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ON UNIVALENCE OF A CONTINUED FRACTION

E. P. MERKES AND W. T. SCOTT

1. Introduction* For a fixed positive integer a let KΛ denote the
class of functions f(z) which are regular at z = 0 and which have in-
fraction expansions of the form

(1.1) /(z)~JL + ^ l + ^ l + . . . + ^ ! + . . . , | α J ^ l / 4 .

From an elementary convergence theorem for continued fractions [4, p.42]*
it follows that each function of the class Kω is regular for | z | < 1.
This and the one-to-one correspondence between C-fractions and power
series [4, p. 400] permit a replacement of the correspondence symbol in
(1.1) by equality for | z | < 1.

The purpose of this paper is to determine for Ka the radius of
univalence, U(a), and bounds for the starlike radius, S{a)y and the radius
of convexity, C(a). In the case of ^-fractions it was shown by Thale
[3] that £7(1) ^ 12 i / ^ l θ and Perron [2] established the fact that actual
equality holds. This result is a special case of Theorem 2.1 whose proof
employs value region techniques similar to those used by Thale and
Perron. Moreover, the result S(l) ^ 8/9 in [3] is improved in Theorem
4.2.

The developments in this depend on the following value region
theorem which is an immediate consequence of a result of Paydon and
Wall [1]:

THEOREM 1.1. If f(z) e KΛ and \ z | " = ρ« S 4r(l - r), 0 ^ r ^ 1/2,

then

<1.2)
1-r2 1 - r 2

Moreover, for z = V&ril — r) elmπlcύ, (m = 1, 2, , a), there is a value
of f(z)/z on the boundary of the disc (1.2) if and only if there exists
a φ, 0 ^ φ < 2π, such that f(z) = f(z; φ), where

2. Determination of U(a). For f(z)eKΰύ and for a fixed positive
integer n put
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(p = 0,1, , n - D ,

where the numbers aό are the coefficients in the C-fraction expansion
(1.1) of f(z). It is easily seen that fn,n(z) is the approximant of (1.1)
of order n + 1, and that fp,Jz) e KΛ for each p.

For non-negative integers s, t, and for non-zero numbers z19 z2, (2.1)
may be used to show that

(2.2)

(P = 0,1, , n - 1) .

This identity plays a fundamental role in the proof of the following
theorem.

THEOREM 2.1. The radius of univalence of Ka is given by

U(2) - 21/2/3 ,
(2 3)

There is no larger region, containing the disc \z\< U(a), in which all

functions of Ka are unίvalent.

Proof. For f(z)eKΛ and for a fixed positive odd integer n—2m+1
it follows from (2.2) that

^i Z2 — a1\Z1 Z2Jn-l,n\zl) ~~~ zlZ2 Jn-l,n\Z2)\ί

Repeated application of (2.2) yields

(2.5) =

 lg1^Ajϋ_i,β+1^j>-i _ ^_!j *jj>
J = l P = l

- Σ (ZiZ2)j*(Zi - z2) Π a/*-*'"

For zx and ^2 in the disc | z \ < 1, r can be chosen with 0 < r < 1/2 such
that Iz< \« ^ 4 r ( l - r), (i - 1, 2), and by Theorem 1.1, | ftMfa \ ^ l/( l-r) ,
(i = l ,2;p = 0,l, * ,w). When the triangle inequality is applied to
the right member of (2.5) and the indicated bounds are used, there
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results

This
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Since Theorem 1.1 shows that neither of the factors \fn,n{
zi)lz% l> (̂  = 1> 2),

is zero, it follows from (2.6) that fn>n{zd Φ fnΛz^ for î ^ ^2 if ^ is such
that 1 — 2r > r[α: — 1 — (α — 2)r]. This is equivalent to the condition
r < ro(a) where

ro(2) = 1/3

and it is easily seen that /2m+i,2TO+i(z) i s univalent for | z \ω < [U(a)Y =
4ro(α)[l - ro(α)].

If the function f(z) has a non-terminating C-fraction (1.1), the uni-
valence of f(z) for | z \ < U(a) is an immediate consequence of the fact
that f(z) is the uniform limit of its sequence of even approximants,
f2m+i,2m+ι(z), for I z I ̂  p < 1. The case where f(z) has a C-fraction ex-
pansion (1.1) terminating with an odd number of partial quotients may
be reduced to the previously considered case for even approximants by
adding a partial quotient, a2mz*ll with α2m = 0, and noting that /2m-i,2m-i(^) =
/am.2m(«) in this case.

In order to complete the proof that the radius of univalence of K&
is the value U(a) given in (2.3), it suffices to exhibit a function of KΛ

which is not univalent in | z \ < p for any p > U(ά). Such a function
is the function f(z, π) of (1.3), that is,

" ^' ' 3 - l/l + s* 7

where the branch of the radical with positive real part f or | z | < 1 is
used. This function is not univalent at the points eίmπlc*U(ά), (m =
1, 2, ,α), where its derivative vanishes.

The final statement in Theorem 2.1 may be verified by applying to
the function f(z, π) the observation that, for every real θ, e~ίθf(eiθz) e K^
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whenever f(z) e K«.

3. A covering theorem* The value region inequality (1.2) can be
rewritten as

(3.1) fM
z 2 + p» + 2τ/l - ρa

2(1 - Vl - p«)
+ p» + 2λ/\ - f

where \z\ = p and f(z) e Ka. Thus for | z | = p the following inequalities,
which provide a means of comparison between Ka and various classes
of univalent functions, are obtained:

(3.2)

(3.3)

(3.4)

(3.5)

3 - VI - ρ« l + τ/i -

2(1 - τ/1 - jQ")

/ - p«

3-α/l-

arg^? arc sin

Each of the inequalities (3.2)-(3.5) is sharp. This fact follows at
once from Theorem 1.1 since equality in any one of (3.2)-(3.5) depends
on the attainment by f(z)/z of a suitable boundary value for the disc
(3.1) or (1.2).

The following theorem is an immediate consequence of (3.4) and
Theorem 2.1:

THEOREM 3.1. If f(z) e Ka, then the image of\z\< U(a) by w = f(z)

contains the disc

(3.6) w I <
2U(a)

3-Vl-[U(a)]a '

and is contained in the disc

(3.7) w
1 - Vl -

These results are sharp.

4. A lower bound for S(a). An upper bound for S(α), the starlike
radius for the class Ka, is evidently the value U(a) determined in §2.
In this section a lower bound for S(a) is found by determining a number
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pjfiί) s u c h t h a t e v e r y f u n c t i o n o f KΛ i s s t a r l i k e i n t h e d i s c \ z \ < p^oc).

L E M M A 4 . 1 . If f(z) e Ka and \a\^ 1/4, then

(4.1) w(z) = - az"~™
1 } K) l + az«-f(z)
satisfies

(4.2) w -
1 - r 2

whenever \ z \* ^ 4r(l — r), 0 ^ r ^ 1/2.

Proof. The lemma is obvious when a = 0. For 0 < | α | ^ 1/4, (4.1)
yields

1 , -w(z)

z az" 1 + w(z)

and the desired result is easily obtained by applying the inequality
\f(z)lz I ̂  1/(1 — r), which is a consequence of Theorem 1.1.

LEMMA 4.2. If a is a positive integer and if for fixed r, 0<r<l/2,
c and d are numbers such that

.(4.8) Q < . <
~ ~ 1 - 2r2 1 - 2r

o — l satisfies

(4.4) I (7 - c I ̂  d .

Moreover, if w is a parameter satisfying (4.2) and if σQ satisfies (4.4),
then σ1 satisfies (4.4) where

(4.5) tfi = 1 + w(σ0 + a - 1) .

Proof. It is obvious that 1 — c ^ d holds for all r, 0 < r < 1/2,
and that — d ^ 1 — c holds provided

^ 2 + (or - 4)r
~ 2(1 - 2r) *

The fact that σ = 1 satisfies (4.4) may be verified by noting that the
upper bound of c in this last inequality exceeds the upper bound on c
in (4.3) for all r, 0 < r < 1/2.

The proof of the second statement is obtained by using (4.2), (4.3),
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(4.4), (4.5), and the triangle inequality to show that

l - r 2

(c + a - 1) w —
l - r 2 + I w II σ0 - c

1 + (a — 2)r2 - (1 — 2r2)c (c + a — l ) r , rd
1 _ r2 i _ r2 i _ r ^

= d.

LEMMA 4.3. If (4.3) holds for 0 < r < 1/2, there is a value of e
satisfying c 2: d if and only if 0 < r ^ r^oc), where r^a) is the smal-
lest positive root of

(4.6) 1 - (α + 2)r + 2(α - l)r 2 - 2(α - 2)r3 = 0 .

Proof. By (4.3) the inequality c ^ c? holds if and only if

1 + (a - 2)r2 ^ 1 + (a - 2)r
1 - 2r2 ~ 2(1 - 2r) '

which is equivalent to the statement that the left member of (4.6) is
nonnegative. Clearly r^a) < 1/2.

THEOREM 4.1. If f(z) e KΛ and c, d satisfy (4.3), where \ z \* =
p* ^ 4r(l — r), then

(4.7) < d .

Proof. For the functions fp,n{z) of (2.1) put

%>" J p+i,n

Jϊ>,n -l "T" Mn—pZ Jp+i,n

and note by differentiation that <7p+lin = 1 + wp>n(σPιn + a — 1). For
I « I = /O inductive application of Lemmas 4.1 and 4.2 shows that (4.7)
holds for fn>n, and the validity of (4.7) in this case for \z\ ^ p follows
from the maximum property for harmonic functions. Inasmuch as fn>n

is the (n + l)th approximant of (1.1) the theorem holds for functions
of KΛ having terminating C-fraction expansions. The validity of the
theorem in the case of non-terminating C-fractions (1.1) is an immediate
consequence of the uniform convergence of fn>n t o / on any closed subset
of \z | < 1.

THEOREM 4.2. The starlike radius of Ka satisfies S(a) ̂  pjjx) where
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[pi(a)Y = 4ri(α)[l — r^a)] and where rλ{a) is the smallest positive root
of (4.6).

Proof. For r <s r^a) Lemma 4.3 shows that Theorem 4.1 can be
applied to any function f(z) e Ka with c ^ d, and hence that

Since this inequality insures that f(z) is starlike for | z | < pλ{a) the proof
is complete.

In particular, rx(l) = {VY- l)/2 and S(l) ̂  4 i / Ί Γ - 6 which im-
proves the lower bound of 8/9 obtained for S(l) in [3].

5 A lower bound for C(a). It is clear that S(a) and £7(α) are
upper bounds for C(a), the radius of convexity of Ka. In this section
a lower bound for C(a) is found by determining a number p2(a) such
that every function of Ka is convex for \z\ < p2(cή.

LEMMA 5.1. Let a denote a positive integer and let r2(a) be the
smallest positive root of the equation:

(5.1) 1 - (a2 + 2a + 6)r + 6(α2 + a + 2)r2 - 4(3α2 + 2)r3

+ 12(α - l)αr 4 - Aa(a - 2)r5 = 0 .

If for fixed r, 0 < r fg r2(α), σ0 α?ιcί σx are numbers which satisfy

(5.2) I σ0 - c I ̂  d, \σλ-

where

(5.3) l + ( « ~ 2 ) r < c < l + ( « - 2 ) r tf = 1 + (a - 2)r _
2(1 - 2r) ~ ~ 1 - 2r2 1 - 2r

(5.4) Ύl = 2 K -
σx I σQ + a — I σ0 + a - 1 J

then I 701 ̂  1 implies \ rγ1 \ ̂  1.

Proof. For 0 < r < rx{a), where r^a) is as determined in Theorem
4.2, 0 < d < c and

C2 _ d 2 _ c < αr2[(α - 1) - 2(α - 2)r + 2(α - 2)r2]
(1 - 2r)2(l - 2r2)

Thus by (5.2)
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σΛ
c2 — d2 — c

c2-d2

d

c2-d2

and it follows that

c — d

Similarly, (5.2) can be used to show that

- 1 .

(α-1)

σ0 + a - 1

2σ0 + a — 2
σ0 + a - 1

c + d
c + d + a - 1

\(c + d) + a - 2
c + d + a - 1

For I γ01 5g 1 application to (5.4) of the triangle inequality, (5.2) and the
bounds determined above lead to the inequality

(5.5) £ 2(c
c — d

- 2 )

The desired inequality, | ix \ g 1, will hold for those values of r < r^α)
for which the right member of (5.5) does not exceed 1, or equivalently,
for which

(5.6) c-d

(2a - - 2)
(2α - l)(c + d) + (α - l)(α - 2) + [3 - 2(e + + d + a - 1]

Since 2c = (c + d) + (c — d), (5.3) shows that the existence of a value
of c satisfying (5.6) is insured for all r < rx(α) for which

(5.7) 2:
1 - 2r2

This last inequality is equivalent to the requirement that the polynomial
in the left member of (5.1) be non-negative.

The proof of the lemma will be completed by establishing the existence
of a smallest positive zero, r2(a) of (5.1) for which r2(a) < r^a). Since
the equation (4.7) determining r^a) is equivalent to

= c

— 2r2

and since D > 0 for r = r^α), it follows that (5.7) fails to hold for
r = r^α). The desired conclusion about r2(α) is then easily obtained by
noting that (5.7) holds with strict inequality for r = 0.
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THOREM 5.1. The radius of convexity of Ka satisfies

(5.8) [C(a)}« ̂  4r2(α)[l - r2(a)] = [p2{a)γ

where r2(a) is the smallest positive root of (5.1)

Proof. For the functions fpjz) of (2.1) put

rt — /y./ P,n_ rv — r,J g.rc
up,n — 6— , ϊp>n < c — .

Sp.n J p,n

It is easily verified from (2.1) that

**>*> 1 + (α -
+ ^ l σ, + α - 1

where the subscript n has been omitted. Theorem 4.1 and the fact that
70>n = 0 show that the hypotheses of Lemma 5.1 are satisfied, and
inductive application of the lemma yields | 7WlTO I ̂  1. It follows that

3te[l + %•.»] ^ 0 , I s I ̂  ft(α) ,

which insures the convexity of the (w + l)th approximant of any C-ΐrac-
tion (1.1) for | z \ < ρ2(a), and the proof of the theorem may be completed,
as in Theorem 4.1, by reference to uniform convergence.

It is found that p2(l) > .641. An upper bound for C(a) can be
obtained by finding for the function f(z, π) of (1.3) the zeros of zf"(z, π) +
f'(z, π) with smallest modulus. For a — 1 this smallest modulus is ap-
proximately .707.
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