Pacific Journal of Mathematics

TWO EXTREMAL PROBLEMS

MARVIN ROSENBLUM AND HAROLD WIDOM

Vol. 10, No. 4 December 1960

TWO EXTREMAL PROBLEMS

Marvin Rosenblum and Harold Widom

1. Introduction. Let \mathscr{S}_0 be the class of all complex trigonometric polynomials P of the form $P_0 + P_1 e^{i\phi} + P_2 e^{2i\phi} + \cdots$. Let σ and μ be, respectively normalized Lebesgue measure and any finite non-negative Borel measure on the real interval $(-\pi, \pi]$. Suppose $\mu = \mu_A + \mu_S$, with $d\mu_A(\phi) = f(\phi) d\sigma(\phi)$, is the Lebesgue decomposition of μ into absolutely continuous and singular measures. In this note we shall be concerned with two generalizations of the problem Q_0 : Find

$$I_{\scriptscriptstyle 0}(\mu) = \inf_{P \in \mathscr{A}_{\scriptscriptstyle 0}} \! \left[\int \mid 1 \, + \, e^{i\phi} P(e^{i\phi}) \mid^{\scriptscriptstyle 2} d \, \mu(\phi)
ight]^{\! rac{1}{2}} \; .$$

 Q_0 was solved by Szegö for the case $\mu=\mu_A$ and in general by M. G. Krein and Kolmogorov. They showed that $I_0(\mu)=\exp{1\over 2}\int\log f\,d\sigma$ if $\log f$ is integrable and $I_0(\mu)=0$ otherwise. (See [3], pp. 44, 231.)

We shall consider:

Problem Q_1 : Suppose $\int |g|^2 \, d\mu < \infty$. Find

$$I_{\scriptscriptstyle 1}\!(g,\,\mu) = \!\inf_{P \in \mathscr{A}_0} \!\! \left[\int \mid g \, + P \mid^{\scriptscriptstyle 2} d\mu
ight]^{\! rac{1}{2}} \; ,$$

and

Problem Q_2 : Suppose $\int |h| d\sigma < \infty$. Find

$$I_{\scriptscriptstyle 2}\!(h,\,\mu) = \sup_{P \in \mathscr{Q}_0} \Bigl\{ \Bigl| \int P h \, d\sigma \, \Bigl| \Bigl/ \Bigl[\int \mid P \mid^2 d\mu \Bigr]^{\! rac{1}{2}} \Bigr\} \; .$$

Clearly $I_{\scriptscriptstyle 1}(e^{-i\phi},\,\mu)=I_{\scriptscriptstyle 0}(\mu).$ Also

$$[I_{ exttt{2}}(1,\,\mu)]^{ exttt{-1}}=\inf_{P\in\mathscr{D}_0}\Bigl\{\Bigl[\intert\,P\,ert^2\,d\mu\Bigr]^{\!rac{1}{2}}\Bigl/\!\!\intert\,Pd\sigma\,ert\Bigr\}=I_{ exttt{0}}(\mu)\;,$$

so Q_0 is a particularization of both Q_1 and Q_2 . There are other special cases of Q_1 and Q_2 that can be found in the work of Szegö [5] and Grenander and Szegö [3]. Of particular interest are the following:

- (i) Let $g(\phi) = e^{-i(k+1)\phi}$, where k is a positive integer. Then Q_1 is the problem of linear prediction k units ahead of time ([3], p. 184).
 - (ii) Let $h(\phi)=1/(1-\alpha e^{-i\phi})$, $|\alpha|<1$. Then

$$I_{\scriptscriptstyle 2}\!(h,\,\mu) = \sup_{P\in\,\mathscr{Q}_0}\Bigl\{\mid P(lpha)ert \Bigl/\Bigl[\int\mid P\mid^{\scriptscriptstyle 2}d\mu\Bigr]^{\!rac{1}{2}}\Bigr\}$$
 .

Received October 20, 1959, in revised form February 2, 1960. This work was done while both authors held National Science Foundation postdoctoral fellowships.

See [3], p. 48.

Throughout we shall indulge in the following notational conveniences: We shall write $I_1(g, f)$ and $I_2(h, f)$ for $I_1(g, \mu_A)$ and $I_2(h, \mu_A)$ respectively, and, in certain contexts, consider two functions identical that are equal everywhere except for a set of Lebesgue measure zero.

We have divided this note into six sections. First we indicate an interesting duality between $I_1(e^{-i\phi}g(\phi), f)$ and $I_2(g, 1/f)$ that relates the problems Q_1 and Q_2 under certain restrictive hypotheses. In section three we fashion the theory that will handle Q_1 and Q_2 . This is the solution of a Riemann-Hilbert problem (which we call problem Q_3), which is applied in §§ 4, 5 and 6 to Q_1 and Q_2 .

2. Duality of I_1 and I_2 . This will fall out of the following Banach space lemma:

Let \mathscr{T}_0 be a subspace of a Banach space \mathscr{L} and let \mathscr{T}_0^{\perp} be the annihilator of \mathscr{T}_0 in the dual space \mathscr{L}^* . If $g \in \mathscr{L}$, then

$$\inf \{||g+P||: P \in \mathscr{P}_0\} = \sup \{|l(g)|: l \in \mathscr{P}_0^{\perp}, ||l|| \leq 1\}.$$

For a proof see Bonsall [2].

Theorem 1. Suppose f and 1/f are in $L^1(-\pi,\pi)$ and $\int |g|^2 f d\sigma < \infty$. Then

$$I_1(e^{-i\phi}g(\phi),f)=I_2(g,1/f)$$
 .

Sketch of proof. By the above lemma

$$I_{\scriptscriptstyle
m I}(e^{-i\phi}g(\phi),f)=\sup\left\{\left|\int e^{-i\phi}g(\phi)h(\phi)f(\phi)d\sigma
ight|\left/\left[\int \mid h\mid^2 fd\sigma
ight]^{rac{1}{2}}
ight\}$$
 ,

where the supremum is taken over all h such that $\int e^{in\phi}h(\phi)f(\phi)d\sigma=0$ for $n=0,1,2,\cdots$. Through the substitution $e^{-i\phi}hf=P$ if follows that

$$I_{\scriptscriptstyle
m I}(e^{-i\phi}g(\phi),f)=\sup\left\{\left|\int Pf\,d\sigma
ight|\left/\int\int |P|^2rac{1}{f}d\sigma
ight|^{rac{1}{2}}
ight\}$$
 ,

where now the supremum is taken over all P such that $\int e^{in\phi}P(\phi)d\sigma=0$ for $n=1,2,\cdots$. It can be shown that it is sufficient merely to consider suprema for $P\in\mathscr{S}_0$, which proves the theorem.

The restrictive condition $1/f \in L^1(-\pi, \pi)$ seems essential to the formulation of the preceding duality relation, but at least this relation indicates that there exist close tie-ins between Q_1 and Q_2 . We shall solve a Riemann-Hilbert problem for the unit circle that, when applied to Q_1 and Q_2 , solves both.

3. The Riemann-Hilbert problem Q_3 . Let f be a non-negative function in $L^1 = L^1(-\pi, \pi)$, and suppose that $\mathscr P$ is the closure of $\mathscr P_0$ in the Hilbert space $L^2(f)$ of functions square integrable with respect to the measure $fd\sigma$. Thus, for example, $\mathscr P$ in $L^2(1) = L^2$ can be identified with the Hardy space H^2 . The problem Q_3 is:

Given $k \in L^1$, find functions $P \in \mathscr{P}$ and q satisfying

$$(1) Pf = k + q , and$$

$$\int q e^{-in\phi} \ d\sigma = 0 \ , \qquad \qquad n = 0, 1, \cdots .$$

$$\Big(\text{Note that since } \int \mid P \mid^{\scriptscriptstyle 2} f \, d\sigma < \, \infty \, \text{, we have } Pf \in L^{\scriptscriptstyle 1} \text{ and so } q = Pf - k \in L^{\scriptscriptstyle 1}. \Big)$$

We first list some prefactory material. We associate with any non-negative $f \in L^1$ such that $\log f \in L^1$ the analytic functions

$$\begin{array}{c} F^{+}(z)=\exp\frac{1}{2}\int\frac{e^{i\phi}+z}{e^{i\phi}-z}\log f(\phi)\,d\sigma(\phi),\,|\,z\,|<1\;,\\ \\ (\,3\,) \\ F^{-}(z)=\exp\frac{1}{2}\int\frac{z+e^{i\phi}}{z-e^{i\phi}}\log f(\phi)\,d\sigma(\phi),\,|\,z\,|>1\;. \end{array}$$

 F^+ and F^- belong to H^2 and K^2 respectively, and $\overline{F^-(z)} = F^+(1/\overline{z})$ if |z| > 1. (A function F(z) is said to belong to K^p if F(1/z) belongs to H^p .) Since the boundary functions in H^2 and K^2 exist in mean square, we can define

$$f^+(\phi) = \lim_{r o 1-} F^+(re^{i\phi}) \; , \ (4) \ f^-(\phi) = \lim_{r o 1-} F^-(re^{i\phi}) \; .$$

These functions satisfy

(5)
$$f(\phi) = f^{-}(\phi)f^{+}(\phi) = |f^{+}(\phi)|^{2} = |f^{-}(\phi)|^{2}.$$

For any non-negative $f \in L^1$ and $\varepsilon > 0$ we define $F_{\varepsilon}^{\pm}(z)$, $f_{\varepsilon}^{\pm}(\phi)$ by (3) and (4) with f replaced by $f_{\varepsilon} = f + \varepsilon$. Here we need not assume that $\log f \in L^1$. Note that since $f + \varepsilon \ge \varepsilon > 0$, we have $1/F_{\varepsilon}^{+} \in H^{\infty}$ and $1/F_{\varepsilon}^{-} \in K^{\infty}$. Moreover $|f_{\varepsilon}^{+}(\phi)|^2 = f(\phi) + \varepsilon$, so $|f_{\varepsilon}^{-}(\phi)| = |f_{\varepsilon}^{+}(\phi)| \ge [f(\phi)]^{1/2}$.

Next we define an operator ()₊ as follows. Its domain D consists of all L^1 functions k with Fourier series $\sum_{-\infty}^{\infty} c_n e^{in\phi}$ such that $\sum_0^{\infty} |c_n|^2 < \infty$, and k_+ is the function with Fourier series $\sum_0^{\infty} c_n e^{in\phi}$. We define the operator ()₋ by $k_- = k - k_+$. Notice that $k_+ \in H^2$ and $k_- \in K^1$ with $\int k_- d\sigma = 0$.

Our discussion of Q_3 proceeds in the following order. First we prove uniqueness. Then we solve Q_3 in certain special cases (these being sufficient, it will turn out, to handle Q_1), and finally find the solution in

the general case.

We are indebted to the referee for the proof of the next lemma.

LEMMA 2. Q_3 has at most one solution.

Proof. Suppose Pf=q where $P\in \mathscr{T}$ and q satisfies (2). Then P is orthogonal, in $L^2(f)$, to all exponentials $e^{in\phi}$ $(n\geq 0)$. Since P belongs to the closed manifold \mathscr{T} spanned by these exponentials we conclude P=0.

One can formally solve Q_3 by means of the usual factorization methods (see [4], for example). Write $f = f^+f^-$, so Pf = k + q implies

$$Pf^+ = \frac{k}{f^-} + \frac{q}{f^-} .$$

Applying ()₊ to both sides we obtain $Pf^+ = (k/f^-)_+$, $P = (1/f^+)(k/f^-)_+$. The following theorem justifies this procedure in certain cases.

Theorem 3. (i) Suppose $\log f \in L^1$ and $k/f^- \in D$. Then Q_3 has the solution

(6)
$$P = \frac{1}{f^{+}} \left(\frac{k}{f^{-}}\right)_{+} \qquad q = -f^{-} \left(\frac{k}{f^{-}}\right)_{-}.$$

(ii) Suppose $\log f \notin L^1$ and $k^2/f \in L^1$. Then Q_3 has the solution

$$P = \frac{k}{f} \qquad q = 0 .$$

Proof. (i) Let $\varepsilon > 0$. Since the function f^+ is outer, it follows from a theorem of Beurling [1] that there exists a $P_0 \in \mathscr{S}_0$ such that

$$\int \left|\left(rac{k}{f^-}
ight)_+ - P_{\scriptscriptstyle 0} f^+
ight|^2\!d\sigma < arepsilon$$
 .

Therefore by (5)

$$\int \Bigl| rac{1}{f^+} \Bigl(rac{k}{f^-}\Bigr)_{\scriptscriptstyle +} - P_{\scriptscriptstyle 0} \Bigr|^{\scriptscriptstyle 2} \! f d\sigma < arepsilon$$
 ,

so P as defined in (6) belongs to \mathscr{P} . Furthermore, with q as defined in (6),

$$Pf - q = f^-\left[\left(\frac{k}{f_-}\right)_+ + \left(\frac{k}{f^-}\right)_-\right] = k$$
.

It remains to show that $q \in K^1$. Certainly q belongs to $K^{1/2}$ since it is the product of the two K^1 functions $-f^-$ and $(k/f^-)_-$. But since also

q = Pf - k, it belongs to L^1 . Therefore ([6], p. 163) $q \in K^1$.

(ii) If $\log f \notin L^1$, the space $\mathscr T$ is identical with $L^2(f)$ ([3], § 33) and so $k/f \in \mathscr T$.

We now give the complete solution of Q_3 .

THEOREM 4. (i) The limit

$$\lim_{arepsilon o 0+}\int \left|(k/f_{arepsilon}^{-})_{+}
ight|^{2}\!d\sigma$$

exists either finitely or infinitely.

- (ii) A necessary and sufficient condition that Q_3 have a solution P, q is that the limit be finite.
 - (iii) If the limit is finite then

$$P = \lim (1/f_{\varepsilon}^+)(k/f_{\varepsilon}^-)_+$$

in the space $L^2(f)$, and

$$\int \mid P \mid^2 f \, d\sigma = \lim_{\epsilon \to 0+} \int |(k/f_{\epsilon}^-)_+ \mid^2 d\sigma \;.$$

Proof. Assume first that Q_3 has a solution P, q and divide both sides of (1) by f_{ε}^- . Since $q/f_{\varepsilon}^- \in K^1$ and $\int q/f_{\varepsilon}^- d\sigma = 0$ we have $q/f_{\varepsilon}^- \in D$ and $(q/f_{\varepsilon}^-)_+ = 0$; also $Pf/f_{\varepsilon}^- \in L^2 \subset D$. Therefore we can apply ()₊ to both sides, obtaining

$$(Pf/f_{\,\epsilon}^-)_+=(k/f_{\,\epsilon}^-)_+$$
 .

Consequently

$$(7) \qquad \qquad \int |\left(k/f_{\,\varepsilon}^{\,-}\right)_{+}|^{2}\,d\sigma \leqq \int |\left.Pf/f_{\,\varepsilon}^{\,-}\right|^{2}\,d\sigma \leqq \int |\left.P\right.|^{2}\,fd\sigma \;,$$

and so

(8)
$$\limsup_{arepsilon o 0+}\int |(k/f_{arepsilon}^-)_+|^2\,d\sigma<\infty$$
 .

Conversely suppose that $\{\varepsilon_n\}$ is a sequence of ε 's such that $\varepsilon_n \to 0+$ and

$$\int |(k/f_{arepsilon}^-)_+|^2\,d\sigma = O(1) \,\, ext{for}\,\,\, arepsilon = arepsilon_n \,\,.$$

By Theorem 3(i) there corresponds to each $\varepsilon = \varepsilon_n$ a solution P_{ε} , q_{ε} of $(f + \varepsilon)P_{\varepsilon} = k + q_{\varepsilon}$. We have

(10)
$$\int |P_{\varepsilon}|^2 f d\sigma \leq \int |P_{\varepsilon}|^2 f_{\varepsilon} d\sigma = \int |(k/f_{\varepsilon}^-)_+|^2 d\sigma = O(1).$$

Thus there exists a subsequence of $\{\varepsilon_n\}$ such that $\{P_{\varepsilon}\}$ converges weakly

in $L^2(f)$ to an element $P \in \mathscr{P}$. It will follow that P, Pf - k satisfies Q_3 if the L^1 function q = Pf - k satisfies (2). We have for $n = 0, 1, 2, \cdots$

$$egin{aligned} \int q(\phi)e^{-in\phi}d\sigma &= \int \{P_arepsilon(\phi)[f(\phi)+arepsilon]-k(\phi)\}e^{-in\phi}d\sigma \ &+ \int [P(\phi)-P_arepsilon(\phi)]f(\phi)e^{-in\phi}d\sigma -arepsilon \int P_arepsilon(\phi)e^{-in\phi}d\sigma \ &= J_1+J_2+J_3 \;. \end{aligned}$$

Theorem 3(i) implies that $J_1=0$. By the weak convergence of the P_{ε} we can make J_2 as small as desired by taking ε_n sufficiently small. Finally (10) implies that $\int |\varepsilon^{1/2}P_{\varepsilon}|^2 d\sigma = O(1)$, so by the Schwarz inequality $|J_3| \leq \varepsilon^{1/2} \int |\varepsilon^{1/2}P_{\varepsilon}| d\sigma = O(\varepsilon^{1/2})$ as $\varepsilon_n \to 0$. Thus P, q satisfy Q_3 , so (8), holds and (9) is true for any sequence $\{\varepsilon_m\}$ of ε 's that converge to 0+. By what we have shown there corresponds to any such sequence $\{\varepsilon_m\}$ a subsequence such that P_{ε} converges weakly to the unique (Lemma 2) element P. Thus we can consider ε to be a real variable and conclude that P_{ε} converges weakly in $L^2(f)$ to $P \in \mathscr{P}$ as $\varepsilon \to 0+$ provided that

$$\liminf_{arepsilon o 0+} \int \mid k/f_{arepsilon}^{-})_{+}\mid^{2} d\sigma < \infty$$
 .

We next prove that in fact P_{ε} converges strongly to P in $L^{2}(f)$. It suffices to show that $\int |P_{\varepsilon}|^{2} f d\sigma \rightarrow \int |P|^{2} f d\sigma$. Weak convergence gives

$$\liminf_{arepsilon o +}\int \mid P_arepsilon\mid^2 fd\sigma \geqq \int \mid P\mid^2 fd\sigma$$
 .

On the other hand, as in (7),

$$\int \mid P_{arepsilon} \mid^2 f d\sigma \leqq \int \mid P_{arepsilon} \mid^2 f_{arepsilon} d\sigma = \int |(k/f_{arepsilon}^-)_+ \mid^2 d\sigma \leqq \int \mid P \mid^2 f d\sigma$$
 .

so

$$\limsup_{\epsilon \to 0+} \int \mid P_\epsilon \mid^2 f d\sigma \leqq \int \mid P \mid^2 f d\sigma \; .$$

Thus

$$\lim_{arepsilon o 0+}\int \mid P_arepsilon \mid^2 fd\sigma$$

exists, and equals

$$\lim_{arepsilon o 0+} \int |(k/f_{\,arepsilon}^{\,-})_+^{\,}|^2 \, d\sigma = \int |\,P\,|^2 f d\sigma \,\,.$$

Thus the proof is complete.

4. Solution of Q_1 . In Q_1 we wish to find

$$I_{\scriptscriptstyle 1}\!(g,\,\mu) = \inf_{\scriptscriptstyle P \in \mathscr{P}_0} \!\! \left[\int \mid g \, + \, P \mid^{\scriptscriptstyle 2} d\mu
ight]^{\! rac{1}{2}} \, ,$$

where g is a given function in $L^2(\mu)$. Since $I_1(g, \mu)$ represents the distance from g to the manifold \mathscr{P}_0 in $L^2(\mu)$, there exists a (unique) function P belonging to the closure \mathscr{P}' of \mathscr{P}_0 in $L^2(\mu)$ such that

$$I_{\scriptscriptstyle 1}(g,\,\mu) = \left[\int \mid g \, + \, P \mid^{\scriptscriptstyle 2} d\, \mu
ight]^{\! rac{1}{2}} \, .$$

This function P is such that g + P is orthogonal to \mathcal{P}_0 , so

$$\int \left[g(\phi) + P(\phi)
ight] e^{-in\phi} d\mu(\phi) = 0 \qquad \qquad n=0,\,1,\,2,\,\cdots\,.$$

It follows from a theorem of the brothers Riesz ([6], p. 158) that the measure ν given by

$$u(E) = \int_{E} [g(\phi) + P(\phi)] d\mu(\phi)$$

is absolutely continuous with respect to Lebesgue measure. Let F be a Borel set of Lebesgue measure zero such that $\mu_s((-\pi, \pi] - F) = 0$. Then g + P vanishes on F almost everywhere with respect to μ_s , so

$$\int_F |\, g\, +\, P\,|^2\, d\mu_{\scriptscriptstyle S} = 0$$

and

$$\int |\, g \, + \, P \,|^2 \, d\mu = \int_{\mathscr{C}} |\, g \, + \, P \,|^2 \, d\mu_{\scriptscriptstyle A} = \int |\, g \, + \, P \,|^2 f d\sigma \; .$$

Since $\mu \ge \mu_A$ it follows that $I_1(g, \mu) = I_1(g, f)$, and this common value is attained by the same extremizing function $P \in \mathscr{P}' \subset \mathscr{P}$.

Now,

$$\int [g(\phi)\,+\,P(\phi)]e^{-in\phi}f(\phi)d\sigma=0 \qquad \qquad n=0,\,1,\,\cdots\,,$$

so if we set q=(g+P)f we have Pf=-gf+q, where $P\in \mathscr{P}$ and q satisfies (2). Since $(gf)^2/f=g^2f\in L^1$, we can apply Theorem 3 to this situation. The extremizing function

$$P = egin{cases} -(1/f_+)(gf_+)_+ & ext{ if } \log f \in L^1 \ -g & ext{ if } \log f
otin L^1 \end{cases}$$

and since

$$I_{\scriptscriptstyle 1}(g,f) = \left[\int \mid g \, + \, P \mid^{\scriptscriptstyle 2} f d\sigma
ight]^{\! rac{1}{2}} = \left[\int \mid q \mid^{\scriptscriptstyle 2} \! / \! f d\sigma
ight]^{\! rac{1}{2}}$$

we have

$$I_{\scriptscriptstyle 1}(g,\,\mu)=I_{\scriptscriptstyle 1}(g,f)=egin{cases} \left[\int\limits_{0}^{\cdot} |\,(gf^+)_-\,|^2\,d\sigma
ight]^{\!\!rac12} & ext{if} & \log f\,{\in}\,L^1 \ & ext{if} & \log f\,{
otin}\,L^1 \ . \end{cases}$$

5. Solution of Q_2 . Given $h \in L^1$, we will evaluate

$$I_{\scriptscriptstyle 2}\!(h,\,\mu) = \sup_{P \in \mathscr{D}_0} \Bigl\{ \Bigl| \int P h \ d\sigma \, \Bigl| \Bigl/ \Bigl[\int \mid P \mid^2 d\mu \Bigr]^{\!rac{1}{2}} \Bigr\} \; .$$

Since $\mu \geq \mu_A$ it is clear that if $I_2(h, f)$ is finite so is $I_2(h, \mu)$. We shall show that, conversely, if $I_2(h, \mu)$ is finite then so is $I_2(h, f)$ and in fact $I_2(h, f) = I_2(h, \mu)$. So now suppose $I_2(h, \mu) < \infty$. Then the linear functional L on \mathscr{S}_0 given by

$$L(P) = \int Ph \ d\sigma$$

is bounded on $L^2(\mu)$. Therefore if \mathscr{D}' denotes the closure of \mathscr{D}_0 in $L^2(\mu)$, there is a uniquely determined $Q \in \mathscr{D}'$ such that $L(P) = \int P \bar{Q} \ d\mu$. Then we have

$$\int e^{-in\phi}[Q(\phi)d\mu(\phi)-ar{h}(\phi)d\sigma(\phi)]=0 \qquad \quad n=0,1,\cdots.$$

We again apply the F. and M. Riesz theorem, and deduce that the measure ν given by

$$u(E) = \int_E Q d\mu - \int_E h \, d\sigma$$

is absolutely continuous with respect to Lebesgue measure. Letting F be a Borel set of Lebesgue measure zero such that $\mu_s((-\pi, \pi] - F) = 0$, we see that Q vanishes on F almost everywhere with respect to μ_s . Consequently

$$\int e^{-in\phi}[Q(\phi)f(\phi)-ar{h}(\phi)]d\sigma(\phi)=0 \qquad \qquad n=0,1,\cdots$$
 ,

so $Qf = \overline{h} + q$, where $Q \in \mathscr{P}' \subset \mathscr{P}$ and q satisfies (2). Thus the linear functional

$$L(P)=\int Ph\ d\sigma =\int Par{Q}f\,d\sigma$$
 ,

 $P \in \mathscr{P}_0$, is bounded on $L^2(f)$, so $I_2(h, f)$ is finite and in fact equals $I_2(h, \mu)$. We deduce from Theorem 4 that

$$I_{\scriptscriptstyle 2}(h,\,\mu) = I_{\scriptscriptstyle 2}(h,f) = \lim_{arepsilon o 0+} \left[\int \mid (ar{h}/f_{\,arepsilon}^{\,-})_{\scriptscriptstyle +} \mid^2 d\sigma
ight]^{\!rac{1}{2}} \, ,$$

and Q may be exhibited as an $L^2(f)$ limit in the mean.

6. Some formulae for $I_2(h, \mu)$. We can obtain a simpler formula for $I_2(h, \mu)$ if we assume that $h^2/f \in L^1$ and apply Theorem 3. Then

$$I_2(h,\,\mu) = egin{dcases} \left[\int |\; (\overline{h}/f^-)_+\;|^2\,d\sigma
ight]^{rac{1}{2}} &= \left[\int |(e^{-i\phi}h(\phi)/f^+(\phi))_-\;|^2\,d\sigma(\phi)
ight]^{rac{1}{2}} & ext{if } \log f \in L^1 \;, \ \left[\int |\; h\;|^2/fd\sigma
ight]^{rac{1}{2}} & ext{if } \log f
otin L^1 \;. \end{cases}$$

This, in conjunction with our solution of Q_1 , gives the duality discussed in Theorem 1. Note that the hypothesis $1/f \in L^1$ of Theorem 1 implies that $\log f \in L^1$.

Another simple formula for $I_2(h,\mu)$ is available if we know that the Fourier series $\sum_{-\infty}^{\infty}h_ne^{in\phi}$ of h is such that $h_{-n}=O(R_0^{-n})$ as $n\to +\infty$ for some $R_0>1$. Then the function $H(z)=\sum_0^{\infty}h_{-n}z^{-n}$ is analytic in $|z|>1/R_0$. We have

$$\int \mid (ar{h}/f_{\,arepsilon}^{\,-})_+\mid^2 d\sigma = \int \mid (e^{-i\phi}h(\phi)/f_{\,arepsilon}^{\,+}(\phi))_-\mid^2 d\sigma$$
 ,

which by the Parseval relation equals

$$egin{aligned} \sum_{n=0}^{\infty} \left| \int e^{in\phi} h(\phi) f_{\,arepsilon}^{\,+}(\phi) d\sigma \,
ight|^2 &= \sum_{n=0}^{\infty} \left| rac{1}{2\pi} \int_{|z|=1} z^{n+1} H(z) \middle/ F_{\,arepsilon}^{\,+}(z) dz \,
ight|^2 \ &= \sum_{n=0}^{\infty} \left| rac{1}{2\pi} \int_{|z|=R} z^{n+1} H(z) \middle/ F_{\,arepsilon}^{\,+}(z) dz \,
ight|^2 \,, \end{aligned}$$

where $1/R_0 < R < 1$. Let us also assume that $\log f \in L^1$, so F^+ is well-defined and

$$H(Re^{i\phi})/F_{\varepsilon}^{+}(Re^{i\phi}) \longrightarrow H(Re^{i\phi})/F^{+}(Re^{i\phi})$$

in L^2 as $\varepsilon \to 0+$. It follows that

$$I_{\scriptscriptstyle 2}(h,\,\mu)^{\scriptscriptstyle 2} = \sum\limits_{n=0}^{\infty} igg| rac{1}{2\pi} \int_{|z|=R} z^{n+1} H(z) igg/ F^+(z) dz igg|^{\scriptscriptstyle 2} \; .$$

Now, if we write

$$rac{1}{F^+(z)}=\sum\limits_{n=0}^{\infty}f_nz^n$$
 ,

then

$$I_2(h, \mu)^2 = \sum\limits_{n=0}^{\infty} \left|\sum\limits_{m=0}^{\infty} h_{-n-m} f_m\right|^2$$
 .

Thus if H is the Hankel matrix $[h_{-n-m}]_{n,m=0}^{\infty}$, and Φ the column vector with components f_0, f_1, \dots , then

$$I_{\scriptscriptstyle 2}(h,\,\mu)=||H\!arPhi||$$
 ,

where the norm is that of l^2 .

For example, let α be such that $|\alpha| < 1$ and consider

$$\sup_{P\in\mathscr{B}}\Bigl\{|P(\alpha)|\Big/\Bigl(\int|P|^2\,d\mu\Bigr)^{\frac{1}{2}}\Bigr\}\;.$$

Thus we wish to evaluate $I_2(1/(1-\alpha e^{-i\phi}), \mu)$. Here $h_{-n}=\alpha^n$, $n=0,1,\cdots$, so

$$I_{ extstyle 2}(h,\,\mu)^2=\sum\limits_{n=0}^{\infty}\left|\sum\limits_{m=0}^{\infty}\,lpha^{n+m}f_m
ight|^2=1/[(1-\midlpha\mid^2)\mid F^{+}(lpha)\mid^2]$$
 ,

as in [2], p. 48.

BIBLIOGRAPHY

- 1. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1948), 239-255.
- 2. F. F. Bonsall, Dual extremum problems in the theory of functions, Jour. London Math. Soc., 31 (1956), 1-5-110.
- 3. U. Grenander and G. Szegö, Toeplitz forms and their applications, Berkeley and Los Angeles, 1958.
- 4. N. I. Muskhelishvili, Singular integral equations, Groningen, 1953.
- 5. Szegö, Orthogonal polynomials, A. M. S. colloquium publication, 23 (1939).
- 6. A. Zygmund, Trigonometrical series, New York, 1952.

INSTITUTE FOR ADVANCED STUDY UNIVERSITY OF VIRGINIA CORNELL UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. Brownell

University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH T. M. CHERRY

D. DERRY

E. HEWITT A. HORN L. NACHBIN M. OHTSUKA H. L. ROYDEN M. M. SCHIFFER E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 10, No. 4 December, 1960

M. Altman, An optimum cubically convergent iterative method of in	verting a linear
bounded operator in Hilbert space	
Nesmith Cornett Ankeny, Criterion for rth power residuacity	111:
Julius Rubin Blum and David Lee Hanson, On invariant probability	measures I 1125
Frank Featherstone Bonsall, <i>Positive operators compact in an auxiliary topology</i>	
Billy Joe Boyer, Summability of derived conjugate series	
Delmar L. Boyer, <i>A note on a problem of Fuchs</i>	
Hans-Joachim Bremermann, The envelopes of holomorphy of tube d	
dimensional Banach spaces	
Andrew Michael Bruckner, Minimal superadditive extensions of sup	
functions	
Billy Finney Bryant, On expansive homeomorphisms	
Jean W. Butler, On complete and independent sets of operations in f	
Lucien Le Cam, An approximation theorem for the Poisson binomia	
Paul Civin, Involutions on locally compact rings	
Earl A. Coddington, Normal extensions of formally normal operator	
Jacob Feldman, Some classes of equivalent Gaussian processes on a	
Shaul Foguel, Weak and strong convergence for Markov processes.	
Martin Fox, Some zero sum two-person games with moves in the unit	
Robert Pertsch Gilbert, Singularities of three-dimensional harmonic	
Branko Grünbaum, Partitions of mass-distributions and of convex be	
hyperplanes	•
Sidney Morris Harmon, Regular covering surfaces of Riemann surf	
Edwin Hewitt and Herbert S. Zuckerman, <i>The multiplicative semigr</i>	
modulo m	
Paul Daniel Hill, Relation of a direct limit group to associated vector	
Calvin Virgil Holmes, Commutator groups of monomial groups	
James Fredrik Jakobsen and W. R. Utz, <i>The non-existence of expans</i>	
on a closed 2-cell	
John William Jewett, Multiplication on classes of pseudo-analytic f	
	<i>unctions</i> 1323
Helmut Klingen. Analytic automorphisms of bounded symmetric col	
Helmut Klingen, <i>Analytic automorphisms of bounded symmetric co</i> Robert Jacob Koch. <i>Ordered semigroups in partially ordered semig</i>	mplex domains 132
Robert Jacob Koch, Ordered semigroups in partially ordered semig	nplex domains 132 oups 133
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. A. Khan, On a commutator result of David Marcus and N. A. Khan, On a commutator result of David Marcus and N. A. Khan, On a commutator result	mplex domains 132' roups
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	nplex domains 132' roups
Robert Jacob Koch, Ordered semigroups in partially ordered semig Marvin David Marcus and N. A. Khan, On a commutator result of T Zassenhaus	Implex domains 132 Implex domains 133 Implementation 133 Implementation 133 Implementation 134
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued	Implex domains 132' Youps 133' Yousky and 133' 134' 134' I fraction 136'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups. Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational	mplex domains 132' roups 133' laussky and 133' 134' 134' I fraction 136' ary measures 137'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	Implex domains 132' Youps 133' Taussky and 133' 134' I fraction 136' Iry measures 137' 138'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings	Implex domains 132' Youps 133' Caussky and 133' 134' I fraction 136' ary measures 137' 138' 139'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups. Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras. Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems. Edward C. Posner, Integral closure of differential rings. Marian Reichaw-Reichbach, Some theorems on mappings onto	mplex domains 132' roups 133' raussky and 133' 134' I fraction 136 ury measures 137 138' 139' 139'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus	mplex domains 132' roups 133' laussky and 133' 134' 134' fraction 136' ury measures 137' 138' 139' 140' 140'
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear differential rings	132 133 134 135 136 137 138 139 139 140 141
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations	mplex domains
Robert Jacob Koch, Ordered semigroups in partially ordered semiged Marvin David Marcus and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations Charles Robson Storey, Jr., The structure of threads	mplex domains
Robert Jacob Koch, Ordered semigroups in partially ordered semigroups and N. A. Khan, On a commutator result of Tassenhaus. John Glen Marica and Steve Jerome Bryant, Unary algebras Edward Peter Merkes and W. T. Scott, On univalence of a continued Shu-Teh Chen Moy, Asymptotic properties of derivatives of stational John William Neuberger, Concerning boundary value problems Edward C. Posner, Integral closure of differential rings Marian Reichaw-Reichbach, Some theorems on mappings onto Marvin Rosenblum and Harold Widom, Two extremal problems Morton Lincoln Slater and Herbert S. Wilf, A class of linear different equations	mplex domains 132 roups 133: raussky and 134 I fraction 136 rry measures 139: 139: 140: 1412 142: 144: 144: 144: 144: