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CONCERNING BOUNDARY VALUE PROBLEMS1

J. W. NEUBERGER

1. Introduction, This paper follows work on integral equations by
H. S. Wall [4], [5], J. S. MacNerney [1], [2] and the present author [3].
Some results of these papers are used here to investigate certain boundary
value problems.

In § 2, results of Wall and MacNerney are used to study a linear
boundary value problem which includes problems of the following kind:
Suppose that each of aij9 i, j = 1, , n is a continuous function, a and
b are numbers and each of bυ, ci3 and di9 ί, j = 1, , n is a number.
Is there a unique function w-tuple f19 •• ,fn such that

// = Σ dufj and Σ VKfM) + CuΛ(δ)] = dif i = 1, , nΊ
7 7

Σ
.7 = 1

Section 3 contains some observations concerning a nonlinear boundary
value problem which includes the problem of solving a certain system of
nonlinear first order differential equations together with a nonlinear
boundary condition. An example is given in the final section.

S denotes a normed, complete, abelian group (norms are denoted by
|| ||). B denotes the normed, complete, abelian group of all bounded
endomorphisms from S to S (the norm of an element T of B is the
g.l.b. of the set of all M such that || Tx || ^ M\\ x || for all x in S). £*
denotes the set to which T belongs only if T is a continuous function
from S to S. If [α, b] denotes a number interval, then C[α>6] denotes
the set to which / belongs only if / is a continuous function from [α, b]
to S. The identity function on the numbers is denoted by j .

The reader is referred to [1] for a definition of the integral of a
function from a number interval [α, 6] to B with respect to a function
from [α, b] to B and to [3] for a definition of the integral of a function
from [α, b] to S with respect to a function from [α, b] to B*. [1] and
[3] contain existence theorems for these integrals and a discussion of
some of their properties.

2* A linear boundary value problem* Suppose that [α, 6] is a
number interval and F is a continuous function from [α, b] to B which
is of bounded variation on [α, 6]. The following are theorems:

( i ) There is a unique continuous function M from [α, b] x [α, b] to

S t
dF Λf(i, u) for each of ί and u in [α, 6].

u

(I denotes the identity element in JB)
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1386 J. W. NEUBERGER

(ii) M(t, u)M(u, v) — M(t, v) if each of t, u and v is in [a, δ],
(iii) If h is a continuous function from [α, δ] to S and c is in [α, 6],

then the only element X of C[α 6 ] such that X{t) = fc(£) + I dF X for

S i Jc

M{t, j)dh for each t
in [α, δ]. 2

THEOREM A. Suppose that H is a function from [α, b] to B which
is of bounded variation on [α, δ]. A necessary and sufficient condition
that there be a unique element Y of C[α>&] such that

(*) Y(t) = Y(u) + g(t) - g(u) + [ dF - Y and Γ dH. Y = C for

each C in S and each g in C[α&] is that \ dH M(j, a) have an inverse

which is from S onto S.

Proof. Consider first the following lemma. If Y is in C[α,6] and
satisfies (*) for each of u and t in [α, δ], then

- C -

Suppose Y is in C[α>&] and satisfies (*) for each of u and t in [α, δ].

By (iii), Y(t) = M(t, a)Y(a) + [M(t,j)dg for each t in [a, b] and thus
Ja

C = ^dH Γ = [\[dH M(j, a)]Y{a) + \[dH(s) [\[M(8, j)dg]

[\[ (j, a)]γ(a) + j*[J/^(β) M(s, j)

Hence,

[|*dH M(j, a)]Y(a) .= C - ^JJdH(s) Λf(β,

S δ

ώiί M(j, a) by Q. Suppose that (*) has a unique solution
a

for each g in C [ α & ] and each C in SL
Denote by W a point of S, by g an element of C[α>6],

2 Certain essential ideas for Theorems (i) and (ii) were given by Wall in [4]. In [5,]
Wall gave these theorems for S an n-dimensional Euclidean space or suitable infinite di-
mensional space. In [1], MacNerney extended Wall's theory in proving these theorems for
any normed, linear and complete space. Modifications of MacNerney's proofs to the case
of S a normed, complete, abelian group are so slight that the proofs are omitted. Discussion
concerning the properties and computation of M can be found in each paper listed as
reference to this paper.

3 A proof that P dH(s) Γί* Jkf(s, j)dg\ = ΓΓΓdflζβ) M(s, j)]dg which follows closely

a similar argument for ordinary integrals, is ommitted.
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W + ^dH(s) M(8, j)\dg

by C and by X the unique element of C[α>δ] satisfying (*) for this g and

C. By the above lemma, QX(a) = C - ( T Γ d i ϊ ( s ) . Jlf(β, j)]dflf = PP.

Thus each point of S is the image of some point of S under Q, that

is, Q takes S onto S.
Suppose that Q is not reversible and denote by each of W, U and

V a point in S such that QU = W, QV = W and Uψ V. Denote by

Y and Z two elements of C[α>δ] such that Y(t) — U + g(t) — g{a) +

ΫdF Y and Z(t) = V + g(t) - g(a) + ['dF Z for each t in [α, 6].

Thus, Y(t) = Γ(w) + flf(ί) - flf(w) + Γ dF - Y and Z(t) - Z(u) + flf(ί) -

djp7 ^ , for each of u and t in [α, δ]. Since Y(a) — U and

Z(a) = F, it follows that F ^ ^ . As in the proof of the lemma,

Y= QU+

and

Γdff Z - Q7 + ΓΓΓdiϊ(s) M(8, j)jdg

and so

diϊ Γ = \ dH Z ,

a Ja

which means that there is a boundary value problem of the type (*)
which has two solutions, which contradicts the above assumption. Thus
if (*) has a unique solution for each g in CiaM and each C in S, Q takes
5 onto S reversibly.

Suppose that Q takes S onto S reversibly. Denote by g an element
of C[α>&] and by C a point in S. Denote

by U and denote by X the element of C[α,b] such that JΓ(ί) = Ϊ7 + g(t) —

g(a) + ^dH-X for each t in [α, δ]. Noting that X(t) = X(u) +

ΰ(t) -g(u)+[dH-X and that X(t) = M(ί, α)ί/ + ί* Λf(ί, i)c^ for each

of w and ί in [α, δ] and substituting for X in I ώH X, it is seen that

S b Ja

dH X = C. Thus X satisfies (*) for this gr and C. Suppose Y" is in
a

C[α>&] and satisfies (*). Then, by the above lemma,
gQY(a) = C- \b

a[\]dH(s) . M(s, j)]d
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and so Y(a) = U which means that Y(t) = U + g(t) - g(u) + [ dF Y
Ja

and hence by (iii), X — Y. Thus if Q takes S onto S reversibly, there
is a unique solution to (*) for each g in C[α,δ] and C in S.

ί δ

diϊ M(i, a) has a bounded inverse which takes
a ΓΓb "1-1

S onto S, that is, if \ dH M(j, a) is in B, then there is a
function R from [α, b] to B and a function K from [α, b] x [α, 6] to B
such that if g is in C[β(&] and C is in S, then the only element Y of
C[α>&] satisfying (*) for each of t and u in [α, b] is given by Y(t) —

S b

K(t,j)dg for each t in [α, 6]. Moreover, such a pair of
a ΓΓb Π-1

functions R and K is given by R(t) = \ dH M(j, t) and

K(t, u) =
-ΓΓdff Mtf, ί)l ΎdH- M(j, u) + M(t, u) if

[[bdH-M(j,t)Y\bdH.MU,u>) if t^

Proof. Suppose that g is in C[α&] and C is in S. From Theorem
A, (*) has a unique solution Y for this C and g, and from the lemma
in the proof of Theorem A,

[J W M(j\ a)]x{a) = C- j*[JW(s) M(s, j)\dg

and so

X(a) = \^dH M(i, a)Y\c - ^dH(s) Jlf (s, j)

Using (iii) and the fact that

M(t, a)[\[dH M(j, a)Y - [£dH M(j, t)]""1 ,

] " ^ £{[] Y^ M(8,j)}dff

= R{t)C+ [κ(t,j)dg
Ja

where R and K are defined as in the statement of the theorem.

3. A nonlinear boundary value problem* Here a problem is con-
sidered which includes the one in the preceding section. Essentially,
the requirements of § 2 that each of F(t) and H(t) be an element of B
for every t in [α, b] and that F and H be of bounded variation are
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replaced by considerably weaker conditions. Theorem D gives a neces-
sary and sufficient condition for the nonlinear problem considered to have
a unique solution. First a fundamental theorem for a certain type of
integral equation is given.

THEOREM C. Suppose that [α, δ] is a number interval and F is a
function from [α, δ] to B* such that if A is in S and r > 0, there is
a variation function U on [a, b] and a variation function V on [α, b]
such that

\\[F(p)-F(q)]x\\^ U(p,q)

and

|| [F(p) - F(q)]x - [F(p) - F(q)]y \\ £ V(p, q)\\x-y\\

if each of p and q is in [α, 6], || A — x \\ <Ξ r and || A — y \\ ^ r. Then,
if c is in [a, δ], there is a segment Q' containing c such that if Q is
the common part of Qf and [α, δ], there is only one continuous function

Y from Q to S such that Y(t) == A + Ϋ dF Y if t is in Q.

This follows from Theorem F of [3].

DEFINITION. Suppose F is a function from [α, 6] to 5* and c is in
[α, δ]. If there is a point A in S and an element Y of Cίa &] such that

F(ί) = A + 1 CZJF7 F for each t in [α, δ], then the set which contains
Jc

only each such point A is denoted by Fc.[a>bl.

LEMMA 4.1. Suppose that F satisfies the hypothesis of Theorem C
and for some number c in [α, δ] and that there is a segment Q' as in
the theorem which has [α, δ] as subset. Then, for each number u in
[a, δ], there is a set Fu,ίaM.

Proof. Given such a number c and segment Q', then Q = [a, δ]

and there is a point A in S and an element Y of C[α>&] such that

Y(t) = A + ['dF Y for each t in [a, b]. Thus if u is in [a, δ], Y(u) =

A + ("dP. Γ and Y(t) = Y(u) + [ dF - Y for each t in [α, δ]. Thus
Jc Ju

there is a set JF^.^.^.

DEFINITION. Suppose the hypothesis of Lemma 4.1 holds. M de-

notes a function from [a, δ] x [α, δ] such that if each of t and u is in

[α, δ], M(t, u) is the function from Fu,ίa>^ to i77^^,^ such that if A is in

Fu,laM, M(t, u)A is y(ί) where Y is the element of C[α>&] satisfying

γ( s ) = A + Γ di7- Γ for each s in [α, δ].
Ju
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LEMMA 4.2. Under the hypothesis of Lemma 4.1, M(s, t)M(t, u) =
M(s, u) for each of s, t and u in [α, b].

Proof. Suppose that each of s, t and u is in [α, b] and A is in

Fu.laM. Then, F(β) = A + ['dF F and Y(t) = A + Γ dF . F so that

F(β) = r(ί) + f'rfiP. Γ, F(ί) = Af(ί, w)A and F(β) - M(s, w)A. There-

fore, F(β) = M(t, u)A + ['dF Y and F(β) = M(s, t)[M(t, u)A] =

[Λf(β, t)M(t, u)]A. Thus, Λf(β, w) - M(s, t)M(t, u).

THEOREM D. Suppose that in addition to the hypothesis of Theorem
C, it is true that for some c in [α, 6], there is a set Fc,la>by Suppose
furthermore that T is a function from Cίa>bl to S and that C is in S.
The following two statements are equivalent:

( i ) There is only one element Y of C[ϋ(δ] such that

(**) TY = C and F(ί) = Y(u) + Γ dF F for each of t and u in

[α, 6],
(ii) For some u in [α, b], the function R from Fu.ίaιbl, defined by

RA = T[M(j, u)A] for each A in Fu,ίa>bl takes only one element of
Fu-iaM into C.

Proof. Suppose that for some u in [α, 6], the function R as defined
in Theorem D takes only the point U of Fu,iaM into C. Denote by Y
the element of C [ α δ ] such that Y(t) = U + \ dF Ffor each t in [α, 6],
Thus, Y(t) = Y(s) + ['dF F and F(ί) - M(t, u)U for each of t and

s in [α, b] and ΓF=*Γ[Λf(i, w)F(w)] = C. Suppose X is in C[α,δ] and
satisfies (**). Then, X(t) = M(t, s)X(s) for each of t and s in [α, 6] and
so TX = Γ[M(i, ^)X(^)] which means that i?[X(^)] = C which in turn

dî 7 X for each ί in [α, 6],

By Theorem B, X — F. Thus the existence of such a w in [α, 6] and
such a function i2 implies that (**) has a unique solution.

Suppose that (**) has a unique solution Y which is in C[α>6]. Denote

by u a number in [α, 6]. Thus F(ί) - F(w) + ί ' d F F and F(ί) =
M(t,u)Y(u) for each ί in [α, b] and so TY= Γ[M(i, M)F(W)1. Denote
by iZ the function from î ;[α>&] to S so that i?A = T[M(j, u)A] for each
A in F t t : [ β i 6 ] . Thus i?[Γ(^)] = C. Suppose that V Φ Y{u) and RV = C.
Denote by X the element of C[α,w so that X(t) = V + Γ dF X for each
ί in [α, b]. XψY as X(u) Φ Y(u). But X(ί) = X{s) + ΓrfF X for

each of ί and s in [α, 6] and Γ X = [M(j, u)X(u)] = T[M(j, UW] =
J2F= C, a contradiction. Thus there is not such a point V in -F^α,*]
and so the existence of a unique element of C[α,6] satisfying (**) implies
the existence of the required function R.
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4. An example. Suppose that [α, b] is a number interval, S the
number plane, each of p and q a continuous function from [α, b] to a
number set such that p(t) > 0 for each t in [α, b] and each of α^, bi3

and c«, i, j = 1, 2, a number. The problem of solving

(Δ) (py')'QV = G

b12p(b)y'(b) = cx

b22p{b)y\b) = c2

for each continuous function G from [α, 6] to a number set and each
ordered number pair (cu c2) is equivalent to the problem of finding a
function pair f19 f2 each of which is from [α, b] to a number set such
that

_/2'J Iq 0 JL/2J l_G

and

Lα21 α22JL/2(α)J L621 b2jlf2(bμ LcJ '

i.e., the problem of finding a continuous function / from |α, b] to S
such that

and

for each of u and ί in [α, 6] where flr(ί) = Q,JΛ I F(t) is the linear

transformation from S to S associated with

0 \\llp)dj
Ja

qdj

for each t in [α, 6], each of A± and A2 is a linear transformation from

S to S with A associated with Γ^11 M and A2 associated with Γ?11 ?1211 L^2i α 2 2 j L&21 δ 2 2 j

and if is defined in the following way: H(a) — Nb, the transformation

which takes each point of S into \ QU H(U) — AX if a < u <b and

JHΓ(δ) = Ax + A2. Suppose that M satisfies M(t, u) = I + \ dF ikf(i, w)

for each of t and u in [α, 6]. From §2, for (δ) to have a unique con-
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tinuous solution for each g and each C it is necessary and sufficient

S b

dH M(j, a) = Ax + M(b, a)A2 have an inverse which is from S
a Cb

onto Sr. Here is 1 dH M(j, a) has an inverse, it is from S to S and
Ja

is bounded
dίf M(j, a) has an inverse, G is a continuous func-

a ΓQ-|

tion from [a, b] to a number set, C is in S and g = g . By Theorem

B, there is a function iΓ from [α, b] x [α, 6] to B and a function iϋ from

[α, 6] to 5 such that f(t) = R(t)C+ [* K(t,j)dg for each ί in [α, 6].

Denote by each of Rij9 Kijf i,j = l,2 a function from [α, b] to a number

set such that if each of t and u is in [α, &], i?(ί) is associated with
ΓJBu(ί) Ru(t)
lR21(t) β ( ί )

and ίΓ(ί, tt) is associated with

\KJt,u) KJt,u)Ί
LKJt, u) KJt, u)λ '

Thus, fx{t) = Rniφ, + R12(t)c2 + \bKJt,j)dG for each t in [α, 6] and / x

Jα

is the unique solution to (Δ).
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