Pacific Journal of Mathematics

INTEGRAL CLOSURE OF DIFFERENTIAL RINGS

EDWARD C. POSNER

Vol. 10, No. 4

December 1960

INTEGRAL CLOSURE OF DIFFERENTIAL RINGS

Edward C. Posner

We prove that a commutative differentiably simple ring of characteristic zero finitely generated over its field of constants is integrally closed in its field of quotients. (A ring is differentiably simple if it has non-trivial multiplication and has no ideal invariant under a given family of derivations; i.e., has no differential ideals other than (0). The field of constants is the subring of the ring annihilated by each derivation of the family of derivations.) The result of the first sentence is used to obtain a condition that the powers of an element of a function field in one variable form an integral basis. The following results from [1] will be used: A commutative differentiably simple ring of characteristic zero is an integral domain whose ring of constants is a field. Crucial is the following lemma:

LEMMA. Let F be a field of characteristic zero; x_1, \dots, x_n be n independent transcendentals over F; y_1, \dots, y_q be integral over x_1, \dots, x_n ; and d an F-derivation of F[x, y] into itself. Then d (or rather its natural extension to F(x, y)) sends O_x (the set of elements of F(x, y)integral over x_1, \dots, x_n) into itself.

Proof. In general any F-derivation of F(x, y) into itself can be written as

$$d=\sum\limits_{i=1}^{n}A_{1}rac{\partial}{\partial x_{i}}$$
 ,

 A_i elements of F(x, y), $1 \leq i \leq n$, Further, d maps F[x, y] into itself if and only if $d(x_i)$ is in F[x, y] for each i and $d(y_j)$ is in F[x, y] for each j. The first set of conditions is equivalent to the condition that A_i be in F[x, y] for each i.

In order to be able to use power series, we assume that F is algebraically closed. For if not, let \overline{F} be its algebraic closure. Let d also be the extension of d to $\overline{F}(x, y)$. Since d sends $\overline{F}[x, y]$ into itself, d send \overline{O}_x into itself, where \overline{O}_x denotes the ring of integral functions of $\overline{F}(x, y)$. A fortiori, d sends O_x into \overline{O}_x . But $\overline{O}_x \cap F[x, y] = O_x$ so actually d sends O_x into itself as required.

Let P be a place of F(x, y) over F which has residue field F and which is finnite on x_1, \dots, x_n . We will prove that if g, in F(x, y), is finite at P, d(g) is finite at P. Let a_i denote the residue of x_i at P; then there exist uniformizing parameters t_1, \dots, t_n at P such that

Received August 13, 1959, and in revised form January 23, 1960.

 $x_i - a_i$ is a positive integral power of t_i , say $x_i - a_i = t_i^{p_i}$. Every element B of F(x, y) finite at P has a power series in t_1, \dots, t_n with coefficients in F. We call the smallest power of t_i occurring in this series the *i*-order of B at P, and denote it by $\operatorname{ord}_{P,i} B$; the definition of $\operatorname{ord}_{P,i} B$ extends to arbitrary elements B of F(x, y) in an obvious way. Fixing i, we see that if $\operatorname{ord}_{P,i} d(B) \ge \operatorname{ord}_{P,i} B$ for every B finite at P then $\operatorname{ord}_{P,i} d(B) \geq 0$ for every such B. Suppose there exists some B finite at P with $\operatorname{ord}_{P,i} d(B) < \operatorname{ord}_{P,i} B$. Then $\alpha_i - p_i < 0$, where $lpha_i=\operatorname{ord}_{\scriptscriptstyle P,i}A_i$, so that $r_i=p_i-lpha_i>0$, and $\operatorname{ord}_{\scriptscriptstyle P,i}B=r_i+\operatorname{ord}_{\scriptscriptstyle P,i}dB$ for every (B) in F(x, y) with $\operatorname{ord}_{P,i} B \neq 0$. Since d maps F[x, y] into itself, the only values which $\operatorname{ord}_{P,i} B$ can have when B is in F[x, y] are integral multiples of r_i , for otherwise some element of F[x, y] would have negative *i*-order. Since t_1, \dots, t_n are uniformizing parameters, it follows that $r_i = 1$, for otherwise we could replace t_i by $t_i^{r_i}$. Thus, d drops positive *i*-orders by 1, so that $\operatorname{ord}_{P,i} d(B) \geq 0$ for every B finite at P. Since this holds for every i, d(B) is finite at P whenever B is. Since this holds for every P, we conclude that d maps O_x into itself.

THEOREM 1. Let F be a field of characteristic zero, $A = F[z_1, z_2, \dots, z_k]$ a commutative finitely generated ring extension of F. Let D be a (finite or infinite) family of derivations of A into itself over F. Let A be differentiably simple under D. Then A is integrally closed in its quotient field K.

Proof. A is an integral domain by (1). By Noether's Normalization Lemma, we can write $A = F[x_1, \dots, x_n; y_1, \dots, y_q]$, with n the transcendence degree of K/F and y_1, \dots, y_q interal over x_1, \dots, x_n . To prove $A = O_x$, let I denote the conductor of O_x , that is, the set of elements u of F[x, y] such that $u \cdot O_x \subset F[x, y]$; by [3], pp. 271-2, prop. 6, I is a non-zero ideal of F[x, y]. To prove I differential under D, let d be in D, h be in I, g be in O_x . Then $h \cdot g$ is in F[x, y], $d(h \cdot g)$ is in F[x, y], d(h)g + hd(g) is in F[x, y]. Now d(g) is in O_x by the lemma so hd(g) is in F[x, y] since h is in I. Then d(h)g is in F[x, y], I is differential under D. Then I = F[x, y] so $1 \cdot O_x \subset F[x, y]$, $O_x = F[x, y]$ as promised.

REMARK. D can always be taken to be finite since the derivations of F[x, y] into itself form a finite F[x, y]-module.

The converse of Theorem 1 is false, i.e., there are integrally closed finitely generated domains which are not differentiably simple under any family of *F*-derivations. For example, let $y^2 = x_1^3 + x_2^3$. Then $F[x, y] = O_x$ but is not differentiably simple over *F*. In fact, the ideal (x_1, x_2, y) of F[x, y] is differential for any derivation, as is easy to see. But when n = 1, we do have the converse. (For background material, see $[2_1^{x_1}]$ pp. 83-88.)

THEOREM 2. Let K be a function field in one variable over a field F of characteristic zero, and let x be an element of K transcendental over F. Let O_x denote the set of elements of K integral over x. Then O_x is differentiably simple with field of constants F under a family of two or fewer derivations.

Proof. First we shall specify the derivations. O_x is a Dedekind ring, i.e., every ideal of O_x is invertible. Let K = F(x, y) with y integral over x and let f(x, y) = 0 be the irreducible monic for y. Define d on K by

$$d(g(x, y)) = \frac{\partial g}{\partial x} \frac{\partial f}{\partial y} - \frac{\partial g}{\partial y} \frac{\partial f}{\partial x} .$$

This is well-defined, and d sends O_x into itself by the lemma. Let J be the ideal of O_x generated by the values of d of integral elements. J is invertible, so there exist $h_i(x, y)$ in K, $1 \leq i \leq q$, such that $h_i d$ sends O_x into itself and such that there exist u_i in O_x , $1 \leq i \leq q$, with $\sum_{i=1}^{q} h_i d(u_i) = 1$. (q can be taken to be 2. For J is generated by f_x and f_y , since $d(M(x, y)) = f_y M_x - f_x M_y$ for M in K. q can be taken to be 1 if and only if J is principal, which need not occur.) The family D is $\{h_1d, \dots, h_nd\}$. To prove O_x differentiably simple under D, suppose the contrary. As in the preceding and following theorems, F may be assumed to be algebraically closed. If O_x has a non-zero differential ideal, it has a maximal differential ideal I, since O_x has a unit. O_x^2 is not contained in I, so by Theorem 4 of [1], I is prime. But every prime ideal of O_x is maximal; in fact, if w belongs to O_x , there is a λ in F with $w - \lambda$ in I. Since I is differential for D, $h_i d(w) - h_i d(\lambda)$ is in I, $1 \leq i \leq q$, $h_i d(w)$ is in I, $1 \leq i \leq q$. That is, $h_i d(w)$ is in I for all w in O_x . Then $\sum_{i=1}^q h_i d(u_i) = 1$, 1 is in $I, I = O_x$. This contradiction proves that O_x has no differential ideals. Its field of constants is F. For if u is in F(x, y) and d(u) = 0 then (d/dx)(u) = 0, so that u belongs to F.

THEOREM 3. Let K, F, x, O_x be as in the hypothesis of Theorem 2. Let R be an order of O_x and let y be an element of K integral over x with irreducible monic f such that K = F(x, y). Then $R = O_x$ if and only if y belongs to R and the ideal J in R generated by f_x and f_y is invertible.

Proof. If $R = O_x$, then y belongs to R and every ideal in R is invertible. Conversely, suppose that y belongs to R and that J, the ideal generated in R by the values of d, is invertible. (Here d is the same derivation as in Theorem 2.) That is, assume that there exist h_i

in K, $1 \leq i \leq q$, with $h_i d$ sending R into itself, and elements v_i in R, $1 \leq i \leq q$, with $1 = \sum_{i=1}^{q} h_i d(v_i)$. We shall prove R differentiably simple under $D = \{h_i d, \dots, h_q d\}$. It is known that every prime ideal of R is maximal; it fact, if I is a prime ideal of R, and w is an element of R, there is a λ in F with $w - \lambda$ in I. If R has a differential ideal, it has a maximal differential ideal, and one proceeds as in Theorem 2. So R is differentiably simple under D. By Theorem 1, R is integrally closed in K, i.e., $R = O_x$ as required.

As an illustration, let K = F(x, y) with $f(x, y) = y^n - P(x) = 0$, $n \ge 1$, P a polynomial in x with no repeated roots. Here R = F[x, y]. Let us examine the ideal in F[x, y] generated by f_x and f_y , i.e., by P'(x) and y^{n-1} . This ideal contains $y^{n-1}y = y^n = P(x)$ and p'(x). P(x)and P'(x) have no common factor, so there are polynomials Q(x) and S(x) with QP + SP' = 1. Then the ideal generated by f_x and f_y is F[x, y] and so is trivially invertible. We conclude $F[x, y] = O_x$.

BIBLIOGRAPHY

1. E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc., 11 (1960), 337343.

2. B. L. Van der Waerden, *Modern algebra*. Volume II. New York: Frederick Ungar Publishing Company, 1950.

3. A. Weil, Foundations of algebraic geometry, New York: American Mathematical Society, 1946.

THE UNIVERSITY OF WISCONSIN MADISON, WISCONSIN

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL

University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	E. HEWITT	M. OHTSUKA	E. SPANIER
T. M. CHERRY	A. HORN	H. L. ROYDEN	E. G. STRAUS
D. DERRY	L. NACHBIN	M. M. SCHIFFER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIASTANFOCALIFORNIA INSTITUTE OF TECHNOLOGYUNIVERUNIVERSITY OF CALIFORNIAUNIVERMONTANA STATE UNIVERSITYWASHINUNIVERSITY OF NEVADAUNIVERNEW MEXICO STATE UNIVERSITY*OREGON STATE COLLEGEAMERICOUNIVERSITY OF OREGONCALIFOIOSAKA UNIVERSITYHUGHESUNIVERSITY OF SOUTHERN CALIFORNIASPACE *

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of in	-	
bounded operator in Hilbert space		
Nesmith Cornett Ankeny, Criterion for rth power residuacity	••••••	1115
Julius Rubin Blum and David Lee Hanson, On invariant probability	measures I	1125
Frank Featherstone Bonsall, Positive operators compact in an auxil	iary topology	1131
Billy Joe Boyer, Summability of derived conjugate series		1139
Delmar L. Boyer, A note on a problem of Fuchs		1147
Hans-Joachim Bremermann, <i>The envelopes of holomorphy of tube a</i> <i>dimensional Banach spaces</i>		1149
Andrew Michael Bruckner, Minimal superadditive extensions of sup		
functions		1155
Billy Finney Bryant, On expansive homeomorphisms		1163
Jean W. Butler, On complete and independent sets of operations in		
Lucien Le Cam, An approximation theorem for the Poisson binomic		
Paul Civin, Involutions on locally compact rings		
Earl A. Coddington, Normal extensions of formally normal operato	rs	1203
Jacob Feldman, Some classes of equivalent Gaussian processes on a		
Shaul Foguel, Weak and strong convergence for Markov processes.		
Martin Fox, Some zero sum two-person games with moves in the un	it interval	1235
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic		
Branko Grünbaum, Partitions of mass-distributions and of convex b	0	
hyperplanes	•	1257
Sidney Morris Harmon, Regular covering surfaces of Riemann surf	aces	1263
	<i></i>	
Edwin Hewitt and Herbert S. Zuckerman, The multiplicative semigr	oup of integers	
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigr</i> modulo m		1291
<i>modulo m</i>	or groups	1309
modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector	pr groups	1309
modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups	or groups	1309 1313
modulo m Paul Daniel Hill, <i>Relation of a direct limit group to associated vecto</i> Calvin Virgil Holmes, <i>Commutator groups of monomial groups</i> James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expans</i>	or groups	1309 1313 1319
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	sive homeomorphisms	1309 1313 1319 1323
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f 	pr groups sive homeomorphisms unctions mplex domains	1309 1313 1319 1323 1327
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric company 	or groups sive homeomorphisms unctions mplex domains roups	1309 1313 1319 1323 1327
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semigrical semigroups in partially ordered semigroups in partially 	or groups sive homeomorphisms unctions roups Faussky and	1309 1313 1319 1323 1327 1333
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric co Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of f 	or groups sive homeomorphisms unctions mplex domains Faussky and	1309 1313 1319 1323 1327 1333 1337
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric co Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus 	pr groups sive homeomorphisms unctions mplex domains Faussky and	1309 1313 1319 1323 1327 1333 1337 1347
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational 	or groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction try measures	1309 1313 1319 1323 1327 1333 1337 1347 1361 1371
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems 	or groups sive homeomorphisms unctions roups Faussky and d fraction rry measures	1309 1313 1319 1323 1327 1333 1337 1347 1361 1371 1385
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings 	pr groups sive homeomorphisms unctions mplex domains Foups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1333 1337 1347 1347 1361 1371 1385 1393
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems 	pr groups sive homeomorphisms unctions mplex domains Foups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1333 1337 1347 1347 1361 1371 1385 1393
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings 	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1337 1347 1347 1347 1361 1371 1385 1393 1397
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures	1309 1313 1319 1323 1327 1337 1347 1347 1347 1361 1371 1385 1393 1397
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell John William Jewett, Multiplication on classes of pseudo-analytic f Helmut Klingen, Analytic automorphisms of bounded symmetric cor Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of Zassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stationed John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems 	or groups sive homeomorphisms unctions roups Faussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1361 1371 1385 1393 1397 1409 1419
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Taussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1347 1347 1347 1385 1393 1397 1409 1419 1429
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction ary measures ntial-difference	1309 1313 1319 1323 1327 1337 1347 1347 1347 1347 1393 1397 1409 1419 1429 1447
 modulo m Paul Daniel Hill, Relation of a direct limit group to associated vector Calvin Virgil Holmes, Commutator groups of monomial groups James Fredrik Jakobsen and W. R. Utz, The non-existence of expansion a closed 2-cell	pr groups sive homeomorphisms unctions mplex domains roups Faussky and d fraction try measures ntial-difference $(1,, \partial/\partial z_n$ tegrals	1309 1313 1319 1323 1327 1337 1347 1347 1361 1371 1385 1393 1397 1409 1419 1429 1447 1453