Pacific Journal of Mathematics

CONCERNING BOUNDARY VALUE PROBLEMS

JOHN WILLIAM NEUBERGER

Vol. 10, No. 4 December 1960

CONCERNING BOUNDARY VALUE PROBLEMS¹

J. W. NEUBERGER

1. Introduction. This paper follows work on integral equations by H. S. Wall [4], [5], J. S. MacNerney [1], [2] and the present author [3]. Some results of these papers are used here to investigate certain boundary value problems.

In § 2, results of Wall and MacNerney are used to study a linear boundary value problem which includes problems of the following kind: Suppose that each of a_{ij} , $i, j = 1, \dots, n$ is a continuous function, a and b are numbers and each of b_{ij} , c_{ij} and d_i , $i, j = 1, \dots, n$ is a number. Is there a unique function n-tuple f_1, \dots, f_n such that

$$f_i'=\sum\limits_{j=1}^na_{ij}f_j$$
 and $\sum\limits_{j=1}^n[b_{ij}f_j(a)+c_{ij}f_j(b)]=d_i$, $i=1,\cdots,n$?

Section 3 contains some observations concerning a nonlinear boundary value problem which includes the problem of solving a certain system of nonlinear first order differential equations together with a nonlinear boundary condition. An example is given in the final section.

S denotes a normed, complete, abelian group (norms are denoted by $||\cdot||$). B denotes the normed, complete, abelian group of all bounded endomorphisms from S to S (the norm of an element T of B is the g.l.b. of the set of all M such that $||Tx|| \leq M||x||$ for all x in S). B^* denotes the set to which T belongs only if T is a continuous function from S to S. If [a,b] denotes a number interval, then $C_{[a,b]}$ denotes the set to which f belongs only if f is a continuous function from [a,b] to S. The identity function on the numbers is denoted by f.

The reader is referred to [1] for a definition of the integral of a function from a number interval [a, b] to B with respect to a function from [a, b] to B and to [3] for a definition of the integral of a function from [a, b] to S with respect to a function from [a, b] to S. [1] and [3] contain existence theorems for these integrals and a discussion of some of their properties.

- 2. A linear boundary value problem. Suppose that [a, b] is a number interval and F is a continuous function from [a, b] to B which is of bounded variation on [a, b]. The following are theorems:
- (i) There is a unique continuous function M from $[a, b] \times [a, b]$ to B such that $M(t, u) = I + \int_u^t dF \cdot M(j, u)$ for each of t and u in [a, b]. (I denotes the identity element in B)

Received March 25, 1959, and in revised form January 22, 1960.

¹ Presented to the Society in part, August, 1958, and in part, January, 1959.

- (ii) M(t, u)M(u, v) = M(t, v) if each of t, u and v is in [a, b].
- (iii) If h is a continuous function from [a,b] to S and c is in [a,b], then the only element X of $C_{[a,b]}$ such that $X(t)=h(t)+\int_c^t dF\cdot X$ for each t in [a,b] is given by $X(t)=M(t,c)h(c)+\int_c^t M(t,j)dh$ for each t in [a,b].

THEOREM A. Suppose that H is a function from [a, b] to B which is of bounded variation on [a, b]. A necessary and sufficient condition that there be a unique element Y of $C_{[a,b]}$ such that

that there be a unique element Y of $C_{[a,b]}$ such that $(*) \quad Y(t) = Y(u) + g(t) - g(u) + \int_a^t dF \cdot Y \quad and \int_a^b dH \cdot Y = C \quad for$ each C in S and each g in $C_{[a,b]}$ is that $\int_a^b dH \cdot M(j,a)$ have an inverse which is from S onto S.

Proof. Consider first the following lemma. If Y is in $C_{[a,b]}$ and satisfies (*) for each of u and t in [a,b], then

$$\left[\int_a^b dH \cdot M(j,a)\right] Y(a) = C - \int_a^b \left[\int_j^b dH(s) \cdot M(s,j)\right] dg$$
.

Suppose Y is in $C_{[a,b]}$ and satisfies (*) for each of u and t in [a,b]. By (iii), $Y(t) = M(t,a)Y(a) + \int_a^t M(t,j)dg$ for each t in [a,b] and thus

$$C = \int_a^b dH \cdot Y = \left[\int_a^b dH \cdot M(j,a)\right] Y(a) + \int_a^b dH(s) \cdot \left[\int_a^s M(s,j)dg\right] \ = \left[\int_a^b dH \cdot M(j,a)\right] Y(a) + \int_a^b \left[\int_j^b dH(s) \cdot M(s,j)\right] dg \ .$$

Hence,

$$\Big[\int_a^b dH \cdot M(j,a)\Big] Y(a) = C - \int_a^b \Big[\int_j^b dH(s) \cdot M(s,j)\Big] dg$$
.

Denote $\int_a^b dH \cdot M(j, a)$ by Q. Suppose that (*) has a unique solution for each g in $C_{[a,b]}$ and each C in S.

Denote by W a point of S, by g an element of $C_{[a,b]}$,

² Certain essential ideas for Theorems (i) and (ii) were given by Wall in [4]. In [5,] Wall gave these theorems for S an n-dimensional Euclidean space or suitable infinite dimensional space. In [1], MacNerney extended Wall's theory in proving these theorems for any normed, linear and complete space. Modifications of MacNerney's proofs to the case of S a normed, complete, abelian group are so slight that the proofs are omitted. Discussion concerning the properties and computation of M can be found in each paper listed as reference to this paper.

³ A proof that $\int_a^b dH(s) \cdot \left[\int_a^s M(s,j)dg\right] = \int_a^b \left[\int_j^b dH(s) \cdot M(s,j)\right] dg$ which follows closely a similar argument for ordinary integrals, is ommitted.

$$W + \int_a^b \left[\int_j^b dH(s) \cdot M(s,j) \right] dg$$

by C and by X the unique element of $C_{[a,b]}$ satisfying (*) for this g and C. By the above lemma, $QX(a) = C - \int_a^b \left[\int_j^b dH(s) \cdot M(s,j) \right] dg = W$. Thus each point of S is the image of some point of S under Q, that is, Q takes S onto S.

Suppose that Q is not reversible and denote by each of W, U and V a point in S such that QU=W, QV=W and $U\neq V$. Denote by Y and Z two elements of $C_{[a,b]}$ such that $Y(t)=U+g(t)-g(a)+\int_a^t dF\cdot Y$ and $Z(t)=V+g(t)-g(a)+\int_a^t dF\cdot Z$ for each t in [a,b]. Thus, $Y(t)=Y(u)+g(t)-g(u)+\int_u^t dF\cdot Y$ and $Z(t)=Z(u)+g(t)-g(u)+\int_u^t dF\cdot Z$, for each of u and t in [a,b]. Since Y(a)=U and Z(a)=V, it follows that $Y\neq Z$. As in the proof of the lemma,

$$\int_a^b \! dH \cdot \, Y = QU + \int_a^b \! \left[\int_j^b \! dH(s) \cdot M(s,j)
ight] \!\! dg$$

and

$$\int_a^b dH \cdot Z = QV + \int_a^b \left[\int_j^b dH(s) \cdot M(s,j) \right] dg$$

and so

$$\int_a^b dH \cdot Y = \int_a^b dH \cdot Z ,$$

which means that there is a boundary value problem of the type (*) which has two solutions, which contradicts the above assumption. Thus if (*) has a unique solution for each g in $C_{[a,b]}$ and each C in S, Q takes S onto S reversibly.

Suppose that Q takes S onto S reversibly. Denote by g an element of $C_{[a,b]}$ and by C a point in S. Denote

$$\left[\int_a^b dH \cdot M(j,a)\right]^{-1} \left\{C - \int_a^b \left[\int_j^b dH(s) \cdot M(s,j)\right] dg\right\}$$

by U and denote by X the element of $C_{[a,b]}$ such that $X(t) = U + g(t) - g(a) + \int_a^t dH \cdot X$ for each t in [a,b]. Noting that $X(t) = X(u) + g(t) - g(u) + \int_u^t dH \cdot X$ and that $X(t) = M(t,a)U + \int_a^t M(t,j)dg$ for each of u and t in [a,b] and substituting for X in $\int_a^b dH \cdot X$, it is seen that $\int_a^b dH \cdot X = C$. Thus X satisfies (*) for this g and G. Suppose G is in G and satisfies (*). Then, by the above lemma,

$$QY(a) = C - \int_a^b \left[\int_j^b dH(s) \cdot M(s, j) \right] dg$$

and so Y(a) = U which means that $Y(t) = U + g(t) - g(u) + \int_a^t dF \cdot Y$ and hence by (iii), X = Y. Thus if Q takes S onto S reversibly, there is a unique solution to (*) for each g in $C_{[a,b]}$ and C in S.

Theorem B. If $\int_a^b dH \cdot M(j,a)$ has a bounded inverse which takes S onto S, that is, if $\left[\int_a^b dH \cdot M(j,a)\right]^{-1}$ is in B, then there is a function R from [a,b] to B and a function K from $[a,b] \times [a,b]$ to B such that if g is in $C_{[a,b]}$ and C is in S, then the only element Y of $C_{[a,b]}$ satisfying (*) for each of t and u in [a,b] is given by $Y(t) = R(t)C + \int_a^b K(t,j)dg$ for each t in [a,b]. Moreover, such a pair of functions R and K is given by $R(t) = \left[\int_a^b dH \cdot M(j,t)\right]^{-1}$ and

$$K(t,\,u) = egin{cases} -igg[\int_a^b dH \cdot M(j,\,t)igg]^{\!-1}\!\!\int_u^b dH \cdot M(j,\,u) + M(t,\,u) & if & a \leq u \leq t \ -igg[\int_a^b dH \cdot M(j,\,t)igg]^{\!-1}\!\!\int_u^b dH \cdot M(j,\,u) & if & t \leq u \leq b. \end{cases}$$

Proof. Suppose that g is in $C_{[a,b]}$ and C is in S. From Theorem A, (*) has a unique solution Y for this C and g, and from the lemma in the proof of Theorem A,

$$\left[\int_a^b dH \cdot M(j,a)\right] X(a) = C - \int_a^b \left[\int_s^b dH(s) \cdot M(s,j)\right] dg$$

and so

$$X(a) = \left[\int_a^b \! dH \cdot M(j,a)
ight]^{\! ext{-}1} \!\!\left\{C - \int_a^b \!\! \left[\int_j^b \! dH(s) \cdot M(s,j)
ight]\!\!dg
ight\}\,.$$

Using (iii) and the fact that

$$egin{aligned} M(t,a)&\Big[\int_a^b dH\cdot M(j,a)\Big]^{-1}=\Big[\int_a^b dH\cdot M(j,t)\Big]^{-1}\ ,\ X(t)&=\Big[\int_a^b dH\cdot M(j,t)\Big]^{-1}C-\int_a^b \Big\{\Big[\int_a^b dH\cdot M(j,t)\Big]^{-1}\int_j^b dH(s)\cdot M(s,j)\Big\}dg\ &+\int_a^t M(t,j)dg\ &=R(t)C+\int_a^b K(t,j)dg \end{aligned}$$

where R and K are defined as in the statement of the theorem.

3. A nonlinear boundary value problem. Here a problem is considered which includes the one in the preceding section. Essentially, the requirements of § 2 that each of F(t) and H(t) be an element of B for every t in [a, b] and that F and H be of bounded variation are

replaced by considerably weaker conditions. Theorem D gives a necessary and sufficient condition for the nonlinear problem considered to have a unique solution. First a fundamental theorem for a certain type of integral equation is given.

THEOREM C. Suppose that [a, b] is a number interval and F is a function from [a, b] to B^* such that if A is in S and r > 0, there is a variation function U on [a, b] and a variation function V on [a, b] such that

$$|| [F(p) - F(q)]x || \leq U(p, q)$$

and

$$||[F(p) - F(q)]x - [F(p) - F(q)]y|| \le V(p, q) ||x - y||$$

if each of p and q is in [a, b], $||A - x|| \le r$ and $||A - y|| \le r$. Then, if c is in [a, b], there is a segment Q' containing c such that if Q is the common part of Q' and [a, b], there is only one continuous function Y from Q to S such that $Y(t) = A + \int_{c}^{t} dF \cdot Y$ if t is in Q.

This follows from Theorem F of [3].

DEFINITION. Suppose F is a function from [a,b] to B^* and c is in [a,b]. If there is a point A in S and an element Y of $C_{[a,b]}$ such that $Y(t) = A + \int_c^t dF \cdot Y$ for each t in [a,b], then the set which contains only each such point A is denoted by $F_{c,[a,b]}$.

LEMMA 4.1. Suppose that F satisfies the hypothesis of Theorem C and for some number c in [a, b] and that there is a segment Q' as in the theorem which has [a, b] as subset. Then, for each number u in [a, b], there is a set $F_{u:[a,b]}$.

Proof. Given such a number c and segment Q', then Q = [a, b] and there is a point A in S and an element Y of $C_{[a,b]}$ such that $Y(t) = A + \int_c^t dF \cdot Y$ for each t in [a, b]. Thus if u is in [a, b], $Y(u) = A + \int_c^u dF \cdot Y$ and $Y(t) = Y(u) + \int_u^t dF \cdot Y$ for each t in [a, b]. Thus there is a set $F_{u:[a,b]}$.

DEFINITION. Suppose the hypothesis of Lemma 4.1 holds. M denotes a function from $[a, b] \times [a, b]$ such that if each of t and u is in [a, b], M(t, u) is the function from $F_{u:[a,b]}$ to $F_{t:[a,b]}$ such that if A is in $F_{u:[a,b]}$, M(t, u)A is Y(t) where Y is the element of $C_{[a,b]}$ satisfying $Y(s) = A + \int_{u}^{s} dF \cdot Y$ for each s in [a, b].

LEMMA 4.2. Under the hypothesis of Lemma 4.1, M(s, t)M(t, u) = M(s, u) for each of s, t and u in [a, b].

Proof. Suppose that each of s, t and u is in [a,b] and A is in $F_{u:[a,b]}$. Then, $Y(s) = A + \int_u^s dF \cdot Y$ and $Y(t) = A + \int_u^t dF \cdot Y$ so that $Y(s) = Y(t) + \int_t^s dF \cdot Y$, Y(t) = M(t,u)A and Y(s) = M(s,u)A. Therefore, $Y(s) = M(t,u)A + \int_t^s dF \cdot Y$ and Y(s) = M(s,t)[M(t,u)A] = [M(s,t)M(t,u)]A. Thus, M(s,u) = M(s,t)M(t,u).

THEOREM D. Suppose that in addition to the hypothesis of Theorem C, it is true that for some c in [a,b], there is a set $F_{c;[a,b]}$. Suppose furthermore that T is a function from $C_{[a,b]}$ to S and that C is in S. The following two statements are equivalent:

- (i) There is only one element Y of $C_{[v,b]}$ such that
- (**) TY = C and $Y(t) = Y(u) + \int_u^t dF \cdot Y$ for each of t and u in [a, b].
- (ii) For some u in [a,b], the function R from $F_{u:[a,b]}$, defined by RA = T[M(j,u)A] for each A in $F_{u:[a,b]}$ takes only one element of $F_{u:[a,b]}$ into C.

Proof. Suppose that for some u in [a,b], the function R as defined in Theorem D takes only the point U of $F_{u:[a,b]}$ into C. Denote by Y the element of $C_{[a,b]}$ such that $Y(t) = U + \int_u^t dF \cdot Y$ for each t in [a,b]. Thus, $Y(t) = Y(s) + \int_s^t dF \cdot Y$ and Y(t) = M(t,u)U for each of t and s in [a,b] and TY = T[M(j,u)Y(u)] = C. Suppose X is in $C_{[a,b]}$ and satisfies (**). Then, X(t) = M(t,s)X(s) for each of t and s in [a,b] and so TX = T[M(j,u)X(u)] which means that R[X(u)] = C which in turn implies that X(u) = U and so $X(t) = U + \int_u^t dF \cdot X$ for each t in [a,b]. By Theorem B, X = Y. Thus the existence of such a u in [a,b] and such a function R implies that (**) has a unique solution.

Suppose that (**) has a unique solution Y which is in $C_{[a,b]}$. Denote by u a number in [a,b]. Thus $Y(t)=Y(u)+\int_u^t dF\cdot Y$ and Y(t)=M(t,u)Y(u) for each t in [a,b] and so TY=T[M(j,u)Y(u)]. Denote by R the function from $F_{u,[a,b]}$ to S so that RA=T[M(j,u)A] for each A in $F_{u,[a,b]}$. Thus R[Y(u)]=C. Suppose that $V\neq Y(u)$ and RV=C. Denote by X the element of $C_{[a,b]}$ so that $X(t)=V+\int_u^t dF\cdot X$ for each t in [a,b]. $X\neq Y$ as $X(u)\neq Y(u)$. But $X(t)=X(s)+\int_s^t dF\cdot X$ for each of t and s in [a,b] and TX=[M(j,u)X(u)]=T[M(j,u)V]=RV=C, a contradiction. Thus there is not such a point V in $F_{u,[a,b]}$ and so the existence of a unique element of $C_{[a,b]}$ satisfying (**) implies the existence of the required function R.

4. An example. Suppose that [a, b] is a number interval, S the number plane, each of p and q a continuous function from [a, b] to a number set such that p(t) > 0 for each t in [a, b] and each of a_{ij} , b_{ij} and c_i , i, j = 1, 2, a number. The problem of solving

$$\begin{array}{ll} (\varDelta) & (py')'\,qy = G \\ & a_{11}y(a) + a_{12}p(a)y'(a) + b_{11}y(b) + b_{12}p(b)y'(b) = c_1 \\ & a_{12}y(a) + a_{22}p(a)y'(a) + b_{21}y(b) + b_{22}p(b)y'(b) = c_2 \end{array}$$

for each continuous function G from [a, b] to a number set and each ordered number pair (c_1, c_2) is equivalent to the problem of finding a function pair f_1, f_2 each of which is from [a, b] to a number set such that

$$\begin{bmatrix} f_1' \\ f_2' \end{bmatrix} = \begin{bmatrix} 0 & 1/q \\ q & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + \begin{bmatrix} 0 \\ G \end{bmatrix}$$

and

$$\begin{bmatrix} a_{\scriptscriptstyle 11} & a_{\scriptscriptstyle 12} \\ a_{\scriptscriptstyle 21} & a_{\scriptscriptstyle 22} \end{bmatrix} \begin{bmatrix} f_{\scriptscriptstyle 1}(a) \\ f_{\scriptscriptstyle 2}(a) \end{bmatrix} + \begin{bmatrix} b_{\scriptscriptstyle 11} & b_{\scriptscriptstyle 12} \\ b_{\scriptscriptstyle 21} & b_{\scriptscriptstyle 22} \end{bmatrix} \begin{bmatrix} f_{\scriptscriptstyle 1}(b) \\ f_{\scriptscriptstyle 2}(b) \end{bmatrix} = \begin{bmatrix} c_{\scriptscriptstyle 1} \\ c_{\scriptscriptstyle 2} \end{bmatrix},$$

i.e., the problem of finding a continuous function f from [a, b] to S such that

$$f=egin{bmatrix} f_1 \ f_2 \end{bmatrix}, \ f(t)=f(u)+g(t)-g(u)+\int_u^t dF \cdot f$$

and

$$\int_a^b dH \cdot f = A_1 f(a) + A_2 f(b) = C$$

for each of u and t in [a, b] where $g(t) = \begin{bmatrix} 0 \\ G(t) \end{bmatrix}$, F(t) is the linear transformation from S to S associated with

$$egin{bmatrix} 0 & \int_a^t (1/p) dj \ \int_a^t q dj & 0 \end{bmatrix}$$

for each t in [a,b], each of A_1 and A_2 is a linear transformation from S to S with A_1 associated with $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and A_2 associated with $\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ and H is defined in the following way: $H(a) = N_b$, the transformation which takes each point of S into $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $H(u) = A_1$ if a < u < b and $H(b) = A_1 + A_2$. Suppose that M satisfies $M(t, u) = I + \int_u^t dF \cdot M(j, u)$ for each of t and u in [a,b]. From § 2, for (δ) to have a unique con-

tinuous solution for each g and each C it is necessary and sufficient that $\int_a^b dH \cdot M(j,a) = A_1 + M(b,a)A_2$ have an inverse which is from S onto S_r . Here is $\int_a^b dH \cdot M(j,a)$ has an inverse, it is from S to S and is bounded

Suppose that $\int_a^b dH \cdot M(j,a)$ has an inverse, G is a continuous function from [a,b] to a number set, C is in S and $g=\begin{bmatrix}0\\G\end{bmatrix}$. By Theorem B, there is a function K from $[a,b]\times[a,b]$ to B and a function R from [a,b] to B such that $f(t)=R(t)C+\int_a^b K(t,j)dg$ for each t in [a,b]. Denote by each of R_{ij} , K_{ij} , i,j=1,2 a function from [a,b] to a number set such that if each of t and t is in [a,b], R(t) is associated with

$$egin{bmatrix} R_{\scriptscriptstyle 11}(t) & R_{\scriptscriptstyle 12}(t) \ R_{\scriptscriptstyle 21}(t) & R_{\scriptscriptstyle 22}(t) \end{bmatrix}$$

and K(t, u) is associated with

$$egin{bmatrix} K_{11}(t,\,u) & K_{12}(t,\,u) \ K_{21}(t,\,u) & K_{22}(t,\,u) \end{bmatrix}$$
 .

Thus, $f_1(t)=R_{11}(t)c_1+R_{12}(t)c_2+\int_a^b K_{12}(t,j)dG$ for each t in [a,b] and f_1 is the unique solution to (Δ) .

REFERENCES

- J. S. MacNerney, Stieltjes integrals in linear spaces, Ann. of Math., 61 (1955), 354-367.
 —————————, Continuous products in linear spaces, J. Elisha Mitchell Sci. Soc., 71 (1955), 185-200.
- 3. J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math., 8 (1958), 529-549.
- 4. H. S. Wall, Concerning continuous continued fractions and certain system of Stieltjes integral equations, Rend. Circ. Mat. Palermo II (2), (1953) 73-84.
- 5. ——, Concerning harmonic matrices, Arch. Math., V (1954), 160-167.

THE ILLINOIS INSTITUTE OF TECHNOLOGY AND THE UNIVERSITY OF TENNESSEE

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. Brownell

University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH T. M. CHERRY

D. DERRY

E. HEWITT A. HORN L. NACHBIN M. OHTSUKA H. L. ROYDEN M. M. SCHIFFER E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of in	verting a linear	
bounded operator in Hilbert space	110	07
Nesmith Cornett Ankeny, Criterion for rth power residuacity		15
Julius Rubin Blum and David Lee Hanson, <i>On invariant probability measures I</i>		25
Frank Featherstone Bonsall, <i>Positive operators compact in an auxiliary topology</i>		
Billy Joe Boyer, Summability of derived conjugate series		
Delmar L. Boyer, <i>A note on a problem of Fuchs</i>		
Hans-Joachim Bremermann, The envelopes of holomorphy of tube d		
dimensional Banach spaces		49
Andrew Michael Bruckner, Minimal superadditive extensions of sup		
functions		55
Billy Finney Bryant, On expansive homeomorphisms		
Jean W. Butler, On complete and independent sets of operations in f		
Lucien Le Cam, An approximation theorem for the Poisson binomia		
Paul Civin, Involutions on locally compact rings		
Earl A. Coddington, Normal extensions of formally normal operator		
Jacob Feldman, Some classes of equivalent Gaussian processes on a		
Shaul Foguel, Weak and strong convergence for Markov processes.		
Martin Fox, Some zero sum two-person games with moves in the unit		
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic		
Branko Grünbaum, Partitions of mass-distributions and of convex be		TJ
hyperplanes	•	57
Sidney Morris Harmon, Regular covering surfaces of Riemann surf		
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigr</i>		
modulo m		91
Paul Daniel Hill, Relation of a direct limit group to associated vector		
Calvin Virgil Holmes, Commutator groups of monomial groups		
James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expans</i>		Ĭ
on a closed 2-cell	-	19
John William Jewett, Multiplication on classes of pseudo-analytic f		
Helmut Klingen, Analytic automorphisms of bounded symmetric co		23
	mplex domains 132	27
Robert Jacob Koch, Ordered semigroups in partially ordered semig	nplex domains 132 oups 133	27
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. Khan, On a commutator result of David Marcus and N. A. Khan, On a commutator result	nplex domains 132 oups 133 aussky and	27 33
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	mplex domains 132 coups	27 33 37
Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus	mplex domains 132 roups 133 raussky and 133	27 33 37 47
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued	Implex domains 132 Youps 133 Yaussky and 134 134 I fraction 136	27 33 37 47 61
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups. Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational	Implex domains 132 Implex domains 132 Implementation 132 Implementation 136 Incrementation 136 Incrementation 136	27 33 37 47 61 71
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	Implex domains 132 Youps 133 Taussky and 133 134 134 I fraction 136 137 137 138 138	27 33 37 47 61 71 85
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings	Implex domains 132 Youps 133 Faussky and 134 Implementation 134 Incomparison 136 Incomparison 137 Incomparison 138 Incomparison 138 Incomparison 139 Incomparison 138 Incomparison 139	27 33 37 47 61 71 85 93
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups. Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras. Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems. Edward C. Posner, Integral closure of differential rings. Marian Reichaw-Reichbach, Some theorems on mappings onto	Implex domains 132 Youps 133 Youps 133 Youps 133 Yoursky and 134 Yours 136 Yours 137 Yours 138 Yours 139 Yours 139 Yours 139 Yours 139 Yours 139 Yours 130	27 33 37 47 61 71 85 93
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	Implex domains 132 Implex domains 132 Implementation 133 Implementation 136 Implementation 136	27 33 37 47 61 71 85 93
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential rings	Implex domains 132 Youps 133 Taussky and 133 Instruction 136 Instruction 140 Instruction 140 Instruction 140	27 33 37 47 61 71 85 93 97
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations	Implex domains 132 Youps 133 Taussky and 133 Taussky and 134 Ifraction 136 Iry measures 137 134 139 135 140 Intial-difference 141	27 33 37 47 61 71 85 93 97 09
Robert Jacob Koch, Ordered semigroups in partially ordered semiged Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations Charles Robson Storey, Jr., The structure of threads	nplex domains	27 33 37 47 61 71 85 93 97 09
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations	Implex domains 132 Poups 133 Paussky and 133 Paussky and 134 Paraction 136 Paraction 136 Paraction 136 Paraction 139 Paraction 140 Paraction 140 Paraction 142 Paraction 143 Paraction 142 Paraction 142 Paraction 142 Paraction 143 Paraction 144 Paraction 144 Paraction 144	27 33 37 47 61 71 85 93 97 09