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OPERATIONAL CALCULUS OF LINEAR RELATIONS

RICHARD ARENS

1. Introduction* Let X and Y be linear spaces, and T a linear
subspace of 1 0 7. We call T a linear relation to indicate our interest
in those constructions with T which generalize those carried out when
T is single-valued [4].

Properly many-valued linear relations arise naturally from operators
T when T~τ or T* is contemplated in cases where they are not single-
valued. One advantage of not dismissing T* when it is not single-
valued is that T** = T if and only if T is closed (for the details, see
3.34, below.) A more superficial attraction is that linear relations, even
self-adjoint linear relations in Hubert space can exhibit phenomena
(unbounded spectrum, domain Φ X) in finite-dimensional spaces which
linear operators exhibit only in infinite-dimensional spaces.

We present an outline of the paper. In § 2 we define p(T) where
p is a polynomial with coefficients in the field Φ involved in X. We
prove that (pq)(T) = p(T)q(T), (poq)(T) = p{q{T)), and point out that
sometimes (p + q){T) Φ p(T) + q(T), etc.

In § 3 we turn to relations in dual pairs. In this situation, adjoints
can be defined. We build an automorphism λ —> λ of Φ into the theory
of dual pairs, so as not to exclude the Hubert space situation, which
dual pairs are intended to imitate. (Thus the transpose is a special
kind of adjoint.) Closedness is defined algebraically, but in a way com-
patible with the topological concept. Closure of T7* and other algebraic
properties of * are established. Finally, it is shown that if T is closed
and its resolvent is not void then p(T) is also closed.

Section 4 considers the self-dual case. We give a simple condition
(4.3) always true in Hubert space, that T*T be self-adjoint, T being
closed. In § 5 we give the spectral analysis of self-ad joint linear re-
lations in Hubert space. In a 1:1 manner these correspond to the
unitary operators, via the Cay ley transform. However, it can be shown
directly that X is the direct sum of orthogonal subspaces Y, Z which
reduce T (= T7*) giving in Z a self-ad joint operator and in Fthe inverse
of the zero-operator.

2 Linear relations* A relation T between members of a set X and
members of a set Y is merely a subset of X x Y. For x e X, T(x) =
{y (x, y) e T}. The domain of T consists of those x such that T(x) is
not void. T is called single-valued if T(x) never contains more than
one element. The range of T is the union of all T(x).
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10 RICHARD ARENS

If T is as above and S (Z Y x Z, then SoT = {(a, z): (x, y) e T,
(yf z) e S for some y}. We shall write this ST. Finally, T'1 =
{(y, x): (a;, i/) € T}. The r α ^ e of T is the domain of T~\

If X and F are linear spaces over a field Φ then I © 7 is I x F
with the usual linear structure. A linear relation T between members
of X and members of F is a linear subspace of 1 0 7. Linearity is
characterized by

2.01 aT{xx) + βT(x2) c T(axx + βx2) , (α, β e <Z>; ^ , #2 e X) .

The null space of T is the class of x such that (x, 0) e Γ. It is
easy to see that
2.02 if S and T are linear relations with the same null space, and
the same range, then S c T only if S = T.

Let L be a linear subspace of X, and λ an element of Φ. Then
λz denotes the single valued operator defined on L by XL = {{x, Xx): x e L}.
The unit of Φ we denote by 1. Thus 1L has a meaning according to
the preceeding agreement. For T a linear relation with range L, we
define XT as XLT. The zero of Φ we denote by 0. Thus OT is not Ox,
but OL where L is the domain of T.

Addition of linear relations S, Γ is defined as follows:

S + T — {(x, y) :y = s + t for some s, t such that (x, s) e S, (x, t) e T} .

The linear relations in J φ J do not form a linear space, let alone
a linear algebra. We list algebraic properties partly for use later, but
mainly to call attention, as it were, to those that are lacking.

2.1 THEOREM. The operations Ό ' and ( + ) are associative, ' + ' is
commutative. Let R, S, T be linear relations. Then
2.11 domain of R = X<£=> lx c 22 "Ή;
2.12 JB is single-valued ξ==$> RR-1 c l z, L = range of R;
2.13 λ e ί ^ Φ X(ST) = (λS)Γ = S(λΓ) = STλx, L = domaiu of T;
2.14 jβ c S:φ # + T c S + T, RT a ST, TR c: TS, R-1 a S"1;
2.15 jβ/S + ΛΓ c i?(iS + Γ), with equality when the domain of R coin-

cides with the whole space;
2.16 (S + T)R c SR + TRf with equality when R is single-valued;
2.17 (ST)-1 = T-'S-K

The proof of these may be left to the reader.
We say S and T commute is ST = TS. Suppose SR = #S, TR = i?Γ.

Then (S + Γ)J2 c i2(S + T). The equality may not hold, as the example
S = —T=1X9 domain of R Φ X, will show.

Tn is defined as Tn~1T, as usual. If Tn appears in a formula where
n = 0 is allowed, then T° stands for lx.

These things can all be extended to the case of moduls over a ring
Φ. However, we now turn to a lemma whose proof requires that Φ be a
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field.
For the remainder of § 2, T will denote a linear relation in J φ J ,

and for λ e Φ, we write just 'λ' for 'Xx\
It is clear that a0 + aλT + • + anT

n has for its domain, just the
domain of Tn. This is true even if an — 0! If a polynomial p has
coefficients a09 aly , an, then by p(T) we mean α0 + ax + + anT

n

provied an Φ 0. Otherwise we omit an and consider whether an-λ Φ 0,
etc. If an Φ 0 and α t = 0 for some i <ny then it does not matter
whether a% is omitted or not (but we have already agreed to retain it)
because, for example Γ3 + 0T = T\

The next lemma settles a little difficulty that arises in the 'multiple-
valued' situation. It enables us to include the multiple valued case in
the succeeding theorem, whose substance is that the usual laws of algebra
apply to the multiplication of linear polynomials in T. The importance
of this theorem is based on the natural fear that even in the single
valued case (see 2.15, 2.16), factoring might produce a proper extension
of the "multiplied-out" polynomial.

2.2 LEMMA. Let (xfy)eaQ + a1T
J[ h anT

n

y where an Φ 0.
Then there exist y0, ylf , yn such that

2.21 yQ = x, ΣΛaiyi = y
ί=0

and

2.22 (l/i-i, ϊ/i) e Γ (ΐ = l , ••-,*&).

Proof. Assume t h a t for some j , we have yo,y19

 m ,yn

 s u c h t h a t
2.21 holds, and (instead of 2.22)

U) ( l/,-i, V ι ) e T (l^iύ J)

and

(x, Vi) eTι (1 g i ^ n) .

Let k be the next integer greater than j such that ak Φ 0. We shall
establish (&). This will suffice to prove the lemma.

Because ak Φ 0 we can find XL, , λ̂  such that, for 1 ^ h ^ i,

We can find z19z2, ",zk where zk = yk and (x,zj,(z19z2), ,(zk-19zk) e T.
This implies that (0, yλ — zλ) e T, and (yt^ — zt-19 yt — zt) e T for i ^ j .

Now we define w0,w19 9wn as follows. w0 = χ,wλ = z19 for 1 ^ m ^ fc,

j-k+m

ί=i
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while wk+1 — yk+1, , wn = yn. It is clear that (w4_i, wt) e T for i ^ fc,
and (x, wt) e Tι for all i. There remains only the question, does
^jxiwi — y, or, equivalently, does

2.24 Σ α Λ ( i ί i Λ - 2/J = 0?

The sum in 2.24 has the value

fc—1 fc j - f c + r a

2_i CXm\Zm y<m) i ,2-ι Jd j ^m^- ' ίv i/ j - fc+TO+i- i ^ J - f c + m + i + ί /

It is not hard to verify that for 0 ^ h < fc the coefficient of yft — zh

in this sum is

2.25 -ah + Σ α«Λ

where the Σ ' ^ e r m is understood to be absent when fc — j + h > fc.
These λ were chosen in order to make this vanish for 0 ^ h ^ j . For
i < h < fc, αΛ = 0; since fc < fc — j + h, the Σ t e r m ?s absent. Thus
the sum in 2.24 is 0, and this concludes the proof of the Lemma (2.2).

N.B. This lemma does not imply that T could be cut down to a
linear operator U whose domain contains c, Ux, •••, and Ό^^x, where

Σ o α w t f Λ (a0 = y,

for x could be 0 and y be not 0.

2.3 THEOREM. Let p and q be two polynomials with coefficients in
Φ. Then

2.31 (qp)(T) = q(T)p(T) .

Proof. Suppose the degrees of p and q are m and n respecively.
Let p(ξ) — a0 + aj; + + amξm. Mutatis mutandis, let the coefficients
of q and qp be β3 and yk.

Now suppose (x,y) e (pq)(T). By 2.2 there exist xίy « , a w w such
that (xk-lf XJC) e T for fc = 1, , m + n where x0 = x, and Σ'/*^* — 2/
Let ^ = Σ Γ Λ ( + J for i = 0, , %. Then (α?, j/0) e 2>(Γ) and (^_x, ^ ) e Γ.
Let z = Σj=cβjVJ, so that (yo,z)eq(T). Then (α,s) e g(Γ)p(Γ). But
obviously 2 = Σγfcxfc = y. This shows that (?p)(T) c q(T)p(T).

Now suppose (α?, 2) e q(T)p(T). Then there must exist 2/ such that
(#, y) e p(Γ) and (?/, z) e q(T). By 2.2 we can find x0, -*-,xm and
VQ> "-,Vn (where x0 = #, and ί/0 = y) such that Σ^i^t = V and Σ/3j2/j = «.
We now turn to the free linear space Ξ (over Φ) generated by elements
£0, , ξmi Vit * •> %• In S we define a linear operator S, whose domain
is spanned by ξ0, * ,ηn-lf as follows:
Sd,-!) = ^ (i = 1, , m), S(%) = %, where η0 = Σαi?ί» and



OPERATIONAL CALCULUS OF LINEAR RELATIONS 13

(j = 1, , n — 1). We can map Ξ linearly into X by a mapping / which
sends ξt into Xi9 and r]3 into y3. This mapping has the property that
for ξ in the domain of S, (/(£), /(Sf)) e Γ. Derivable from this is that
if r is a poly nominal and r ^ ) ! is defined some ξ in Ξ then (/(f),
f(r{S)ξ)) e r(T). We apply this to ξ = ξ0 and r = gp. It is easy to
see that p(S)(ξ0) = %, whence f(qp(S))(ξ0) = f(Σβflj) = Σfrl/j = s, and

This completes the proof of 2.3.
[jP^rί/^βr remarks on polynomials of relations. Inspection of the

first argument in the proof of 2.3 yields the following result.

2.32 THEOREM. Let p and q be as in 2.3. Then

2.33 (p + q)(T) czp(T) + q(T) .

The ' = ' does not always hold. While

2.34

hold when Σaι =£ 0, it does not hold when Σai — 0, some at Φ 0, and
T is not single-valued.

As the assertion connected with 2.34 implies, the reason that 2.33
cannot be strengthened to an inequality, is that T — T is not 0 times
some relation, if T is not single-valued. We close this little discourse
on the peculiarities of many-valued relations by showing that the dif-
ficulty arises only with the terms of highest order.

2.35 THEOREM. Let p, q be as above, and suppose the sum of their
leading coefficients is not 0. Then (p + q)(T) = p(T) + q(T).

Proof. We combine the monomials of like degree on the right, and
use 2.34 in each case. Eventually one may have to apply the following

2.36 L E M M A . If n^k then Tn = Tn + X(Tk - T).

Proof. Let (x, y) belong to the right side. Then y = u + v where
(x, u) e Tn + XT16 and (x, v)ε — XTk. From 2.2 we obtain u0, --,un

which are successively Γ-related, u0 = x, un + XU]c = u. Therefore
XUk + ve T*(0), whence un + XUjc + ve T\un-h) c T\x). Thus (a, y) e Tn.

2.37 THEOREM. Let q and p be polynomials. Then(qop)(T) = q(p{T)).

Proof. The poly nominal qop is the result of substituting p into q,
by definition. The leading coefficients may be taken as not zero. We
can multiply out the terms βjP(T)3 on the right side, without affecting
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that sum, by 2.3. (The associative law holds for addition.) We can
arrange the sum as a polynominal, by virtue of 2.35 there being in
fact at all times a unique term amβnT

m+n of highest degree. The result-
ing polynomial is of course {q°p)(T), for formal reasons.]

We now make some definitions which coincide with the usual ones
for closed operators in F-spaces. We call a linear relation T resolvable
if T-1 is single-valued with domain X (that is, by 2.11, if T ^ Γ c l ^ c TT"1.
If T~1T= 1 = TT-1 we call T regular.)

2.4 PROPOSITION. The product of {finitely many pairwise) commut-
ing linear relations is resolvable only if, and if, each factor is resolvable.

Proof. It is inevitable and sufficient to consider the case of two
factors. If these are resolvable, so is their product. The criterion
Γ T c l c TT'1 can be used here.

If on the other hand, a linear relation S is not resolvable, then either
(x, 0) e S for some x Φ 0, or the range Φ X. Accordingly, TS or ST
shares the defect. (This sufficies for 2.4).

The resolvent set of a linear relation T is the class of λ in Φ for
which T — X (by which we mean T — Xlx) is resolvable; and its com-
plement is the spectrum σ(T) of T.

2.5 (Spectral polynomial theorem). Let Φ be algebraically closed,
and let p be a polynomial over Φ. Then σ(p(T)) = p(σ(T)), where by
the latter is meant the class of p(X), X e σ(T).

Proof. For μ e Φ we can write

p(T) -μ = a(T- \) .(Γ - λn), μ =

where T — \, , T — Xn commute.
If μ e σ(p(T)) then p(T) — μ is not resolvable, whence (by 2.4) some
X, e σ(T), or μ e p(T)). If μ e p(T)) then μ = p(λ), X e σ(T), and so
X — χt for some ί. Then p(T) — μ has a non-resolvable factor, and so
is not resolvable. Therefore μ e σ(p(T)). This proves 2.5.

We have defined the sum (and difference) of two linear subspaces
U and V (say) of 1 0 7, but occasionally one is concerned with the
linear subspace of I φ Γ which they span. We will have to use some
other symbol for this, and we choose

2.6 UΦ V.

Our purpose is to prove the following

2.61 THEOREM. The range ofl— V~lU is the null-space of U Φ V>
and the null-space of 1 — V'1 U is the domain of U Π V.
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Proof. Let (x, z) e 1 - V^U. Then (x, z - x)ε - V^U whence
(x, y) e U and (y, x — z)ε — F~\ for some y. Therefore (z — x, — y) e V
and so (z, 0) e U Φ V. If moreover, z = 0 (so that x is in the null-
space) then (—x, —y) and thus (x, y) belongs to V and thus x e dom Uf] V.
The reverse inclusions can be established by reversing the steps of this
argument.

3 Ad joints* For the formalism of ad joints, it is good to suppose
that the field Φ has an involutory automorphism

ΛJ — > A, ,

and we shall do so. Whether Φ admits a non-trivial involution or not,
one can base the discussion on the identity. Thus the discussion includes
the transpose.

Let X, A be two linear spaces over Φ. We shall say X, A are a
(Φ, —) dual pair (or, more briefly, a dual pair) is there is a non-dege-
nerate bi-additive, (̂ -valued form <, > defined o n l φ A , linear in first
argument, and semi-linear in the second:

ζx, λα> == X<x, ay .

Let Y, B be another (Φ, —) dual pair. Let T be a linear relation
between elements of X and elements of Y, i.e., let T be a linear sub-
space of 1 0 7. I φ 7 , A © β form a (Φ, —) dual pair, in a natural
way:

The adjoint T* is defined as follows:

3.11 Γ* = {(6, α): <a?, α> = <τ/, 6> for all (α?, i/) e Γ} .

T* is (evidently) a linear subspace of β © A .
For a linear subspace ί7 of ΰ © 4 we define

3.12 Ϊ7* - {(a?, ?/): <a?, α> = <?/, 6> for all (6, α ) e ί / } .

It is usually supposed that 3.12 need hardly be written down, once 3.11
is presented. We mention three obvious properties of this process (or,
rather, these processes. See § 4)

3.2 T c T**, S c Γ φ T* c S*

3.21 (λΓ)* = λT*

3.22 (ϊ7-1)* - (77*)-1 .

For a subset M of X, let

3.23 ML = {a: <x, α> = 0 for all α> 6 M)
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while if M c A then

3.24 M1 = {x : ζxt α> = 0 for all a e M} .

In this sense (cf. [4])

3.3 T* ^ ( - Γ - 1 ) 1 .

In 3.3 we have in mind the natural pairing of 7 0 1 and
of course.

Again, considering X, A as a typical pair, and M a linear subspace
of X, we define M11 as the closure of M. This requires no topology
in X, A, or Φ, and resembles the Stone topology [1, p. 466] in this
respect—and in fact admits a natural, joint generalization.

M is closed if M = M1-1, and dense if M11 = X.

PROPOSITION.

3.31 7%e null-space of Γ* = (rα^gre of T)1

3.32 Γ* is single-valued only if and if the domain of T is dense
3.33 T* is closed
3.34 T** is £/fce smallest closed linear relation containing T.

Here 3.31 is easily established on the definitions, and 3.32 follows
from it by considering the null space of T*"1. 3.33 is obvious, because
any M1 is closed, while 3.34 follows from 3.33.

Turning to the adjoint of a sum, let S and T be two linear subspaces-
of 1 0 7, It is quite elementary that

3.4 S* + Γ* c ( S + T)* .

The following gives an unsymmetric condition which insures the
equality.

3.41 THEOREM. If the domain of <S* = B, and the domain of S
includes that of T, then

(S + T) = S* + T* .

Proof. Let (6, α) e (S + T)*. Then there is an element aλ such
that (δ, αx) e S*. Let us show that (6, a — αx) e T7*. To this end, suppose
(a?, t) e T. Then (a?, s) e S for s = S(&), and (a?, s + t) e S + T. Now

<α, α - α:> - <t, 6> = O, α> - <α, α2> - <t, 6>

= <a?, α> - <s, 6> - <ί, 6> = <&, α> - <s + t, 6> = 0 .

Thus (δ, α - cO e Γ*, which, with (6, α j 6 S* gives (6, α ) e S H Γ* as>
was to be shown.

Although our T is not a function, we may adapt a symbolism usually
used in a functional context, and write
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X TY, or Yτ X ,

to convey that Γ is a linear subspace of I φ 7 .
If we introduce S

Y SZ

where Z, C is another (Φ, —) dual pair, then

o ST ZJ , anci o {ST)* •**•

Since A Γ* B s* C we also have C τ*s* A and there arises the
question of the relation of (ST)* and Γ*S*. In fact, it is quite elementary
that (ST)* ID Γ*S*, but we wish to examine also the reverse inclusion,
which is initiated by the following lemma. Here fa (for example) is the
linear functional on X defined by fa(%) — <(#, ά}, etc.

3.5 LEMMA. Let ceC, aeA. Consider these linear functionals
defined in Y

3.51 fooS.faoT-1.

Then (c, a) e (SoΓ)* if and only if these functionals are single-valued
and agree on the intersection of their domains; and (c,a) e Γ*oS* if
and only if they have a common extension to some fbJb e B.

Proof. The second assertion is the easier to show. If (c, a) JΓ*OS*

then ( c , i ) ) e S * , ( M ) e Γ for some b e B. Let y e D(S) n D(T^)
('D1 means 'domain'). I say these functionals (3.51) agree with fb for
such y. Indeed, if (y, z) e S and (y, x) e ϊ 7" 1 then fc(z) = (z9 c> = <(τ/, 6> =
<jc, α> = fa(x).

Conversely, if b having this property exists, then (c, b) e S* and
(6, α) e T* or (c,a) e T*oS*.

Now let (c, a) e (SoΓ)*, and let y e D(S) n D^T-1). Let (y, z) e S,
(x, y) 6 T. Then (x, z) e SoT and ζx, a) = <«, c>, and these are generic
elements of {fa°T~1)(y)y{fc^S~1)(y) respectively. Thus 3.51 are single-
valued, and agree on D(S) Π D(T~λ). The converse is obvious.

This establishes 3.5.
From this, a useful conclusion may be drawn.

3.52 PROPOSITION. Suppose either that the domain of S* is C, or
that the range of T* is A. Then

(SoΓ)* = T*oS* .

Proof. Let (c, a) e (SoΓ)*. Consider the case in which the domain
of S* is c. Then (c, b) e S* for some b. Let (y, z) e S. Then (fcoS)(y) =
<z, c> = <j/, by, i.e., / 6 is an extension of' fe°S. Hence it is also an ex-
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tension of fa°T~1 (the latter confined, if need be, to the domain of
S + T~\) We apply 3.5, and obtain (c, a) e T*oS*.

If the range of T* is A, the proof is similar. But it may be reduced
to the case treated, by using 3.22, and the general fact (t/o F)" 1 = V~xo U~ι.

We may now drop the Ό' again, which was reintroduced to make
3.5 easier to present.

3.6 PROPOSITION. Let U be a linear subspace of 1 0 7, and V,
of Y®Z. If either the domain of Z7** is X, or the range of F** is
Z, then (VU)** c F**C/**.

Proof. In any case U*V* c (VU)* and (Ft/)** c (?7*F*)*. We
think of [7* as S and F* as T and apply 3.52, mutatis mutandis.

We recall (3.34) that T is closed precisely when Γ D T**. The
merit of our ''many-valued" approach is that this criterion is available
whether T* is single-valued or not.

3.7 THEOREM. Let S and T be linear relations as above. Suppose
they are closed, and that either the domain of T is X or the range of
S is Z. Then ST is closed.

Proof. By 3.6, we obtian (ST)** c S ** Γ** = ST provided the domain
of T is X or the range of S is Z, which suffices.

The relevance of the existence of resolvent values, to the question
of closedness of polynomials in a (closed) operator, was noticed by
Taylor [3] (see also [2, p. 56]).

3.8 THEOREM. Let T be a closed linear subspace of X@X, for
which there is at least one λ e Φ such that T — X has range X. Then
p(T), for any polynomial p over Φ, is closed.

Proof. By the algebraic Theorem 2.3 we have

where q is a polynomial of degree less than that of p. By 3.7 and an
obvious inductive approach, we see that [p — p(λ)](Γ) is closed. Now
[p — 2>(λ)](T) = p(T) — p(X) by 2.35, so the latter is closed. Note that
p(T) - U + F where U = p(T) - p(λ), F = p(X).

Now (17+ F)* =) £P + F* and so (U + F)** c (U* + F*)*. Let
F* be the S of 3.41. Then its domain is the whole space, while S* = F
and its domain is also the whole space. Thus (U + F)** c Z7** + F** =
Ϊ7+ F, so that p(T) is closed. Of course, we also know that

p(T) = p(X) + {T - X)p(T)
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which does not emerge from the proof given in [2].

4Φ Self-duality* When X, A is a (Φ, —) dual pair and A = X, we
speak of a self-dual pair. This situation presents two definitions of M 1 ,
that given by 3.23, and another, which we might call 1M, given by 3.24.
These coincide if and only if

4.1 <x, yy = 0 if and only if <#, xy = 0

which, in turn, is equivalent to
4.11 There exists a p e Φ such that pp = 1 and

ζy, x ) — p(x, yy f o r a l l x,y e X .

(We leave the proof of this equivalence to the reader. One should note
that 4.1 for X is transmitted, via 4.11, to X 0 X , so that when
T c X 0 X, T1 = LT when 4.1 holds.)

The situation M± Φ ±M would not be awkward if one had ±(M±) =
(-LΛf)1, but for all we know this condition might be equivalent to 4.1.
In any case, it does not hold in general (see 5.41).

We therefore assume 4.1 in this section.
Let T be a linear subspace of 1 0 X. Then W = T + TL (see 2.6)

is of interest, because for closed relations in Hubert space, W = X 0 X.
In general, the following relations hold:

4.2 null-space of W — X W is dense

null-space of W is dense T1- Π Γ(0, 0) .

We proceed to generalize a proposition of von Neumann's [5].

4.3 THEOREM. Let T be closed. Let W = T T T1^ and suppose
that the null-space of W is all of X. Then the null-space of 1 + Γ*Γ
is (0), the range is X, and (Γ*T)* = Γ*Γ (i.e., T*T is self-ad joint.)

Proof. Let U (in 2.61) = rΓ, and V=T\ Then - F" 1 = T*.
Therefore the range of 1 + T*T is the null-space of W, that is, X.
Moreover, the null-space of (1 + Γ*T)* is (by 3.31) (range of 1 + T*T)L,
which is (0).

We know that Γ*S* c (ST)* in general, so if we set S = T*,
S* = T** = T, we get Γ*T c (T*T)*, or 1 + Γ Γ c ( l + Γ T ) * ,
Here we have used 3.41.
Considering 2.02, and what we know about the null-spaces and ranges,
we conclude that 1 + Γ * Γ = (1 + T*T)*, T*T=(T*T)*.

We have already defined T to be self-ad joint if T— T*. We call
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T unitary if T* = ϊ7"1. We say nothing about single-valuedness. In
the Hilbert-space-situation, there are no unitary linear relations except
those single-valued relations which are usually called unitary, as the
following shows.

4.4 PROPOSITION. T'1 C T* if and only if ζx, %> = ζy, i/> for all
(x, y) e T. If T* = T~λ and T+ TL = I φ X then the domain and
range of T both equal X.

Proof. The statement about ζx, #> and ζy, y) is obviously true.
Now assume Γ + Γ ^ l φ l a n d ϊ7* = T~\ Let y e X. Then

(0, y) = (x, t) + (-a?, ?/ - ί) where (a?, t) e T and (-a?, y - t) e TΣ =
(- T*)-1 = -T, or (a?, y -t) e T. Then (2a?, #) e Γ, or the given y is
in the range of T. Now the things assumed about T are inherited by
T-1 so that the range of Γ"1 is also X.

Returning briefly to the Hilbert-space-situation, if T* = T"1 then T
is closed and so T + T 1 does equal 1 0 X, whence T ΐs unitary in the
usual sense.

To generalize the formal aspects of the Cayley transform [4] we
assume now that Φ contains an element i such that i2 — — 1 and i = — ΐ.

Cayley's map sends X®X onto I φ l thus

C(x, v) = (x — iyf x + iy).

Its third iterate is scalar, and it preserves orthogonality, etc. If
T c X © X then

C(T) = {(s -it,s + it): (s, t) e T}

is the Cayley transform of T.
We list several elementary properties.

4.51 S c T<#==φ C(S) c

4.52 C(-T)= C(T)-χ

4.53 CίΓ-1) = -C(T)-1

4.54 CίΓ 1) = C(T)1

4.55 C(Γ*) =

4.6 THEOREM. T a T* if and only if C(T)-1 c C(Γ)*, T = T* if
and only if C(T) is unitary.

If C2(Γ) were unitary, and we were in Hubert space, then T would
have a spectral resolution, but C2(T) is unitary if and only if T* = — T.

The spectral mapping theorem holds for this Cayley transform:

4,7 σ(C(T)) = {(1 + iτ)(l - iτ)-1: τ e (Γ)}
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with the following understanding: oo e σ(S) means 0 6 σ(S~1), 2/0 — oo,
(1 + ioo)(l — ioo)-1 = — 1 . Moreover, eigenvalues correspond to eigen-
values.

The set consisting of the spectrum of T, plus the symbol oo if
0 € σ{T~λ) we call, following Taylor, the augumented spectrum. The
augmented spectrum thus contains oo whenever T is not single-valued.

5* Hubert space. In Hubert space X, (Φ = complex numbers), self-
adjoint linear relations T may be analyzed in just the same way as the
single-valued ones are, by von Neumann, in [4]. The general theory is
perfect in a way that the usual theory is not: every unitary operator
is the Cayley transform of a unique self-ad joint linear relation, and
conversely (4.6).

However, rather than repeat the application of the Cayley transform
method, we prefer to analyze the general self-ad joint linear relation in
term of self-ad joint operators.

If T is a closed linear subspace of X 0 X, X being a Hubert space
(as shall be assumed in all of this section) then

5.1 T= Tβo±T1

where TΌo, 2\ are orthogonal closed linear subspaces (so we write '±'
instead of ' + ') and T^ = T f] ( { 0 } © ! ) . Thus T* has only 0 in its
domain, while its range is T(0) (see § 2). T(0) is closed, since TL —
{0} 0 T(0). The domain of TΎ is the domain of Γ, and Tλ is single-
valued.

5.2 LEMMA. T(0) = (dom T*) 1 , dom Tx is dense in T*(0)-S and
the range of T2 lies in T(0)L.

Proof. 3.31 tells us that T*" 1 ^) = (dom I 7 - 1 ) 1 . We can replace T
here by T~\ and then replace T* by T since T is closed. Thus Γ(0) =
(dom T*y. From T*(0) = (dom T)L we obtain (dom T)1 = T*(0)\ and
thus the second assertion. Finally, if (x,y) e Tu and (0,z) e T^ then
(%9y) JL (0,z), because Tλ is the orthogonal complement of TL relative
to T. Hence <#, z> = 0.

5.3 THEOREM. Let T be a self-adjoint linear subspace of I φ X
Let T = TU ± Tx as above. Then

X= Y±Z

and Tπ consists of all pairs (0, y), y e Y while Tx is a closed linear
operator whose domain is dense in Z, and whose range is in Z. Tlt

restricted to Z, coincides with a self-adjoint linear operator in Z.
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Proof. Let Y = Γ(0), Z = Γ(O)1. Then the domain of Tλ is dense
in Γ^O)1- = YL = Z and the range lines in T(θy = Z, all by 5.2.

Suppose that (z, w) e S* where S is Tx restricted to Z. Then
ζx, wy = <v, #> for all (a?, v) e Tλ. Each (a?, u) e T is of the form
(a?, y + v) where y e Γ(0) and (a?, v) e TΊ. Now <j/, z) = 0, so <x, w> =
<2/ + v, z} for all (x, y + v) e T. It follows that (z, w) e Γ* = ϊ7. But
since z, w e Z we have (s, w) e Γlβ This proves 5.3.

We return here to the question raised in second paragraph of § 4,
because a counterexample in a Hubert space context is more desireable
than any other. Let X = L2 [0,2], in which the inner product will be
denoted by <, >, and orthogonality, by _|_. Select a bounded operator
T, domain X, range dense, with single-valued inverse, and define a self-
dual pairing by means of the formula

5.4 If, g] = <Tf, g> = <f, T*g> .

The associated orthogonality will be denoted by Ό9 to prevent confusion
with ' !_ ' already present.

5.41 PROPOSITION. It is possible to select T and M (a linear sub-
space of X) such that

5.42 ° ( I ° ) = M but ( ° I ) ° Φ M .

Before deciding on a specific T we shall establish

5.43 LEMMA. ° ( I ° ) is the closure of M in the norm \\x\\τ=\\Tx\\
[4, 298], and ( ° I ) ° is the closure of M in || •• \\τ*.

Proof. M° = {a:[M,a] = 0} = λ(TM), and °M = λ(T*M). Con-
sequently ° (I ° ) = ^ Γ ^ Γ M ) ] , and so ^ e °{M°) precisely when
g _L T*L(TM) or Tg 1 L(TM), i.e.,

5.44 Tge(TM)11 =ΎW.

But this characterizes the closure of M in || | |Γ, and this observation
suffices to establish 5.43.

Now we select T' = J where

(Jf)(t) =

This J meets our requirement for T. We have

(J*f)(t) = \\f(τ)dτ ,

whence J * = E — J where E is the projection on the constant functions
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in X.
Let N be the linear subspace of those functions that vanish on [1,2].

Let

0 ^ t < 1

0 0 g t SL 2 .

Then he N and M = N Π {h}1 Φ N. Thus EM = (0). It is easy to
establish, in the order given, the following: JM c N, J*N c i\Γ, JM = JV,

Then one observes that JfeN implies f e M while J*f e N implies
f e N, (and each converse holds, because JM c N, J*N c N.) Using
5.44 as a criterion for J# e °(I °) we obtain °(I°) = M, ( °I) ° = ]V.

BIBLIOGRAPHY

1. Richard Arens, A generalization of normed rings, Pacific J. Math., 2 (1952), 455-471.
2. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, A.M.S. Collow. Publ.,
3 1 .
3. A. E. Taylor, Spectral Analysis of closed distributive operators, Acta Math., 84(1950),
189-224.
4. J. von Neumann, Uber adjungierte Funktional-operator en, Ann. Math., 33, (1932), 294-
310.

UNIVERSITY OF CALIFORNIA, LOS ANGELES





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RALPH S. PHILLIPS

Stanford University
Stanford, California

F. H. BROWNELL

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

L. J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH
T. M. CHERRY

ASSOCIATE EDITORS
D. DERRY
M. OHTSUKA

H. L. ROYDEN
E. SPANIER

E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON '

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Reprinted 1966 in the United States of America



Pacific Journal of Mathematics
Vol. 11, No. 1 November, 1961

A. A. Albert, Generalized twisted fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Richard Arens, Operational calculus of linear relations . . . . . . . . . . . . . . . . . . . . . . . . 9
John Herbert Barrett, Disconjugacy of a self-adjoint differential equation of the

fourth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Paul Richard Beesack, Hardy’s inequality and its extensions . . . . . . . . . . . . . . . . . . . . 39
Julius Rubin Blum and David Lee Hanson, On invariant probability measures.

II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Robert Allen Bonic, Symmetry in group algebras of discrete groups . . . . . . . . . . . . . . 73
R. Creighton Buck, Multiplication operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Jack Gary Ceder, Some generalizations of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . 105
Meyer Dwass, Random crossings of cumulative distribution functions . . . . . . . . . . . . 127
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, Radial distribution and

deficiencies of the values of a meromorphic function . . . . . . . . . . . . . . . . . . . . . . . 135
William Cassidy Fox, Harmonic functions with arbitrary local singularities . . . . . . 153
Theodore Thomas Frankel, Manifolds with positive curvature . . . . . . . . . . . . . . . . . . . 165
Avner Friedman, A strong maximum principle for weakly subparabolic

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Watson Bryan Fulks and J. O. Sather, Asymptotics. II. Laplace’s method for

multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Adriano Mario Garsia and Eugene Richard Rodemich, An embedding of Riemann

surfaces of genus one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Irving Leonard Glicksberg, Weak compactness and separate continuity . . . . . . . . . . . 205
Branko Grünbaum, On a conjecture of H. Hadwiger . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Frank J. Hahn, On the action of a locally compact group on En . . . . . . . . . . . . . . . . . . 221
Magnus R. Hestenes, Relative hermitian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
G. K. Kalisch, On similarity invariants of certain operators in L p . . . . . . . . . . . . . . . 247
Yitzhak Katznelson and Walter Rudin, The Stone-Weierstrass property in Banach

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Samir A. Khabbaz, The subgroups of a divisible group G which can be represented

as intersections of divisible subgroups of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Marvin Isadore Knopp, Construction of a class of modular functions and

forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Charles Alan McCarthy, Commuting Boolean algebras of projections . . . . . . . . . . . . 295
T. M. MacRobert, Transformations of series of E-functions . . . . . . . . . . . . . . . . . . . . . 309
Heinz Renggli, An inequality for logarithmic capacities . . . . . . . . . . . . . . . . . . . . . . . . 313
M. S. Robertson, Applications of the subordination principle to univalent

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
David Sachs, Partition and modulated lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Frank S. Scalora, Abstract martingale convergence theorems . . . . . . . . . . . . . . . . . . . . 347
Elbert A. Walker, Torsion endomorphic images of mixed Abelian groups . . . . . . . . . 375
Morgan Ward, The prime divisors of Fibonacci numbers . . . . . . . . . . . . . . . . . . . . . . . . 379
Charles R. B. Wright, On the nilpotency class of a group of exponent four . . . . . . . . 387

Pacific
JournalofM

athem
atics

1961
Vol.11,N

o.1

http://dx.doi.org/10.2140/pjm.1961.11.1
http://dx.doi.org/10.2140/pjm.1961.11.25
http://dx.doi.org/10.2140/pjm.1961.11.25
http://dx.doi.org/10.2140/pjm.1961.11.39
http://dx.doi.org/10.2140/pjm.1961.11.63
http://dx.doi.org/10.2140/pjm.1961.11.63
http://dx.doi.org/10.2140/pjm.1961.11.73
http://dx.doi.org/10.2140/pjm.1961.11.95
http://dx.doi.org/10.2140/pjm.1961.11.105
http://dx.doi.org/10.2140/pjm.1961.11.127
http://dx.doi.org/10.2140/pjm.1961.11.135
http://dx.doi.org/10.2140/pjm.1961.11.135
http://dx.doi.org/10.2140/pjm.1961.11.153
http://dx.doi.org/10.2140/pjm.1961.11.165
http://dx.doi.org/10.2140/pjm.1961.11.175
http://dx.doi.org/10.2140/pjm.1961.11.175
http://dx.doi.org/10.2140/pjm.1961.11.185
http://dx.doi.org/10.2140/pjm.1961.11.185
http://dx.doi.org/10.2140/pjm.1961.11.193
http://dx.doi.org/10.2140/pjm.1961.11.193
http://dx.doi.org/10.2140/pjm.1961.11.205
http://dx.doi.org/10.2140/pjm.1961.11.215
http://dx.doi.org/10.2140/pjm.1961.11.221
http://dx.doi.org/10.2140/pjm.1961.11.225
http://dx.doi.org/10.2140/pjm.1961.11.247
http://dx.doi.org/10.2140/pjm.1961.11.253
http://dx.doi.org/10.2140/pjm.1961.11.253
http://dx.doi.org/10.2140/pjm.1961.11.267
http://dx.doi.org/10.2140/pjm.1961.11.267
http://dx.doi.org/10.2140/pjm.1961.11.275
http://dx.doi.org/10.2140/pjm.1961.11.275
http://dx.doi.org/10.2140/pjm.1961.11.295
http://dx.doi.org/10.2140/pjm.1961.11.309
http://dx.doi.org/10.2140/pjm.1961.11.313
http://dx.doi.org/10.2140/pjm.1961.11.315
http://dx.doi.org/10.2140/pjm.1961.11.315
http://dx.doi.org/10.2140/pjm.1961.11.325
http://dx.doi.org/10.2140/pjm.1961.11.347
http://dx.doi.org/10.2140/pjm.1961.11.375
http://dx.doi.org/10.2140/pjm.1961.11.379
http://dx.doi.org/10.2140/pjm.1961.11.387

	
	
	

