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GENERALIZED TWISTED FIELDS

A. A. ALBERT

1. Introduction. Consider a finite field $. If V is any automor-
phism of & we define ®v to be the fixed field of K under V. Let S
and T be any automorphism of $ and define F to be the fixed field

( 1 ) S — Sα — (®s)r — (®τ)s >

under both S and Γ. Then % is the field of q = j>* elements, where p
is the characteristic of $, and fi is a field of degree n over g We
shall assume that

(2) n>2, q > 2 .

Then the period of a primitive element of β is qn — 1 and there always
exist elements c in & such that c =£ k*-1 for any element & of fi. Indeed
we could always select c to be a primitive element of β.

Define a product (a?, #) on the additive abelian group β, in terms
of the product αjj/ of the field S, by

(3 ) (»,») = «Λ = i/Ba - xy - c(xT)(yS) ,

for c in β. Then

( 4 ) Ay = Ry — TRc{yS) , Bx = Rx — SRG{xT) ,

where the transformation Ry = J?[T/] is defined for all y in & by the
product xy = a?i?y of β. Then the condition that (a?, #) =£ 0 for all
xy Φ 0 is equivalent to the property that

' xT yS '

for any nonzero x and y of β. But the definition of a generating auto-
morphism U of $ over § by xU — xq implies that

(6) S=U* , T=W .

We shall assume that S =£ I, Γ =£ I, so that

(7) 0 < / 3 < w , 0 < γ < ^ .

Then ^^[(α S)^! 7 )]" 1 = a;3"1, where

( o ) ± — y K — (Q — i j , i — q' — yq — ±) , z — JU y .
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Thus the condition that c Φ kq~λ is sufficient to insure the property that
(%, y) Φ 0 whenever xy Φ 0.

For every c satisfying (5) we can define a division ring ® =
®($, S, T, c), with unity quantity /' = e — c, where e is the unity
quantity of S. It is the same additive group as K and we define the
product x |/ of ΰ by

(9) xAe-yBe = (x,y) .

These rings may be seen to generalize the twisted fields defined in an
earlier paper.1

We shall show that 3) is isomorphic to $ if and only if S = T.
Indeed we shall derive the following result.

THEOREM 1. Let S Φ I, T Φ I, S Φ T. Then the right nucleus of
35(SΪ, S, Γ, c) is f®s and the left nucleus of ®(jϊ, S, Γ, c) is /ffiΓ. // S
is Zfee set of all elements g of $t such that gS — gT then gAe = gBe and
$>Ae = 2Be is the middle nucleus of ®.

The result above implies that /g is the center of ®(®, S, T, c).
Since it is known2 that isotopic rings have isomorphic right (left and
middle) nuclei, our results imply that the (generalized) twisted fields
S)($, S, T, c) are new whenever the group generated by either S or T
is not the group generated by S and T. In this case our new twisted
fields define new finite non-Desarguesian projective planes.3

2. The fundamental equation* Consider the equation

for x, y and z in $. Assume that the degree of $ over ®τ is m, where
we shall now assume that

(10) m > 2 .

1 For earlier definitions of twisted fields see the case c = — 1 in On nonassociative
division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309 and the general case in
Finite noncommutative division algebras, Proc. Amer. Math. Soc. 9 (1958), 928-932. In
those papers we defined a product [x, y] = x(yT) — cy(xT) so that (x, y) = [x, yT'1] =
xy - c(yS)(xT) is the product (3) with S = T'1.

2 This result was originally given for loops by R. H. Bruck. It is easy to show that,
if φ and Φo are isotopic rings with isotopy defined by the relation QRxp=Riχ)QRz, then
the mapping x -» (zx)P~1 induces an isomorphism of the right nucleus © onto that of φ 0 ,
and the mapping x -> {xz)P~x induces an isomorphism of the middle nucleus of © onto
that of ®o.

3 Two finite projective planes 9K(φ) and 9K(Φo) coordinatized by division rings % and
Φo respectively are known to be isomorphic if and only if Φ and Φo are isotopic. See the
author's Finite division algebras and finite planes, Proceedings of Symposia in Applied
Mathematics; vol. 10, pp. 53-70.
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Then the norm in & over ®τ of any element k of Sϊ is

(11) v(fc)

and v(k) is in ί£Γ, that is,

(12) Kfc) =

for every k of 5ΐ. Thus

(13) I - (TRc)
m =

where

(14) d = e-

Now

(15) Ae = l-TRC1 Be = I-SRc,

and we obtain

(16) Ae[I + TRC + {TRcf + +

so that

(17) i+ TRC + (TRcy + .. +

Our definition (4) implies that

(18) RaAy = AyRa, R

for every x and y of iΓ, providing that

(19) a = aT, b = bS .

In particular, i?dAy = AyRa, and so (9) is equivalent to

(20) A J J + (ΓΛβ) + (TRCY + + ( Γ Λ ^ - 1 ] ^ = Asi2d .

It is well known that distinct automorphisms of any field $ are
linearly independent in the field of right multiplications of ££. Thus
we can equate the coefficients of the distinct powers of T in the equa-
tion (20). The right member of (20) is RzΛ — TRcd{zS) and so does not
contain the term in Tm~1 when m > 2. It follows that

(21) Rx[( TR^-'Ry ~ (TR c r~\ TRc)RyS]
2Ry - (TRcr~XTRc)RyS] = 0 .

This equation is equivalent to

(22) xTm~\y - yS) = xSTm~\y - yS) ,
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and so to the relation

(23) [(x - xST-^T™-1]^ - yS) = 0 .

By symmetry we have the following result.

LEMMA 1. Let T have period m > 2. Then the equation AzA~ιAy=Az.
holds for some x, y,z in $ΐ only if y = yS or x = xST~\ If S has
period m0 > 2 the equation ByB~1Bx = J5, feoicίs /or some a, y, z in S£

if x = xT or y = yST'1.

3. The nuclei. The ring 2) = £(SΪ, S, Γ, c) has its product defined bjr

(24) x-y = xRy

0) =yLy

c),

where

(25) Ryχ = Aβ^A, , Licie - B?B% .

When S = Γ our formula (3) becomes (x,y) = xy — c[(xy)S] = xy(I—
But then the ring ®0, defined by the product (x,y)9 is isotopic to the
field St. Since ® = ®(ffi, S, S, c) is isotopic to ®0 it is isotopic to SB, and
it is well known that ® is then also isomorphic to $. Assume hence-
forth that

(26) S Φ T .

The right nucleus of S) is the set 5ip of all elements zp in ffi such that

(27) (x-y)-zP = aj d/ «p) ,

for every α? and ?/ of ffi. Suppose that 6 = bS so that

(28) Ab = Rb- TRc{bS) = (/ - 2Ήc)i?&, ^ e - ^ & = i?δ .

By (18) we know that RbBx = J?aΛ6, and so Rb{B~ιBx) - (B^BJR, for
every a? of Λ. By (25) this implies that the transformation

(29) Rb = A^Ab = Riχ

commutes with every L(f. However, (27) is equivalent to

(30) Uc)Rζ = R{ξUx

c) .

Thus bBe = 6 ( 1 - Si2c) = 6(e - c) = bf is in 5RP. We have proved that
the right nucleus of 2) = 3)(5t, S, Γ, c) contains the field / ^ , a subring
of 3) isomorphic to $#.

ΓΛβ left nucleus 3lλ of S) consists of all ^λ such that

(31) (zχ v) x = Zλ-(yx)
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for all x and y of St. This equation is equivalent to

•(32) L%R{

X

C) = R^Lΐl

for every x of $. If a = aT then Ba = (I- SRc)Ra, B-χBa = Ra =
L^]

Ae commutes with every Ay and every Rx

c), and we see that the left
nucleus of S)(β, S, T, c) contains the field fSiτ isomorphic to βΓ .

The middle nucleus of i® = ®(®, S, T, c) is the set 3lμ of all zμ of
$ such that

(33) (x-zj-y = a Ovi/)

for every a? and y of β. This equation is equivalent to

(34) R {

z

c ) R y

c ) = R{

z% ,

where z — zμ. However, we can observe that the assumption that

(35) Ric)R™ = Rίc) ,

for some v in ^ , implies that (f z) y=f v = v = z y, Hence (34) holds
for every y in $t if and only if

(36) AgA-χAv = Aυ ,

for every y of β, where v is in S and

(37) gBe = z = z,.

If ^ S = gT t h e n A, = Rg - TRc{gS) = Rg- TRc{gτ) = Rg - RgTRc = RgAe.
Then (36) becomes

(38) RgAy = Rg(Rg — TRc{yS)) = Rgy — TRc{ySgT) = Agy .

Hence gBe = g(I — SRC) — g — (gS)c = g — (gT)c = gAe, and $ftμ contains
the field of all elements gBe for gS = gT.

We are now able to derive the converse of these results. We first
observe that (27) is equivalent to

(39) R\fRίc) = R[l\ ,

for every y of $t, where z — zp. This equation is equivalent to

(40) AyAe'Au - Av ,

where z = uBe. If the period of T is m > 2 we use Lemma 1 to see
that, if we take y Φ yST~x, then u = uS, z — uBe = fu. The stated
choice of y is always possible since we assuming that S Φ T and so
some element of β is not left fixed by ST~\ Thus Stt = / ^ . Similar-
ly, is the period of S is not two then 5Jϊλ = f$tτ. Assume that one of
S and T has period two.
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The automorphisms S and T cannot both have period two. For the
group G of automorphisms of ^ is a cyclic group and has a unique sub-
group ξ> of order two. This group contains I and only one other
automorphism. If S and T both had period two we would have S — T
and so m = n = 2, contrary to hypothesis. Thus we may assume that
one of S and T has period two. There is clearly no loss of generality
if we assume that T has period two, so that the period of S is at least
three. By the argument already given we have 5ftλ = f$ΐτ. We are
then led to study (40) as holding for all elements y of ®, where zp =
uBe. Now

(41) A, = I- TRΰ, Ae(I + TRC) = Rd, d = e - c(cT) = dT .

But then (40) becomes

(42) [Ry — TRc{yS)](I + TRC)[RU — TRc{uS)] — Rυd — TRcd{υS) .

This yields the equations

(43) y[u - c(cT)(uS)] - (yST)[c(cT)](u - uS) = vd ,

(44) yT(u - uS) - yS[u - (uS)c(cT)] = - d(vS) .

Hence

d(yS)[uS - (cS)(cST)(uS2)] - yS2T(cS)(cST)(uS - uS*)d = vS(dS)d

= (dS)yS[u - (uS)c(cT)] - yT(u - uS)(dS) .

Since this holds for all y we have the transformation equation

(45) SR[d(uS) - d(cS)(cST)uS2] - S2TR[d(cS)(cST)(uS - uS2)]

= SR[dSu - (dS)(uS)c(cT)] - TR[(u - uS)dS].

Since S2 Φ I and T Φ S, S2T we know that the coefficient of S2T is
zero. Thus (u — uS)dS — 0 and u — uS as desired. This shows that

The middle nucleus condition (36) implies that gS = gT if T does
not have period two. When T does have period two but S does not
have period two the analogous property

(46) U% = UC)UX

C)

is equivalent to

(47) BgB?Bx = BΌ ,

and we see again that gS = gT. This completes our proof of the theorem
stated in the introduction.
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4 Commutativity It is known4 that © = (fi, S, S~~\ c) is com-
mutative if and only if c = — 1. There remains the case where

(48) Sφl, TΦl, STΦl, SΦT.

Any SB(®, S», Γ, c) is commutative if and only if R{f = Lic) for every
as of S. Assume first that ®8ΦStτ. There is clearly no loss of generality
if we assume that there is an element δ in $t8 and not in $ Γ , since the
roles of S and T can be interchanged when ®($, S, T, c) is commuta-
tive. Thus we have b = bS φ bT. By (28) we know that Ah = AeRb

and so we have i ί # = i?δ. Then L $ = B^-By = Rb, where y = (&/)Arx.
It follows that

(49) Bg = Ry — SRc{yT) = -Be.B5 = ( J — SRc)Rb .

Then lί y = Rb, y = 6, c(2/Γ) = c(6Γ) = cδ, and δ = bT contrary to hypo-
thesis.

We have shown that if 35(®, S, Γ, c) is commutative the automor-
phisms S and T have the same fixed fields, that is, δ = bS if and only
if δ = δΓ, δ is in g T h ΐ l s S a n d ϊ 7 both generate the cyclic automor-
phism group © of order n of ® over g, and S is a power of ϊ7. Since
rp-i _ yn-i _£. gf there exists an integer r such that

(50) 0 <r <n-l, S = Tr .

We now use the fact that R{

x

c) = Lic) for every x of i ί to see that
A~λAx - B r 1 ^ for every x of Λ, where y = xBeA~\ Also (TRc)

n =
(SRc)

n = i?v(c), and our condition becomes

(51) [J

= [I + SΉC + (S,RC)2 + + (SR,)"-1] [Ry - SRc{yτ)] ,

where we have used the fact that d = e — v(c) = dT = ώS. Compute
the constant term to obtain the equation

(52) Rx - (TRc)
nRxS = Ry- (SRc)uRyτ .

This is equivalent to the relation x — [v(c)]{xS) = y — [v(c)]yT for every
x of Kf where y = ίcBgA^1. Thus (52) is equivalent to

(53) / - SRV{C) =BeAeV- ΓBv(β)]

We also compute the term in Tr in (51). Since r < n — 1 the left
member of this term is (TRc)

rRx — (TRc)
rRxS, which is equal to

RrRgc(Rx- RxS), where g = (cΓ)(cΓ)2 -(cΓ)7*-1. The right member is
the term in S, and this is SRc(Ry — Ryτ). Hence (a? — xS)g = y — yT,
a result equivalent to

4 See footnote 1.
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(54) (/ - S)B0 = BeAΛI - T) .

Since the transformations I — T and I — 272V(C) commute we may use
(53) to obtain

(55) (I - S)Rg[I - TRUΰ)] = [I - SJ?v(β)] (I - T) .

By (48) we may equate coefficients of I, S, T and ST, respectively. The
constant term yields g = e. The term in S then yields v(c) = e which is
impossible when S and T generate the same group and 2) = ®(S, S, Γ, c)
is a division algebra.

We have proved the following result.

THEOREM 2. Let ® = 2)(ί8, S, Γ, c) be a division algebra defined
for S Φ I, T Φ I, S Φ T. Then S) is commutative if and only if
ST = I and c = - 1.
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