Pacific Journal of Mathematics

ASYMPTOTIC PROPERTIES OF DERIVATIVES OF STATIONARY MEASURES

SHU-TEH CHEN MOY

Vol. 10, No. 4 December 1960

ASYMPTOTIC PROPERTIES OF DERIVATIVES OF STATIONARY MEASURES

SHU-TEH C. MOY

1. Introduction. Let X be a non-empty set and $\mathscr S$ be a σ -algebra of subsets of X. Consider the infinite product space $\Omega = \prod_{n=-\infty}^\infty X_n$ where $X_n = X$ for $n = 0, \pm 1, \pm 2, \cdots$ and the infinite product σ -algebra $\mathscr F = \prod_{n=-\infty}^\infty \mathscr S_n$ where $\mathscr S_n = \mathscr S$ for $n = 0, \pm 1, \pm 2, \cdots$. Elements of Ω are bilateral infinite sequences $\{\cdots, x_{-1}, x_0, x_1, \cdots\}$ with $x_n \in X$. Let us denote the elements of Ω by w. If $w = \{\cdots, x_{-1}, x_0, x_1, \cdots\}$ x_n is called the nth coordinate of w and shall be considered as a function on Ω to X. Let T be the shift transformation on Ω to Ω : the nth coordinate of Tw is equal to the n+1th coordinate of w. For any function g on Ω , Tg is the function defined by Tg(w) = g(Tw) so that $Tx_n = x_{n+1}$ for any integer n. We shall consider two probability measures μ , ν defined on $\mathscr F$. For $n = 1, 2, \cdots$ let $\Omega_n = \prod_{i=1}^n X_i$ where $X_i = X$, $i = 1, 2, \cdots$, n and $\mathscr F_n = \prod_{i=1}^n \mathscr F_i$ where $\mathscr F_i = \mathscr F_i$, $i = 1, 2, \cdots$, n. Then $\Omega_1 = X$ and $\mathscr F_1 = \mathscr F$. Let $\mathscr F_m$, $m \le n$, $n = 0, \pm 1, \pm 2, \cdots$, be the σ -algebra of subsets of Ω consisting of sets of the form

$$[w = {\cdots, x_{-1}, x_0, x_1 \cdots}: (x_m, x_{m+1}, \cdots, x_n) \in E]$$

Where $E \in \mathscr{F}_{n-m+1}$. Then $\mathscr{F}_{m,n} \subset \mathscr{F}_{m,n+1} \subset \mathscr{F}$. Let $\mu_{m,n}, \nu_{m,n}$ be the contractions of μ , ν , respectively to \mathscr{T}_{mn} . If ν_{mn} is absolutely continuous with respect to μ_{mn} , the derivative of ν_{mn} with respect to μ_{mn} is a function of x_m, \dots, x_n and shall be designated by $f_m(x_m, \dots, x_n)$. Since $f_{m,n}(x_m,\dots,x_n)$ is positive with ν -probability one $1/f_{m,n}(x_m,\dots,x_n)$ is well defined with v-probability one. We shall let the function $1/f_{m,n}(x_m,\dots,x_n)$ take on the value 0 when $f_{m,n}(x_m,\dots,x_n) \leq 0$. Thus $1/f_{m,n}(x_m,\dots,x_n)$ is well defined everywhere. In fact $1/f_{m,n}(x_m,\dots,x_n)$ is the derivative of $\nu_{m\,n}$ -continuous part of $\mu_{m\,n}$ with respect to $\nu_{m\,n}$. According to the celebrated theorem of E. S. Anderson and B. Jessen [1] and J. L. Doob ([2]), pp. 343) $1/f_m(x_m, \dots, x_n)$ converges with ν probability one as $n \to \infty$. If we assume that μ, ν are stationary, i.e., μ, ν are T invariant, more precise results may be expected. A fundamental theorem of Information Theory, first proved by C. Shannon for stationary Markovian measures [5] and later generalized to any stationary measure by B. McMillan [4], may be considered as a theorem of this sort. In their theorem X is assumed to be a finite set. In this paper we shall first treat Markovian stationary measures μ, ν with X being

Received September 2, 1959, and in revised form January 18, 1960. The author is very much indebted to the referee for his suggestions which have been of substantial benefit to this paper.

any set, finite or infinite, and \mathscr{S} , any σ -algebra of subsets of X. It will be proved that $n^{-1}\log f_{m\,n}(x_m,\,\cdots,\,x_n)$ converges as $n\to\infty$ with ν -probability one and also in $L_1(\nu)$ under some integrability conditions. The case that ν is only stationary is also treated. Similar convergence theorem is proved under the assumption that X is countable.

2. Asymptotic properties of derivatives of a Markovian measure with stationary transition probabilities with respect to another such measure.

Let X, \mathcal{S} , Ω , \mathcal{F} , Ω_n , \mathcal{F}_n , \mathcal{F}_m , μ_m , ν_m , ν_m , μ_m , ν_m , μ_m , ν_m ,

- (1) $P_{\mu}[x_n \in A \mid x_m, \dots, x_{n-1}] = P_{\mu}[x_n \in A \mid x_{n-1}]$ with μ -probability one and
- (2) $P_{\nu}[x_n \in A \mid x_m, \dots, x_{n-1}] = P_{\nu}[x_n \in A \mid x_{n-1}]$ with ν -probability one. For any set $E \subset \Omega$ let I_E be the real valued function on Ω defined by

$$I_{\scriptscriptstyle E}(w) = 1 \ ext{if} \ w \in E$$

$$= 0 \ ext{if} \ w \notin E .$$

LEMMA 1. If $\nu_{n-1 n}$ is absolutely continuous with respect to $\mu_{n-1 n}$ then for any $A \in \mathscr{S}$

$$\begin{array}{ll} (\ 3\) & P_{\nu}[x_n\in A\ |\ x_{n-1}]f_{n-1\ n-1}(x_{n-1}) \\ & = E_{\mu}[I_{(x_n\in A)}f_{n-1\ n}(x_{n-1},\ x_n)\ |\ x_{n-1}] \ \ \text{with}\ \ \mu\text{-probability one.} \end{array}$$

Proof. For any $A, B \in \mathcal{S}$

$$\begin{split} \nu[x_n \in A, \, x_{n-1} \in B] \\ &= \int_{[x_{n-1} \in B]} P_{\nu}[x_n \in A \mid x_{n-1}] d\nu \\ &= \int_{[x_{n-1} \in B]} P_{\nu}[x_n \in A \mid x_{n-1}] f_{n-1 \, n-1}(x_{n-1}) d\mu \;. \end{split}$$

On the other hand

$$\begin{split} \nu[x_n \in A, \, x_{n-1} \in B] \\ &= \int_{[x_{n-1} \in B]} I_{x_n \in A} f_{n-1 \, n}(x_{n-1}, \, x_n) \, | \, x_{n-1}) d\mu \end{split}$$

$$= \int_{\{x_{n-1} \in B\}} E_{\mu}[I_{x_n \in A} f_{n-1 \; n}(x_{n-1}, \, x_n) \, | \, x_{n-1}] d\mu \; .$$

Hence for any $B \in \mathcal{S}$

$$\begin{split} &\int_{[x_{n-1}\in B]} P_{\flat}[x_n\in A \mid x_{n-1}] f_{n-1} \,_{n-1}(x_{n-1}) d\mu \\ &= \int_{[x_{n-1}\in B]} E_{\mu}[I_{x_n\in A} f_{n-1} \,_{n}(x_{n-1}, \, x_n) \mid x_{n-1}] d\mu \ , \end{split}$$

therefore (3) is true with μ -probability one. Dividing both sides of (3) by f_{n-1} $f_{n-1}(x_{n-1})$ we then have

$$(4) P_{\nu}[x_n \in A \mid x_{n-1}] = \frac{E_{\mu}[I_{x_n \in A} f_{n-1} x_n(x_{n-1}, x_n) \mid x_{n-1}]}{f_{n-1} x_{n-1}(x_{n-1})}.$$

With μ -probability one on the set $[f_{n-1}, f_{n-1}(x_{n-1}) > 0]$. Since $\nu[f_{n-1}, f_{n-1}(x_{n-1}) > 0] = 1$, (4) is true with ν -probability one.

THEOREM 1. If $\nu_{n-1\,n}$ is absolutely continuous with respect to $\mu_{n-1\,n}$ for $n=0,\pm 1,\pm 2,\cdots$ then $\nu_{m\,n}$ is absolutely continuous with respect to $\mu_{m\,n}$ for $n=0,\pm 1,\pm 2,\cdots$ and $m\leq n$ with

(5)
$$f_{m n}(x_{m}, \dots, x_{n}) = f_{m m+1}(x_{m}, x_{m+1}) \frac{f_{m+1 m+2}(x_{m+1}, x_{m+2})}{f_{m+1 m+1}(x_{m+1})} \cdots \frac{f_{n-1 n}(x_{n-1}, x_{n})}{f_{n-1 n-1}(x_{n-1})}$$

with μ -probability one.

Proof. We shall prove the theorem for the case that $m=1, n=2, 3, \cdots$. The proof for the general case that m is any integer is similar. Since ν_{12} is absolutely continuous with respect to μ_{12} by hypothesis, (5) is trivially true for m=1, n=2. Suppose ν_{1k} ($k \ge 2$) is absolutely continuous with respect to μ_{1k} and μ_{1k} and μ_{1k} is given by (5) with μ -probability one. For any μ_{1k} and μ_{2k} is given by

$$u[x_{k+1} \in A, (x_1, \dots, x_k) \in B]$$

$$= \int_{[(x_1, \dots, x_k) \in B]} P_{\nu}[x_{k+1} \in A \mid x_1, \dots, x_k] d\nu .$$

Since ν is Markovian and by (4)

$$egin{aligned}
u[x_{k+1} \in A, \, (x_1, \, \cdots, \, x_k) \in B] \ &= \int_{[(x_1, \, \cdots, \, x_k) \in B]} P_
u[x_{k+1} \in A \mid x_k] d
u \end{aligned}$$

$$\begin{split} &= \int_{[(x_1, \dots, x_k) \in B]} \frac{E_{\mu}[I_{x_{k+1} \in A} f_{k \ k+1}(x_k, \ x_{k+1}) \ | \ x_k]}{f_{k \ k}(x_k)} \ d\nu \\ &= \int_{[(x_1, \dots, x_k) \in B]} \frac{E_{\mu}[I_{x_{k+1} \in A} f_{k \ k+1}(x_k, \ x_{k+1}) \ | \ x_k]}{f_{k \ k}(x_k)} \ f_{1 \ k}(x_1, \ \cdots, \ x_k) d\mu \ . \end{split}$$

Since μ is Markovian

$$E_{\mu}[I_{x_{k+1} \in A} f_{k k+1}(x_k, x_{k+1}) \mid x_k]$$

$$= E_{\mu}[I_{x_{k+1} \in A} f_{k k+1}(x_k, x_{k+1}) \mid x_1, \dots, x_k]$$

with μ -probability one. Hence

$$\begin{split} \nu[x_{k+1} \in A, & (x_1, \cdots, x_k) \in B] \\ &= \int_{(x_1, \cdots, x_k) \in B} E_\mu \Big[I_{x_{k+1} \in A} \frac{f_{k \ k+1}(x_k, x_{k+1})}{f_{k \ k}(x_k)} f_{1 \ k}(x_1, \cdots, x_k) \, | \, x_1, \cdots, x_k \Big] d\mu \\ &= \int_{(x_1, \cdots, x_k) \in B} I_{x_{n+1} \in A} f_{1 \ k}(x_1, \cdots, x_k) \, \frac{f_{k \ k+1}(x_k, x_{k+1})}{f_{k \ k}(x_k)} \, d\mu \; . \end{split}$$

Hence

$$\begin{split} \nu[x_{k+1} \in A, \, (x_1, \, \cdots, \, x_k) \in B] \\ &= \int_{[x_{k+1} \in A, \, (x_1, \, \cdots, \, x_k) \in B]} f_{1\,k}(x_1, \, \cdots, \, x_k) \, \frac{f_{k\,k+1}(x_k, \, x_{k+1})}{f_{k\,k}(x_k)} \, d\mu \end{split}$$

for any $A \in \mathcal{S}, B \in \mathcal{F}_k$. Hence for any $E \in \mathcal{F}_{1k+1}$

$$u(E) = \int_E f_{1\,k}(x_{\scriptscriptstyle 1},\, \cdots,\, x_{\scriptscriptstyle k}) \, rac{f_{\,k\,\,k+1}(x_{\scriptscriptstyle k},\, x_{\scriptscriptstyle k+1})}{f_{\,k\,\,k}(x_{\scriptscriptstyle k})} \, d\mu$$
 ,

Therefore $\nu_{1\,k+1}$ is absolutely continuous with respect to $\mu_{1\,k+1}$ and

(6)
$$f_{1 k+1}(x_1, \dots, x_{k+1}) = f_{1 k}(x_1, \dots, x_k) \frac{f_{k k+1}(x_k, x_{k+1})}{f_{k k}(x_k)}$$

with μ -probability one. (6) together with the supposition that (5) holds true for m=1, n=k implies that (5) holds true for m=1, n=k+1. Thus the theorem for the case that m=1 is proved.

Any Markovian probability measure on \mathscr{F} is said to have stationary transition probabilities if E being a set of probability one implies that TE, $T^{-1}E$ are also of probability one and for any $A \in \mathscr{S}$ and any n

$$P[x_{n+1} \in A \mid x_n] \, = \, TP[x_n \in A \mid x_{n-1}]$$

with probability one. Thus for a Markovian probability measure with stationary transition probabilities we have for any pair of integers m, n and any $A \in \mathcal{S}$

- (7) $P[x_n \in A \mid x_{n-1}] = T^{n-m}P[x_m \in A \mid x_{m-1}]$ with probability one and
- (8) $E[g(x_{n-1}, x_n) | x_{n-1}] = T^{n-m} E[g(x_{m-1}, x_m) | x_{m-1}]$ with probability one for any real valued \mathscr{F}_2 -measurable function g on Ω_2 .

THEOREM 2. Let both μ, ν have stationary transition probabilities. If $\nu_{n\,n}$ is absolutely continuous with respect to $\mu_{n\,n}$ for $n=0,\pm 1,\pm 2,\cdots$ and ν_{12} is absolutely continuous with respect to μ_{12} then $\nu_{m\,n}$ is absolutely continuous with respect to $\mu_{m\,n}$ for $m \leq n, n=0,\pm 1,\pm 2,\cdots$ and

$$(9) f_{m n}(x_m, \dots, x_n) = f_{m m}(x_m) \frac{f_{12}(x_m, x_{m+1})}{f_{11}(x_m)} \dots \frac{f_{12}(x_{n-1}, x_n)}{f_{11}(x_{n-1})}$$

with μ -probability one.

Proof. By Lemma 1, for any $A \in \mathcal{S}$

(10)
$$P_{\nu}[x_2 \in A \mid x_1] = \frac{E_{\mu}[I_{x_2 \in A} f_{1,2}(x_1, x_2) \mid x_1]}{f_{1,1}(x_1)}$$

with ν -probability one. For any $A, B \in \mathcal{S}$

$$\begin{split} \nu[x_n \in A, \, x_{n-1} \in B] \\ &= \int_{[x_{n-1} \in B]} P_{\nu}[x_n \in A \mid x_{n-1}] d\nu \\ &= \int_{[x_{n-1} \in B]} T^{n-2} P_{\nu}[x_2 \in A \mid x_1] d\nu \\ &= \int_{[x_{n-1} \in B]} \{ T^{n-2} P_{\nu}[x_2 \in A \mid x_1] \} f_{n-1} \,_{n-1}(x_{n-1}) d\mu \;. \end{split}$$

Hence by (10) and (8)

$$\begin{split} \nu[x_n \in A, x_{n-1} \in B] \\ &= \int_{[x_{n-1} \in B]} T^{n-2} \left\{ \frac{E_{\mu}[I_{x_2 \in A} f_{1|2}(x_1, x_2) \mid x_1]}{f_{1|1}(x_1)} f_{n-1|n-1}(x_{n-1}) d\mu \right. \\ &= \int_{[x_{n-1} \in B]} \frac{E_{\mu}[I_{x_n \in A} f_{1|2}(x_{n-1}, x_n) \mid x_{n-1}]}{f_{1|1}(x_{n-1})} f_{n-1|n-1}(x_{n-1}) d\mu \\ &= \int_{[x_{n-1} \in B]} I_{x_n \in A} f_{n-1|n-1}(x_{n-1}) \frac{f_{1|2}(x_{n-1}, x_n)}{f_{1|1}(x_{n-1})} d\mu \\ &= \int_{[x_n \in A, x_{n-1} \in B]} f_{n-1|n-1}(x_{n-1}) \frac{f_{1|2}(x_{n-1}, x_n)}{f_{1|1}(x_{n-1})} d\mu \end{split}$$

Thus for any $E \in \mathcal{F}_{n-1}$ n

(11)
$$\nu(E) = \int_{E} f_{n-1} f_{n-1}(x_{n-1}) \frac{f_{1,2}(x_{n-1}, x_n)}{f_{1,1}(x_{n-1})} d\mu.$$

Hence for any integer n, ν_{n-1} is absolutely continuous with respect to μ_{n-1} and Theorem 1 is applicable. (11) also implies that

(12)
$$f_{n-1}(x_{n-1}, x_n) = f_{n-1}(x_{n-1}) \frac{f_{1,2}(x_{n-1}, x_n)}{f_{1,1}(x_{n-1})}$$

with μ -probability one. Hence

(13)
$$\frac{f_{n-1} n(x_{n-1}, x_n)}{f_{n-1} n-1(x_{n-1})} = \frac{f_{1,2}(x_{n-1}, x_n)}{f_{1,1}(x_{n-1})}$$

with μ -probability one on the set $[f_{n-1}, x_{n-1}(x_{n-1}) > 0]$. However, except that w belongs to a set of μ -probability $0, n > 1, f_{n-1}, x_{n-1}(x_{n-1}(w)) = 0$ imply that $f_{n-1}(x_1(w), \dots, x_{n-1}(w)) = 0$, hence

$$f_{1 \ n-1}(x_1, \ \cdots, \ x_{n-1}) \frac{f_{n-1 \ n}(x_{n-1}, \ x_n)}{f_{n-1 \ n-1}(x_{n-1})} = f_{1 \ n-1}(x_1, \ \cdots, \ x_{n-1}) \frac{f_{1 \ 2}(x_{n-1}, \ x_n)}{f_{1 \ 1}(x_{n-1})}$$

with μ -probability one. Thus by (6)

$$f_{1n}(x_1, \dots, x_n) = f_{1n-1}(x_1, \dots, x_{n-1}) \frac{f_{1n}(x_{n-1}, x_n)}{f_{1n}(x_{n-1})}$$

with μ -probability one. Combining (12) (13) and by induction, if n>1

$$f_{1n}(x_1, \dots, x_n) = f_{11}(x_1) \frac{f_{12}(x_1, x_2)}{f_{11}(x_1)} \cdots \frac{f_{12}(x_{n-1}, x_n)}{f_{11}(x_{n-1})}$$

with μ -probability one. Thus we have proved the theorem for the case that m=1. For the general case the proof is similar.

Theorem 3. If μ has stationary transition probabilities and ν is stationary and if

$$\int |\log f_{m\,m+1}(x_m,\,x_{m+1})\,|\,d
u < \infty \;\; then \ \int |\log f_{m\,n}(x_m,\,\cdots,\,x_n)\,|\,d
u < \infty \;\; for \;\; n=m,\,m+1,\,m+2,\,\cdots$$

and $n^{-1}\log f_{m\,n}(x_m,\,\cdots,\,x_n)$ converges as $n\to\infty$ with ν -probability one and also in $L_1(\nu)$ to a function g with $\int g\,d\nu=a$ where

$$a = \int [\log f_{1\,2}(x_1,\,x_2) - \log f_{1\,1}(x_1)] d
u \ge 0$$

In particular, if ν is ergodic, g = a with ν -probability one.

Proof. We shall first prove the theorem for the case that m=1. Since for any $A \in \mathscr{S}$

$$u[x_{\scriptscriptstyle 1}\!\in\!A]=\int_{[x_{\scriptscriptstyle 1}\!\in\!A]}f_{\scriptscriptstyle 1\,1}\!(x_{\scriptscriptstyle 1})d_{\mu}=\int_{[x_{\scriptscriptstyle 1}\!\in\!A]}f_{\scriptscriptstyle 1\,2}\!(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})d\mu$$
 ,

hence

$$E_{\mu}[f_{12}(x_1, x_2) | x_1] = f_{11}(x_1)$$
.

Since $\int |\log f_{\scriptscriptstyle 1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\,|\,d
u < \infty$ hence

$$\int |f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\log f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\,|\,d\mu = \int |\log f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\,|\,d
u < \infty$$
 .

The real valued function $L(\xi) = \xi \log \xi$ defined for all real $\xi \ge 0[L(0)]$ is taken to be 0] is convex. By Jensen's inequality for conditional expectations ([2], pp. 33)

(15)
$$E_{\mu}[L\{f_{12}(x_1x_2)\} \mid x_1] \geq L\{f_{11}(x_1)\}.$$

By (15) and the fact that $L(\xi)$ is a function bounded below by a constant, we have

$$\int |\ L\{f_{_{1}\,_{1}}(x_{_{1}})\}|\,d\mu = \int |\log f_{_{1}\,_{1}}(x_{_{1}})|\,d
u < \infty$$

and

$$\int \log f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2}) d_{\scriptscriptstyle
u} - \int \log f_{1\,1}(x_{\scriptscriptstyle 1}) d_{\scriptscriptstyle
u} = a \geqq 0 \;.$$

Now by Theorem 2

$$\log f_{1n}(x_1, \, \cdots, \, x_n) = \log f_{11}(x_1) + \sum_{i=2}^n \{\log f_{12}(x_{i-1}, \, x_i) - \log f_{11}(x_{i-1})\}$$
.

Since ν is stationary, $\log f_{1n}(x_1, \dots, x_n)$ is ν -integrable. Applying the ergodic theorem $n^{-1} \log f_{1n}(x_1, \dots, x_n)$ converges with ν -probability one and also in $L_1(\nu)$ to a function g with

$$\int g d
u = \int [\log f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2}) - \log f_{1\,1}(x_{\scriptscriptstyle 1})] d
u = a \geqq 0$$
 .

For m being any integer, we only need to mentioned that by (13),

$$\log f_{m,m+1}(x_m, x_{m+1}) - \log f_{m,m}(x_m) = \log f_{1,2}(x_1, x_2) - \log f_{1,1}(x_1)$$

with ν -probability one and therefore the same conclusion follows with a similar proof.

COROLLARY 1. Suppose μ, ν satisfy the hypothesis of Theorem 3 for m=1. If ν is ergodic and if there is an $A \in \mathscr{S}$ such that

(16)
$$\nu\{P_{\nu}[x_2 \in A \mid x_1] \neq P_{\mu}[x_2 \in A \mid x_1]\} > 0$$

then ν is singular with respect to μ .

Proof. First we shall show that follows from (16)

(17)
$$\mu[f_{11}(x_1) \neq f_{12}(x_1, x_2)] > 0.$$

For, if $f_{1:1}(x_1)=f_{1:2}(x_1,x_2)$ with μ -probability one then by Lemma 1 $P_{\cdot}[x_2\in A\mid x_1]f_{1:1}(x_1)=P_{\mu}[x_2\in A\mid x_1]f_{1:1}(x_1)$ with μ -probability one. Thus $P_{\cdot}[x_2\in A\mid x_1]=P_{\mu}[x_2\in A\mid x_1]$ with ν -probability one for every $A\in\mathscr{S}$. Now the function $L(\xi)=\xi\log\xi$ is strictly convex, hence it follows from (17) that

$$a = \int [L\{f_{1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\} - L\{f_{1\,1}(x_{\scriptscriptstyle 1})\}]d_{\mu} > 0$$
 .

Applying Theorem 3 $f_{1n}(x_1, \dots, x_n) \to \infty$ with ν -probability one as $n \to \infty$. Hence $1/f_n(x_1, \dots, x_n) \to 0$ with ν -probability one as $n \to \infty$. Let \mathscr{F}' be the σ -algebra generated by $\bigcup_{n=1}^{\infty} \mathscr{F}_{1n}$ and μ', ν' be the contractions of μ , ν to \mathscr{F}' respectively. Since $1/f_{1n}(x_1, \dots, x_n)$ is the derivative of ν_{1n} -continuous part of μ_{1n} with respect to $\nu_{1n}, 1/f_{1n}(x_1, \dots, x_n)$ converges with ν -probability one as $n \to \infty$ to the derivative of ν' -continuous part of μ' with respect to ν' ([2], pp. 343). Now $1/f_{1n}(x_1, \dots, x_n)$ converges to 0 with ν -probability one, hence the ν' -continuous part of μ' is 0 and μ' , ν' are mutually singular. Hence μ , ν are mutually singular.

3. Extension to k-Markovian measures. The results of the preceding section can be extended to k-Markovian measures immediately. We shall state the theorems only since the proofs in the preceding section with obvious modifications apply as well.

THEOREM 4. Let μ, ν be any two k-Markovian measures on \mathscr{F} . If ν_{n-k} is absolutely continuous with respect to μ_{n-k} , n for $n=0, \pm 1, \pm 2, \cdots$, then ν_{m} is absolutely continuous with respect to μ_{m} for $n=0, \pm 1, \pm 2, \cdots$ and $m \leq n$ with

$$(18) \quad f_{m n}(x_{m}, \dots, x_{n}) = f_{m m+k}(x_{m}, \dots, x_{m+k}) \frac{f_{m+1, m+1+k}(x_{m+1}, \dots, x_{m+1+k})}{f_{m+1, m+k}(x_{m+1}, \dots, x_{m+k})} \cdots \frac{f_{n-k n}(x_{n-k}, \dots, x_{n})}{f_{n-k n-1}(x_{n-k}, \dots, x_{n-1})}$$

with μ -probability one.

THEOREM 5. Let μ, ν be two k-Markovian measures on \mathscr{F} with stationary transition probabilities. If $\nu_{n-k+1,n}$ is absolutely continuous with respect to $\mu_{n-k+1,n}$ for $n=0,\pm 1,\pm 2,\cdots$ and ν_{n-k+1} is absolutely continuous with respect to μ_{n-k+1} then ν_{m-n} is absolutely continuous with respect to μ_{m-n} for $n=0,\pm 1,\pm 2,\cdots,m \leq n$ and

$$(19) \quad f_{m n}(x_{m}, \dots, x_{n}) = f_{m m+k-1}(x_{m}, \dots, x_{m+k-1}) \frac{f_{1 k+1}(x_{m+1}, \dots, x_{m+k+1})}{f_{1 k}(x_{m+1}, \dots, x_{m+k})} \frac{\underbrace{f_{1 k+1}(x_{m+1}, \dots, x_{m+k+1})}_{f_{1 k}(x_{n-k}, \dots, x_{n})}}{\underbrace{f_{1 k+1}(x_{n-k}, \dots, x_{n})}_{f_{n k}(x_{n-k}, \dots, x_{n-1})}$$

with μ -probability one.

THEOREM 6. Let μ, ν be two k-Markovian measures such that ν is stationary and μ has stationary transition probabilities. If

$$\int |\log f_{m\,m+k}(x_m,\,\cdots,\,x_{m+k})|\,d\nu < \infty$$

then $\int |\log f_{m\,n}(x_m,\,\cdots,\,x_n)|\,d\nu < \infty$ for $n=m,\,m+1,\,m+2,\,\cdots$ and $n^{-1}\log f_{m\,n}(x_m,\,\cdots,\,x_n)$ converges as $n\to\infty$ with ν -probability one to a function g with $\int gd\nu = a \geq 0$ where

$$a = \int |\log f_{1\,k+1}(x_1,\,\cdots,\,x_{k+1}) - \log f_{1\,k}(x_1,\,\cdots,\,x_k)| \,d\nu \ge 0$$
.

In particular, if ν is ergodic, g=a with ν -probability one.

COROLLARY 2. Suppose μ , ν satisfy the hypothesis of Theorem 6 for m=1. If ν is ergodic and if there is a set $A \in \mathcal{S}$ such that

(20)
$$\nu\{[P_{\nu}[x_{k+1} \in A \mid x_1, \dots, x_k] \neq P_{\mu}[x_{k+1} \in A] \mid x_1, \dots, x_k]\} > 0$$

Then ν is singular with respect to μ .

4. A generalization of McMillan's theorem. In the setting of this paper, McMillan's Theorem may be stated as the following. Let X be a finite set of K points and $\mathscr S$ be the σ -algebra of all subsets of X. Let ν be any stationary probability measure on $\mathscr F$ and μ be the measure on $\mathscr F$ such that $\mu[X_m=a_0,X_{m+1}=a_1,\cdots,X_n=a_{n-m}]]=K^{-(n-m+1)}$ for any intergers m, n and a_0 , $a_1\cdots a_{n-m}$ in X. μ may be described as the equally distributed independent measure on $\mathscr F$. Then $n^r f_{1n}(x_1,\cdots,x_n)$ converges as $n\to\infty$ in $L_1(\nu)$. In particular, if ν is ergodic, the limit function is equal to $\log K-H$ with ν -probability one where H is the entropy of ν measure [4]. We shall generalize this theorem to the case that X is countable and μ is Markovian with stationary transition probabilities.

THEOREM 7. Let the totality of elements of X be a_1, a_2, \cdots and ν be a stationary probability measure on $\mathscr F$ such that $\int -\log \nu_1(x_1) d\nu < \infty$ where ν_1 is the function defined on X by $\nu_1(a_i) = \nu[x_1 = a_i]$. Let μ be a Markovian measure on $\mathscr F$ with stationary transition probabilities. Let $p(a_i, a_j)$ be the value of $P_{\mu}[x_1 = a_j \mid x_0]$ when $x_0 = a_i$. Let ν_{1n} be absolutely continuous with respect to μ_{1n} for $n = 1, 2, \cdots$. If

$$\int -\log p(x_1, x_2) d
u < \infty$$

and $\int |\log f_{1\,1}(x_1)| d\nu < \infty$ then $\int |\log f_{1\,n}(x_1, \dots, x_n)| d\nu < \infty$ for $n=1, 2, \dots$ and $n^{-1} \log f_{1\,n}(x_1, \dots, x_n)$ converges as $n \to \infty$ in $L_1(\nu)$. In particular, if ν is ergodic, the limit is equal to a constant with ν -probability one.

Proof. Let

$$\nu_n(a_{i_1}, a_{i_2}, \dots, a_{i_n}) = \nu[x_1 = a_{i_1}, x_2 = a_{i_2}, \dots, x_n = a_{i_n}]$$

and

$$\mu_n(a_{i_1}, a_{i_2}, \dots, a_{i_n}) = \mu[x_1 = a_{i_1}, x_2 = a_{i_2}, \dots, x_n = a_{i_n}]$$
.

Then

$$f_1(x_1, \dots, x_n) = \frac{\nu_n(x_1, \dots, x_n)}{\mu_n(x_1, \dots, x_n)}$$

with μ -probab \rightarrow and

$$=a_i \mid x_{n-1}, \dots, x_1] = \frac{\nu_n(x_1, \dots, x_{n-1}, a_i)}{\nu_{n-1}(x_1, \dots, x_{n-1})}$$

with ν -probability one and

$$P_{\mu}[x_n = a_i \,|\, x_{n-1}] = rac{\mu_n(x_1,\, \cdots,\, x_{n-1},\, a_i)}{\mu_n(x_1,\, \cdots,\, x_{n-1})}$$

with μ -probability one. Hence

$$\frac{f_{1\,n}(x_1,\,\cdots,\,x_n)}{f_{1\,n-1}(x_1,\,\cdots,\,x_{n-1})} = \sum_{i=1}^{\infty} \frac{P_{\nu}[x_n=a_i\,|\,x_{n-1},\,\cdots,\,x_1]}{P_{\mu}[x_n=a_i\,|\,x_{n-1}]}\,I_{x_n=a_i}$$

with v-probability one and

(21)
$$\log \frac{f_{1 n-1}(x_1, \dots, x_n)}{f_{1 n-1}(x_1, \dots, x_{n-1})} = \sum_{i=1}^{\infty} \log P_i[x_n = a_i \mid x_{n-1}, \dots, x_1] I_{x_n = a_i} -\log p(x_{n-1}, x_n) = T^n a_n$$

with ν-probability one where

(22)
$$g_n = \sum_{i=1}^{\infty} \log P_{\nu}[x_0 = a_i \,|\, x_{-1}, \, \cdots, \, x_{-(n-1)}] I_{x_0 = a_i} - \log p(x_{-1}, \, x_0) .$$

We know that $P_{\nu}[x_0=a_i\,|\,x_{-1},\,\cdots,\,x_{-(n-1)}]$ converges with ν -probability one as $n\to\infty$ to $P_{\nu}[x_0=a_i\,|\,x_{-1},\,x_{-2},\,\cdots]$ by Doob's Martingale Convergence Theorem. Hence $L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,\cdots,\,x_{-(n-1)}]\}$ converges with ν -probability one to $L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,x_{-2},\,\cdots]\}$. But $L(\xi)$ is a bounded function for $0\le\xi\le 1$, hence $L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,x_{-(n-1)}\}\}$ are uniformly bounded with ν -probability one. Hence $L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,x_{-(n-1)}\}\}$ are uniformly converges in $L_{\mathbf{1}}(\nu)$ to $L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,x_{-2},\,\cdots]\}$ as $n\to\infty$. Now by Jensin's inequality $\int -L\{P_{\nu}[x_0=a_i\,|\,x_{-1},\,\cdots,\,x_{-(n-1)}]\}d\nu\le -L\{P_{\nu}[x_0=a_i]\}$. Since

$$\sum_{i=1}^{\infty} - L\{P_{
u}[x_0 = a_i]\} = \int -\log
u_1(x_0) d
u < \infty$$
 $\sum_{i=1}^{m} - L\{P_{
u}[x_0 = a_i \,|\, x_{-1}, \, \cdots, \, x_{-(n-1)}]\}$

converges in $L_1(\nu)$, as $m \to \infty$, to

$$\sum_{i=1}^{\infty} - L\{P_{\nu}[x_0 = a_i \,|\, x_{-1}, \, \cdots, \, x_{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}}]\}$$

uniformly in n. Hence

$$\sum_{i=1}^{\infty} - L\{P_{i}[x_{0} = a_{i} \, | \, x_{-1}, \, \cdots, \, x_{-(n-1)}]$$

converges in $L_1(\nu)$ to

$$\sum_{i=1}^{\infty} -L\{P_{\nu}[x_{0} = a_{i} \mid x_{-1}, x_{-2}, \cdots]\} \text{ as } n \to \infty. \text{ Now}$$

$$\int -\sum_{i=1}^{\infty} \log P_{\nu}[x_{0} = a_{i} \mid x_{-1}, \cdots, x_{-(n-1)}] I_{x_{0} = a_{i}} d\nu$$

$$= \int -\sum_{i=1}^{\infty} L\{P_{\nu}[x_{0} = a_{i} \mid x_{-1}, \cdots, x_{-(n-1)}]\} d\nu \text{ and}$$

$$\int -\sum_{i=1}^{\infty} \log P_{\nu}[x_{0} = a_{i} \mid x_{-1}, x_{-2}, \cdots] I_{x_{0} = a_{i}} d\nu$$

$$= \int -\sum_{i=1}^{\infty} L\{P_{\nu}[x_{0} = a_{i} \mid x_{-1}, x_{-2}, \cdots]\} d\nu, \text{ hence}$$

$$\lim_{n \to \infty} \int -\sum_{i=1}^{\infty} \log P_{\nu}[x_{0} = a_{i} \mid x_{-1}, \cdots, x_{-(n-1)}] I_{x_{0} = a_{i}} d\nu$$

$$= \int -\sum_{i=1}^{\infty} \log P_{\nu}[x_{0} = a_{i} \mid x_{-1}, x_{-2}, \cdots] I_{x_{0} = a_{i}} d\nu.$$

(23) together with the facts that the sequence

$$\left\{-\sum_{i=1}^{\infty}\log P_{
u}[x_{0}=x_{i}\,|\,x_{-i},\,\cdots,\,x_{-(n-1)}]I_{x_{0}=a_{i}}
ight\}$$

is also convergent with v-probability one and that the functions

$$-\sum_{i=1}^{\infty} \log P_{
u}[x_0=x_i\,|\,x_{-i},\,\cdots,\,x_{-(n-1)}]I_{x_0=a_i}$$

are non negative with ν -probability one imply that

$$\sum_{i=1}^{\infty} P_{\nu}[x_0 = a_i \, | \, x_{-i}, \, \cdots, \, x_{-(n-1)}] I_{x_0 = a_i}$$

converges as $n \to \infty$ in $L_1(\nu)$ to

$$\sum_{i=1}^{\infty} P_{\nu}[x_0 = a_i \, | \, x_{-1}, \, x_{-2}, \, \cdots] I_{x_0 = a_i}$$
 .

Thus we have $\{g_n\}$ to be an $L_1(\nu)$ convergent sequence. Let the limit of the sequence be h. Let \bar{h} be the $L_1(\nu)$ limit of $1/n(h+Th+\cdots+T^nh)$ as $n\to\infty$. Now by (21)

$$egin{aligned} &\log f_{1\,2}(x_1,\,\cdots,\,x_n) = \log f_{1\,1}(x_1) + \sum\limits_{i=2}^n T^i g_i. \end{aligned} ext{ Thus} \ &\int \Bigl| rac{1}{n} \log f_{1\,n}(x_1,\,\cdots,\,x_n) - ar{h} \Bigr| d
u \ &\leq rac{1}{n} \int \bigl| \log f_{1\,1}(x_1) \, \bigr| \, d
u + \int \Bigl| rac{1}{n} \left(\sum\limits_{i=2}^n T^i g_i - \sum\limits_{i=2}^n T^i h
ight) \Bigr| \, d
u \ &\quad + \int \Bigl| rac{1}{n} \sum\limits_{i=2}^n T^i h - ar{h} \Bigr| \, d
u \ &\quad = rac{1}{n} \int \Bigl| \log f_{1\,1}(x_1) \Bigr| \, d
u + rac{1}{n} \sum\limits_{i=2}^n \int \bigl| g_i - h \, \bigr| \, d
u \ &\quad + \int \Bigl| rac{1}{n} \sum\limits_{i=2}^n T^i h - ar{h} \Bigr| \, d
u
ightarrow 0 ext{ as } n
ightarrow \infty \ . \end{aligned}$$

COROLLARY 3. Under the hypothesis of Theorem 7, if ν is ergodic and not Markovian then ν is singular to μ .

Proof. If ν is ergodic then the $L_1(\nu)$ limit, \bar{h} , of $\{1/n \log f_1(x_1, \dots, x_n)\}$ is equal with ν probability one to

$$\int \sum_{i=1}^{\infty} L\{P_
u[x_0=a_i\,|\,x_{-1},\,x_{-2},\,\cdots]\}d
u - \int \log\,p(x_{-1},\,x_0)d
u$$

which is greater or equal to

$$\int \sum\limits_{i=1}^{\infty} L\{P_{
u}[x_{\scriptscriptstyle 0}=a_i\,|\,x_{\scriptscriptstyle -1},\,x_{\scriptscriptstyle -2}]\}d
u - \int \log\,p(x_{\scriptscriptstyle -1},\,x_{\scriptscriptstyle 0})d
u$$
 .

Hence by (21)

$$egin{aligned} ar{h} & \geq \int \sum\limits_{i=1}^{\infty} \log P_{
u}[x_0 = a_i \,|\, x_{-1},\, x_{-2}] I_{x_0 = a_i} d
u - \int \log p(x_{-1},\, x_0) d
u \ & = \int \log f_{1\,3}(x_1,\, x_2,\, x_2) d
u - \int \log f_{1\,2}(x_1,\, x_2) d
u \;. \end{aligned}$$

However $\int \log f_{\scriptscriptstyle 1\,3}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2},\,x_{\scriptscriptstyle 3})d
u - \int \log f_{\scriptscriptstyle 1\,2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})d
u = 0$ if and only if

(24)
$$\mu[f_{12}(x_1, x_2) \neq f_{13}(x_1, x_2, x_3)] = 0.$$

(24) implies that

$$P_{\nu}[x_3 \in A \mid x_1, x_2] = P_{\mu}[x_3 \in A \mid x_1, x_2]$$

with ν -probability one for any $A \in \mathcal{S}$. This is impossible since μ is Markovian and ν is not. Hence $\overline{h} > 0$ with ν -probability one. Hence $f_{1n}(x_1, \dots, x_n) \to \infty$ with ν probability one and ν is singular to μ by the same argument used in the proof in Corollary 1.

The extensions of Theorem 7 and Corollary 3 to k-Markovian μ is obvious.

REFERENCES

- 1. Erik Sparre Anderson and Borge Jessen, Some limit theorems in an abstract set, Danske Vid. Selsk. Nat.-Fys. Medd. **22**, no. 14 (1946). **22**, No. 14 (1946).
- 2. J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York.
- 3. Amiel Feinstein, Foundations of Information Theory, McGraw-Hill Inc. New York, Toronto, London.
- 4. B. McMillan, The basic theorems of information theory, Annals of Math. Statistics, 24 (1953), 196-219.
- 5. C. E. Shannon, The mathematical theory of communication, Bell Syst. Techn. Journ. 27 (1948), 379-423, 623-456.

WAYNE STATE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. Brownell

University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH T. M. CHERRY

D. DERRY

E. HEWITT A. HORN L. NACHBIN M. OHTSUKA H. L. ROYDEN M. M. SCHIFFER E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of in	verting a linear			
bounded operator in Hilbert space		1107		
Nesmith Cornett Ankeny, Criterion for rth power residuacity				
Julius Rubin Blum and David Lee Hanson, On invariant probability measures I				
Frank Featherstone Bonsall, Positive operators compact in an auxiliary topology				
Billy Joe Boyer, Summability of derived conjugate series				
Delmar L. Boyer, A note on a problem of Fuchs		1147		
Hans-Joachim Bremermann, The envelopes of holomorphy of tube a	lomains in infinite			
dimensional Banach spaces		1149		
Andrew Michael Bruckner, Minimal superadditive extensions of sup	peradditive			
functions		1155		
Billy Finney Bryant, On expansive homeomorphisms		1163		
Jean W. Butler, On complete and independent sets of operations in finite algebras				
Lucien Le Cam, An approximation theorem for the Poisson binomial distribution				
Paul Civin, Involutions on locally compact rings		1199		
Earl A. Coddington, Normal extensions of formally normal operators				
Jacob Feldman, Some classes of equivalent Gaussian processes on an interval				
Shaul Foguel, Weak and strong convergence for Markov processes				
Martin Fox, Some zero sum two-person games with moves in the unit interval				
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic	functions	1243		
Branko Grünbaum, Partitions of mass-distributions and of convex b	odies by			
hyperplanes		1257		
Sidney Morris Harmon, Regular covering surfaces of Riemann surfaces	aces	1263		
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigrative semigrat	oup of integers			
modulo m		1291		
Paul Daniel Hill, Relation of a direct limit group to associated vector	or groups	1309		
Calvin Virgil Holmes, Commutator groups of monomial groups		1313		
James Fredrik Jakobsen and W. R. Utz, The non-existence of expans	sive homeomorphisms			
on a closed 2-cell		1319		
John William Jewett, Multiplication on classes of pseudo-analytic flag	unctions	1323		
Helmut Klingen, Analytic automorphisms of bounded symmetric co	mplex domains	1327		
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups	roups	1333		
Marvin David Marcus and N. A. Khan, On a commutator result of Ta	Taussky and			
Zassenhaus				
John Glen Marica and Steve Jerome Bryant, <i>Unary algebras</i>		1347		
Edward Peter Merkes and W. T. Scott, On univalence of a continued	l fraction	1361		
Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational	ıry measures	1371		
John William Neuberger, Concerning boundary value problems		1385		
Edward C. Posner, Integral closure of differential rings		1393		
Marian Reichaw-Reichbach, Some theorems on mappings onto		1397		
Marvin Rosenblum and Harold Widom, Two extremal problems		1409		
Morton Lincoln Slater and Herbert S. Wilf, A class of linear different	ntial-difference			
equations		1419		
Charles Robson Storey, Jr., <i>The structure of threads</i>		1429		
J. François Treves, An estimate for differential polynomials in $\partial/\partial z$		1447		
J. D. Weston, On the representation of operators by convolutions in	tegrals	1453		
	0			