p}r_{ij}\sum\limits_{k=j+1}^{n_{i}}\!r_{ik}\!e_{ik}=0$$
 .

Now since r_{ij} , e_{ij} and n_i are all positive integers we conclude that $r_{ij} = 1$, $j = 1, \dots, n_i$ and $n_i = 1$. That is, there is only one elementary divisor corresponding to each eigenvalue. Hence, if every matrix X satisfying (1.8) is symmetric then A is non-derogatory, a result also found in [1].

We also show in this case that $\eta(T)$ consists of matrices of the form PXP' where P is fixed (depending on A) and X is persymmetric, (i.e. all the entries of X on each line perpendicular to the main diagonal are equal).

We next note that $\eta(T) = \sigma(T) + \gamma(T)$ (direct) and $\eta(T^2) = \sigma(T^2) + \gamma(T^2)$ (direct). The first statement is easy to show; we indicate the brief proof of the second statement:

Since
$$X = \frac{X + X'}{2} + \frac{X - X'}{2}$$
, if $X \in \eta(T^2)$, then

$$T^{2}(X + X') = [A, [A, X + X']]$$

$$= [A, [A, X] + [A, X']]$$

$$= [A, [A, X]] + [A, [A, X']]$$

$$= T^{2}(X) - [A, [A, X]']$$

$$= [A, [A, X]]'$$

$$= (T^{2}(X))' = 0.$$

Similarly, $T^2(X - X') = 0$. Thus any $X \in \eta(T^2)$ is expressible uniquely as a sum of two elements, one in $\sigma(T^2)$ and the other in $\gamma(T^2)$. Hence

(1.9)
$$\dim \gamma(T) = \dim \eta(T) - \dim \sigma(T)$$

$$= \frac{1}{2} \sum_{i=1}^{p} \left[\sum_{j=1}^{n_i} \left\{ r_{ij}(r_{ij} - 1)e_{ij} + 2r_{ij} \sum_{k=j+1}^{n_i} r_{ik}e_{ik} \right\} \right],$$

$$egin{align} ext{(1.10)} & \dim \gamma(T^2) = \dim \gamma(T^2) - \dim \sigma(T^2) \ &= rac{1}{2} \sum\limits_{i=1}^p \left[\sum\limits_{j=1}^{n_i} \left\{ r_{ij}^2 (2e_{ij} - 1) - r_{ij} + 4r_{ij} \sum\limits_{k=i+1}^{n_i} r_{ik} e_{ik}
ight\}
ight]. \end{split}$$

In case A is non-derogatory, (1.6), (1.7) and (1.10) reduce to

$$\dim \eta(T^2) = 2n - p$$
 , $\dim \sigma(T^2) = n$, $\dim \gamma(T^2) = n - p$.

We thus conclude that unless all the eigenvalues of A are distinct (p = n) there exist skew-symmetric matrices X satisfying

$$(1.11) A^2X - 2AXA' + X(A')^2 = 0.$$

If p = n, and A is non-derogatory

$$\dim \eta(T^2) = n = \dim \sigma(T^2)$$

and any matrix X satisfying (1.11) is symmetric.

On the other hand suppose

$$\dim \eta(T^2) = \dim \sigma(T^2)$$
.

From (1.6) and (1.7) we conclude that

$$\sum\limits_{i=1}^{p} \left[\sum\limits_{j=1}^{n_i} \left\{ r_{ij}^2 (2e_{ij}-1) - r_{ij} + 4 r_{ij} \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight\}
ight] = 0$$
 .

Hence $n_i = 1$, $r_{ij} = 1$, $e_{ik} = 1$ and we conclude that p = n. That is, if every matrix X satisfying (1.11) is symmetric then the eigenvalues of A are distinct.

We show finally (Theorem 2) that if A is an n-square matrix with p distinct eigenvalues then both dim $\gamma(T)$ and dim $\gamma(T^2)$ are at most $\frac{1}{2}(n-p)(n-p+1)$. Moreover, for each p this bound is best possible.

Thus if there exists a skew-symmetric solution of (1.8) or (1.11), then A has multiple eigenvalues, without the assumption that A is non-derogatory.

II. Proofs. Let $E_{ij} \in M_n$ be the matrix with 1 in position i, j and 0 elsewhere. With respect to this basis, ordered lexicographically, it may be checked that T has the matrix representation

$$(2.1) T = I \otimes A - A \otimes I$$

where \otimes indicates Kronecker product.

From (1.2) we may take A to be in Jordan canonical form J, since $[A, X]_k = 0$ if and only if $[J, PXP']_k = 0$ and PXP' is symmetric if and only if X is. We write

$$(2.2) \hspace{3.1em} J = \textstyle\sum\limits_{s=1}^{p} {}^{\centerdot}J_{s}$$

where

(2.3)
$$J_s = \lambda_s I_{m_s} + \sum_{t=1}^{n_s} \sum_{1}^{r_{st}} U_{e_{st}};$$

 \sum indicates direct sum, I_t is a t-square identity matrix, U_t is t-square auxiliary unit matrix (i.e. 1 in the superdiagonal and 0 elsewhere) and $\sum_{i=1}^{r_{jt}} U_{e_{st}}$ is the direct sum of $U_{e_{st}}$ with itself r_{ij} times.

By a routine computation we see that

$$T^k(Y)=0$$

if and only if

(2.4)
$$\sum_{\alpha=0}^{k} {k \choose \alpha} (-1)^{\alpha} J_{s}^{k-\alpha} Y_{st} (J_{t}')^{\alpha} = 0 , \qquad s, t = 1, \dots, p ,$$

where $Y = (Y_{st})$, $s, t = 1, \dots, p$ is a partitioning of Y conformal with the partitioning of J given by (2.2).

For $s \neq t$, it is clear that the matrix representation of (2.4),

$$(I_{m_t} \otimes J_s - J_t \otimes I_m)^k$$

has the single nonzero eigenvalue $(\lambda_s - \lambda_t)^k$ and thus $Y_{st} = 0$. Hence we need only consider the equation (2.4) for s = t. We may again partition Y_{ss} conformally with J_s in (2.3). We are thus led to consider the null space of the mapping

$$(2.5) \qquad \qquad (I_{e_{si}} \otimes U_{e_{sj}} - U_{e_{si}} \otimes I_{e_{sj}})^k \; .$$

LEMMA 1. Let $T = I_m \otimes U_n - U_m \otimes I_n$. Then

$$\dim \eta(T) = \min (m, n) ,$$

(2.7)
$$\dim \eta(T^z) = egin{cases} 2 \min{(m,\,n)} \;, & \textit{if} \;\; m \neq n \ 2 \; n-1, & \textit{if} \;\; m=n \end{cases}.$$

Proof. Suppose $n \leq m$ and that T(X) = 0. Let x_1, \dots, x_m be the column *n*-vectors of X. Then we have

$$(2.8)$$
 $U_{\scriptscriptstyle n} x_{\scriptscriptstyle j} - x_{\scriptscriptstyle j+1} = 0$, $j=1,2,\cdots,m-1$, $U_{\scriptscriptstyle n} x_{\scriptscriptstyle m} = 0$.

For $r=1,2,\cdots,n-1$ consider the (r-j+1) coordinate of (2.8) for $j=1,\cdots,r$ and we conclude that

$$x_{r+1,1} = x_{r,2} = \cdots = x_{1,r+1} = c_{r+1}$$
.

Next consider the (n-j+1) coordinate of (2.8) for $j=1,\,\cdots,\,n$ to obtain

$$0 = x_{n2} = x_{n-1,3} = \cdots = x_{1,n+1}$$
.

Similarly we see that the remaining elements of X are zero. Hence we find that the jth column of the $n \times m$ matrix X is the transpose of the n-vector

$$[c_i, c_{i+1}, \cdots, c_n, 0, \cdots, 0]$$

for $j = 1, 2, \dots, n$. The other m - n columns are zero.

In case $n \ge m$, it is easy to check that the jth row of X is the m-vector

$$[c_i, c_{i+1}, \cdots, c_m, 0, \cdots, 0]$$

for $j = 1, 2, \dots, m$. The other n - m rows are zero.

This establishes (2.6). To prove (2.7) let $T^2(X) = 0$ and x_1, x_2, \dots, x_m be the column *n*-vectors of X. Let us consider the following cases:

(i)
$$m=n$$
.

We have

$$U_n^2 x_n = 0$$
, $U_n^2 x_{n-1} = 2 U_n x_n$

and

$$U_n^2 x_i - 2U_n x_{i+1} + x_{i+2} = 0, \ j = 1, 2, \dots, n-2.$$

Solving these equations recursively we find that the lst, 2nd and jth rows of X are respectively

$$[x_{11}, x_{12}, \cdots, x_{1,n-2}, x_{1,n-1}, x_{1n}],$$

$$[x_{21}, x_{22}, \cdots, x_{2,n-2}, x_{2,n-1}, 0]$$

and

$$(j-1)[x_{2,j-1}, x_{2,j}, \cdots, x_{2,n-1}, 0, \cdots, 0]$$

- $(j-2)[x_{1,j}, x_{1,j+1}, \cdots, x_{1,n}, 0, \cdots, 0]$,

for $j = 3, 4, \dots, n$.

The number of arbitrary parameters in X is 2n-1.

(ii) n < m.

Here we have the following equations:

$$(2.9)$$
 $U_n^2x_j-2U_nx_{j+1}+x_{j+2}=0,\ j=1,2,\cdots,m-2$ $U_n^2x_{m-1}-2U_nx_m=0$ $U_n^2x_m=0$

and by solving recursively again we find that the 1st, 2nd and jth rows of X are respectively the m-vectors

$$[x_{11}, \dots, x_{1,n-1}, x_{1,n}, nx_{n,2}, 0, \dots, 0],$$

 $[x_{21}, \dots, x_{2,n-1}, (n-1)x_{n,2}, 0, 0, \dots, 0]$

and

$$\begin{aligned} &[(j-1)x_{2,j-1},\,\cdots,\,(j-1)x_{2,n-1},\,(n-j+1)x_{n,2},\,0,\,\cdots,\,0]\\ &-(j-2)[x_{1,j},\,\cdots,\,x_{1,n},\,0,\,0,\,\cdots,\,0] \end{aligned}$$

for $j = 3, 4, \dots, n$.

In case n > m, by similar computation we find that the 1st, 2nd and jth rows of X are respectively

$$[x_{11}, \cdots, x_{1,m-2}, x_{1,m-1}, x_{1m}]$$
, $[x_{21}, \cdots, x_{2,m-2}, x_{2,m-1}, x_{2m}]$

and

$$(j-1)[x_{2,j-1}, \cdots, x_{2,m-1}, x_{2m}, 0, \cdots, 0] - (j-2)[x_{1,j}, \cdots, x_{1,m}, 0, 0, \cdots, 0]$$

for $j = 3, 4, \dots, m + 1$. The remaining n - m - 1 rows are zero.

From case (ii), we observe that the number of parameters in X is $2 \min (m, n)$.

We now state and prove the following

LEMMA 2. Let A be an n-square matrix with the single eigenvalue λ and let $(x - \lambda)^{n_i}$ be an elementary divisor of A of multiplicity r_i , $i = 1, \dots, p, n_1 > \dots > n_p$. Then the most general matrix X satisfying (1.11) has

(2.10)
$$\sum_{i=1}^{p} \left[r_i^2 (2n_i - 1) + 4r_i \sum_{j=i+1}^{p} r_j e_j \right]$$

arbitrary parameters.

Moreover if X is symmetric it contains

(2.11)
$$\frac{1}{2} \sum_{i=1}^{p} \left[r_i^2 (2n_i - 1) + r_i + 4r_i \sum_{j=i+1}^{p} r_j n_j \right]$$

parameters.

Proof. Without any loss of generality we can assume that

(2.12)
$$A = \sum_{i=1}^{p} \sum_{i=1}^{r_i} U_i$$

where $\sum U_i$ indicates the direct sum of U_i with itself r_i times. We partition X conformally with A in (2.12) and observe that the equation

$$U_i^2 X_{ij} - 2 U_i X_{ij} U_j' + X_{ij} (U_j')^2 = 0$$

determines the structure of any block X_{ij} in the partitioning of X.

From case (i) of Lemma 1, we conclude that any block X_{ij} corresponding to equal U_i 's contains $2n_i - 1$ arbitrary parameters and there are r_i^2 such blocks. Also from case (ii) any block in X that corresponds to U_i and U_j , i < j, contains $2n_j$ arbitrary parameters. Hence the total number of parameters in X is given by (2.10).

In order to find the number of parameters in a symmetric X we first consider a diagonal block. Its structure has been discussed in Lemma 1, case (i). We observe that if this matrix is symmetric, the number of parameters in it reduces from $2n_i - 1$ to n_i .

Then we consider two symmetrically placed off-diagonal blocks X_{ij} and X_{ji} of orders $n_i \times n_j$ and $n_j \times n_i$ respectively. If X is to be symmetric then by equating the terms of X_{ij} and X_{ji} which are symmetrically placed about the main diagonal of X, the number of arbitrary parameters in X_{ij} and X_{ji} reduces from $2(2n_j)$ to $2n_j$. If X_{ij} and X_{ji} are of order $n_i \times n_i$ then the number of parameters reduces from $2(2n_i - 1)$ to $2n_i - 1$.

We are now in a position to sum the number of parameters in X if it is symmetric and satisfies (1.11). There are r_i blocks in the main diagonal, each of order n_i , $i = 1, \dots, p$. The number of parameters in each of these blocks is n_i . There are $r_i(r_i - 1)/2$ other square blocks of order n_i . Each of them contains $(2n_i - 1)$ parameters. Thus

$$rac{1}{2}\sum_{i=1}^{p}\left\{ r_{i}^{2}(2n_{i}-1)+r_{i}
ight\}$$

is the number of parameters in all those blocks of X which are square. Since any block of order $n_i \times n_j$ where $n_i > n_j$ contains $2n_j$ parameters, and since we are considering X to be symmetric, we conclude that the total number of arbitrary parameters in X is given by (2.11).

We can similarly prove the following

LEMMA 3. Let A be the matrix given in Lemma 2. Then the most

general matrix X satisfying (1.8) has

$$\sum_{i=1}^{p} \left(r_i^2 n_i + 2 r_i \sum_{j=i+1}^{p} r_j n_j \right)$$

arbitrary parameters.

Moreover if X is symmetric, it contains

$$rac{1}{2}\sum_{i=1}^{p}igg[r_{i}(r_{i}+1)n_{i}+2r_{i}{\sum_{j=i+1}^{p}}r_{j}n_{j}igg]$$

parameters.

We now state and prove the following

THEOREM 1. Let A be an n-square matrix with distinct eigenvalues $\lambda_1, \dots, \lambda_p$ and let $(x - \lambda_i)^{e_{ij}}$, $j = 1, \dots, n_i$, $e_{i1} > \dots > e_{in_i}$ be the elementary divisors of A corresponding to λ_i , where each $(x - \lambda_i)^{e_{ij}}$ has been repeated r_{ij} times. Then (1.4), (1.5), (1.6) and (1.7) hold.

Proof. It was pointed out earlier that if $Y = (Y_{r_s})$, $r, s = 1, \dots, p$ is the partitioning of Y conformal with the partitioning of J in (2.2), then all the off-diagonal blocks are zero. Hence we have simply to find the number of parameters in Y_{ii} , $i = 1, \dots, p$.

As proved in Lemma 2, the number of parameters in Y_{ii} is

$$\sum\limits_{j=1}^{n_{i}} \left[r_{ij}^{2} (2e_{ij}-1) + 4 r_{ij} \sum\limits_{k=j+1}^{n_{i}} r_{ik} e_{ik}
ight]$$
 .

Summing the above with respect to i we obtain the formula (1.6). In case Y is symmetric, the number of parameters in Y_{ii} is

$$rac{1}{2}\sum_{j=1}^{n_i} \left[r_{ij}^2 (2e_{ij}-1) + r_{ij} + 4r_{ij}\sum_{k=j+1}^{n_i} r_{ik}e_{ik}
ight].$$

Summing the above on i we obtain (1.7).

Similarly, we can make use of Lemma 3 in proving (1.4) and (1.5). We now prove

THEOREM 2. Let A be as given in Theorem 1. Then the maximum number of linearly independent skew-symmetric matrices satisfying (1.8) or (1.11) is

$$\frac{1}{2}(n-p)(n-p+1).$$

Proof. In order to prove our result for dim $\gamma(T^2)$, let $m_i = \sum_{j=1}^{n_i} r_{ij} e_{ij}$ and consider

$$egin{aligned} m_i^2 - m_i &= \sum\limits_{j=1}^{n_i} \left[r_{ij}^2 (2e_{ij} - 1) - r_{ij} + 4r_{ij} \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight] \ &= \sum\limits_{j=1}^{n_i} \left[r_{ij}^2 e_{ij}^2 + 2r_{ij} e_{ij} \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik} - r_{ij} e_{ij}
ight] \ &- \sum\limits_{j=1}^{n_i} \left[r_{ij}^2 (2e_{ij} - 1) - r_{ij} + 4r_{ij} \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight] \ &= \sum\limits_{j=1}^{n_i} \left[r_{ij}^2 (e_{ij} - 1)^2 - r_{ij} (e_{ij} - 1) + 2r_{ij} (e_{ij} - 2) \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight]. \end{aligned}$$

Now, it is clear that $r_{ij}^2(e_{ij}-1) \ge r_{ij}(e_{ij}-1)$. The last term in the above expression will be negative only when $e_{ij}=1$. But we know that $e_{ij} > e_{i2} > \cdots > e_{in_i}$, so that e_{ij} will be 1 only for $j=n_i$. In that case $\sum_{k=j+1}^{n_i}$ does not appear, and we have

$$rac{1}{2}\sum_{j=1}^{n_{m{t}}}igg[r_{ij}^{2}(2e_{ij}-1)-r_{ij}+4r_{ij}\sum_{k=j+1}^{n_{m{t}}}r_{ik}e_{ik}igg] \leq rac{1}{2}(m_{i}^{2}-m_{i})$$
 .

This holds for $i = 1, \dots, p$.

To determine a bound on $\gamma(T)$, consider

$$egin{aligned} m_i^2 - m_i - \sum\limits_{j=1}^{n_i} \left[r_{ij} (r_{ij} - 1) e_{ij} + 2 r_{ij} \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight] \ &= \sum\limits_{j=1}^{n_i} \left[r_{ij}^2 e_{ij} (e_{ij} - 1) + 2 r_{ij} (e_{ij} - 1) \sum\limits_{k=j+1}^{n_i} r_{ik} e_{ik}
ight] \ &\geq 0, \; ext{since} \; e_{ij} \geq 1. \end{aligned}$$

Thus we have

$$rac{1}{2}\sum_{j=1}^{n_i} \left[r_{ij}(r_{ij}-1)e_{ij} + 2r_{ij}\sum_{k=j+1}^{n_i} r_{ik}e_{ik}
ight] \leq rac{1}{2}(m_i^2-m_i) \; .$$

It may be observed that the upper bound is attained for $r_{i1} = m_i$, $e_{i1} = 1$ and the remaining e's and r's all zero.

We have thus proved that

$$\dim \gamma(T^2) \leq rac{1}{2} \sum\limits_{i=1}^{p} \left(m_i^2 - m_i
ight)$$

and

$$\dim \gamma(T) \leq rac{1}{2} \sum_{i=1}^{p} (m_i^2 - m_i)$$
,

where m_i is the multiplicity of the eigenvalue λ_i of A.

Now we have to maximize $\sum_{i=1}^{p} (m_i^2 - m_i)$ under the condition that

 $m_1 + \cdots + m_p = n$, the order of A. Note that

$$m_i^2 - m_i = (m_i - 1)^2 + (m_i - 1)$$

and each $m_i - 1 \ge 0$. Hence, we have

$$\sum_{i=1}^{p} (m_i - 1)^2 \leq \left[\sum_{i=1}^{p} (m_i - 1)\right]^2 = (n - p)^2$$
.

Thus the maximum value of both dim $\gamma(T^2)$ and dim $\gamma(T)$ is

$$\frac{1}{2}[(n-p)^2 + (n-p)].$$

The bounds are achieved when $m_1 = \cdots = m_{p-1} = 1$ and $m_p = n - p + 1$.

REFERENCE

1. O. Taussky and H. Zassenhaus, On the similarity transformation between a matrix and its transpose. Pacific J. Math. 9 (1959), 893-896.

THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA AND

MUSLIM UNIVERSITY, ALIGARH, INDIA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL

University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. Paige

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
T. M. CHERRY
D. DERRY

E. HEWITT
A. HORN

M. OHTSUKA
H. L. ROYDEN

E. SPANIER E. G. STRAUS

L. NACHBIN

M. M. SCHIFFER

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space	1107
Nesmith Cornett Ankeny, Criterion for rth power residuacity	
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I	
Frank Featherstone Bonsall, <i>Positive operators compact in an auxiliary topology</i>	
Billy Joe Boyer, Summability of derived conjugate series	
Delmar L. Boyer, A note on a problem of Fuchs	
Hans-Joachim Bremermann, <i>The envelopes of holomorphy of tube domains in infinite</i>	
dimensional Banach spaces	1149
Andrew Michael Bruckner, Minimal superadditive extensions of superadditive	
functions	1155
Billy Finney Bryant, On expansive homeomorphisms	1163
Jean W. Butler, On complete and independent sets of operations in finite algebras	1169
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution	1181
Paul Civin, Involutions on locally compact rings	1199
Earl A. Coddington, Normal extensions of formally normal operators	1203
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval	1211
Shaul Foguel, Weak and strong convergence for Markov processes	1221
Martin Fox, Some zero sum two-person games with moves in the unit interval	1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic functions	1243
Branko Grünbaum, Partitions of mass-distributions and of convex bodies by	
hyperplanes	1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces.	1263
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigroup of integers</i>	
modulo m	1291
Paul Daniel Hill, Relation of a direct limit group to associated vector groups	
Calvin Virgil Holmes, Commutator groups of monomial groups	1313
James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expansive homeomorphisms</i>	
on a closed 2-cell	
John William Jewett, Multiplication on classes of pseudo-analytic functions	
Helmut Klingen, Analytic automorphisms of bounded symmetric complex domains	
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups	1333
Marvin David Marcus and N. A. Khan, On a commutator result of Taussky and	1007
Zassenhaus	
John Glen Marica and Steve Jerome Bryant, <i>Unary algebras</i>	
Edward Peter Merkes and W. T. Scott, On univalence of a continued fraction	
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationary measures	
John William Neuberger, Concerning boundary value problems	
Edward C. Posner, Integral closure of differential rings	
Marian Reichaw-Reichbach, Some theorems on mappings onto	
Marvin Rosenblum and Harold Widom, <i>Two extremal problems</i>	1409
Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential-difference	1410
1	1419
	1429
J. François Treves, An estimate for differential polynomials in $\partial/\partial z_1$,, $\partial/\partial z_n$	1/47
I D Wester On the consequent time of an and a late of the late of	
J. D. Weston, On the representation of operators by convolutions integrals	1453