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1. Summary. We continue the work begun in [1]. In this paper
we investigate convergence properties of sequences of probability measures
which are asympototically invariant.

2. Introduction. Let 2 be a set, .9~ be a g-algebra of subsets of £,
and 7T be a mapping of 2 onto £ which is one-to-one and bimeasurable.
A set A e o is said to be invariant if A = TA, a probability measure Q
defined on & is invariant if Q(A) = Q(TA) for all Ae o7, and an
invariant probability measure P is said to be ergodic if every invariant
set A is trivial for P, i.e., if P(A)=0 or P(A) =1. Alternately an
invariant probability measure P is ergodic if whenever P(4) > 0 we
have

P(nU T"A) 1.

Let {Q,} be a sequence of probability measures defined on &. We
shall say that the sequence is asymptotically invariant if lim, [@.(4) —
Q.(TA)] =0 for every Ae .. In §3 we give a simple condition
which yields convergence of such a sequence to a given ergodic measure.
In §4 an example is given which shows that a reasonable conjecture is
in fact false, and further conditions are given which insure uniform
convergence of a sequence of asymptotically invariant measures. In the
last section we investigate convergence properties of certain sequences
of probability density functions.

Throughout the paper we shall have occasion to refer to the following
theorem, proved in [1]. We state it here as:

THEOREM 1. If P and Q are invariant measures which agree on
the invariant sets then P = Q.

3. A convergence theorem. Let P be an ergodic measure (we shall
assume throughout that every measure considered is a probability
measure) and let Q@ be a measure absolutely continuous with respect to
P. Define the sequence {@,} for n =1, 2, --- by the formula

Qu(4) = %gQ(TiA), Ae

Then it is an immediate consequence of the individual ergodic theorem
that lim, @,(A) = P(A) for every A e o7. Clearly the sequence {Q,} is
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asymptotically invariant. It is equally clear that the sequence {Q,} is
uniformly absolutely continuous with respect to P. It is the object of
this section to show that in fact these properties alone are sufficient to
insure convergence to P, and that the averaging is only incidental in
this case.

More precisely we have

THEOREM 2. Let P be an ergodic measure and {Q,} a sequence of
measures satisfying

(i) lim,[Q.(A) — Q.(TA)] = 0 for every Ae 7.

(ii) For every a > 0 there exists 8 > 0 and for every A e & an
integer N,,s such that if P(A) <8 and n = N,,; then Q,(4) =< a.
Then lim, Q(A) = P(A) for every A € 7.

Proof. If the conclusion is false there exists o, > 0, a set A € .&
and a subsequence {Q,} (to avoid multiple subscripting we shall index
subsequences in the same way as the original sequence) such that

(3.1) |Qu(4) — P(4)| = a, all n.

Now let 5 be the class of sets {p, 2, T"A, T"A°, n =0, +1, ...}, let
Z# Dbe the smallest field of sets containing %, and let .o’ be the
smallest o-algebra containing &% . We have YC ¥ C w’'c .. Note
that if Be€ Y then TBe Y and T-'Be . Now .&# consists of finite
intersections of finite unions of sets in Y and it follows from the prop-
erties of T that & has the same property, i.e., T is bimeasurable with
respect to # . Let

B ={A|lAe W', TAe &', T7'Ae '},

Then ¥ Cc Z C '. Suppose A € «#. Then TA® = (TA)° and T'A° =
(T'A)° and it follows that A° e <&#. Similarly let {4,} be a sequence of
elements of &#. Then T'U,4, = U,T4, and T7' U4, = U.T7'4,. It
follows that <# is c-algebra and consequently <% = .&#’. Thus T is
bimeasurable with respect to .o7’.

Now & is generated by a denumerable collection of sets and is
itself denumerable. By the usual diagonalization procedure we may
extract a further subsequence {Q,} which converges on every set of & .
Define Q(B) = lim, Q,(B) for Be % . Since each @, is a measure on
Z it follows that Q is finitely additive and monotone on &% . Note that @
satisfies (8.1); i.e., |Q(A) — P(A)| = a,. We proceed to show that @ is
a probability measure on & . Clearly Q(2) = 1. Let {B,} be a sequence
of sets in .# which decrease to the null set. Then {Q(B,)} is a non-
increasing sequence of numbers. Suppose lim,Q(B,) =p > 0. Let
a = p/2 and choose an appropriate 8 > 0 according to (ii) of the hypothe-
sis. Since lim, P(B,) = 0 we may choose B, so that P(B,) < 6. Then
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for » sufficiently large Q.(B.) < p/2 and hence Q(B,) < p which is a
contradiction. Thus o = 0 and Q is completely additive .& .

Since Q is a measure on &% we may employ the usual Caratheodory
technique to extend @ uniquely to .&7’. From the hypothesis it follows
that @ is invariant on &% and the method used in extending @ to .o/’
insures that @ is invariant on &'.

Now let Be .o’ and suppose B is invariant. Then P(B) =0 or
P(B) =1. Suppose P(B) = 0. It is clear from the hypothesis that in
that case Q(B) = 0 and similarly Q(B) = 1if P(B) = 1. Thus Q agrees
with P on the invariant elements of &', and it follows from Theorem
1 that @ = Pon .o7’. In particular Q(A) = P(A), which is a contradiction.
The theorem is proved.

Theorem 2 has an interesting corollary. Consider the condition

(3.2) lim % "P(T,A N B) = P(A)P(B) for all 4, Be <.

n i=0
It is trivial to verify that if (8.2) holds then P is ergodic. Conversely
if P is ergodic one may verify (3.2) by using the individual ergodic
theorem. However (3.2) is also an immediate consequence of Theorem
2. It is clearly sufficient to consider the case when P(B) > 0. In that
case define the sequence {@,} by
1 14
W(4) = —— =S P(T'AN B).
Q) = 5 - SPTANB)
It follows at once that the hypotheses of Theorem 2 apply and (3.2)
holds.

4. On uniform convergence. The converse of Theorem 2 evidently
holds. If lim, Q,(A) = P(A) for every A € o7 then (i) and (ii) of Theorem
2 are true. Furthermore if lim, @,(4) = P(4) uniform for A € .o~ then
lim, [@.(4) — Q,(TA)] = 0 uniformly for A € .%. It might therefore be
reasonable to except that if hypothesis (i) of Theorem 2 is strengthened to
lim, [@.(4) — Q.(TA)] = 0 uniformly for A € .o we might obtain uniform
convergence of @, to P. The following example, which is of some in-
dependent interest, shows that this is not the case. Let 2 be the unit
interval closed on the left and open on the right, and .o~ the Borel sets.
Define T'by Tx = (x + ¢) mod 1, where ¢ is an irrational number. Then
T is one-to-one, onto, and bimeasurable. Let P be Lebesgue measure.
Clearly P is invariant and it can be shown that P is ergodic. For n =
4,5, let A, =10,1/n]. Since P(4,) > 0 we have

P( U TtAn) -1

f=—o0

and consequently for each » there is a unique first integer k, such that
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kn
14 < P(U T‘An> <38/4.
Let
kn
B,= UTA,
v

and let b, = P(B,). Define the sequence {Q,} by Q,(A) = P(AB,)/b,. Since
b, = 1/4 it follows that the probability measures @, are uniformly
absolutely continuous with respect to P. Furthermore

| Qu(A) — Qu(TA)| = (1/b,) | P(AB,) — P(TAB,)|
<4|P(TATB,) —P(TAB,)|
=< 4[P(TA(TB, — B,)) + P(TA(B, — TB,))]
= 4P(TB, — B,) + P(B, — TB,)] .

Now
TB, — B, c T*"4,
and
B, — TB,c T *4, .
Hence
| @u(A) — Qu(TA)| = 8P(A,) = 8/n .
Thus

lim sup |@u(A) — Qu(TA)| =0

On the other hand Q.(B,) — P(B,) =1 — 3/4 = 1/4 and we do not have
uniform convergence. The remainder of this section remain is devoted
to exhibiting conditions under which one does obtain uniform convergence
of the sequence {Q,} to P. For this purpose we shall need several lemmas.

LEMMA 1. Let P be an invariant measure and @ be an arbitrary
measure. Then

sup |Q(4) — Q(T*4) | = 2 sup 1Q(4) — P(A)]| .
A€

Proof.

1Q(4) — AT*A)| = |Q(4) — P(A) + | P(A) — P(T*4)|
+ | P(T'4) — QT4)| .

Since P is invariant the middle term on the right vanishes and the
lemma follows.
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LEMMA 2. Let P be an ergodic measure and f be a non-negative
measurable function which is integrable with respect to P. Then for
every Ae 7 and a > 0 there exist infinitely many values of n such
that

STnAf(x)dP(x) < (ng(w)dP(x)> PA) +a.

Proof. Let B = SO fdP. If B =0 there is nothing to prove. Con-
sequently assume B > 0. Define the measure Q by Q(A) = S fdP|B for
A
A € o7, and the sequence {Q,} by

Q.(4) = S QT a)n .

Since @ is absolutely continuous with respect to P it follows Theorem
2 that lim, Q,(4) = P(A) for A e .o7. If the conclusion of the lemma
is false then for some A € .o and a > 0 we have for sufficiently large

n, S . JAP[B = Q(T"A) = P(A) + «/2. But then lim, @,(4) > P(A) which
T A
is a contradiction.

LEMMA 8. Let P be an ergodic measure and Q be a measure
which ts absolutely continuous with respect to P. Then

Sup 1Q(4) — P(A)| = 2sup | Q(A4) — AT'4)| .
A€ g

Proof. Let f be the Radon-Nikodym derivative of @ with respect
to P, and let B= {x|f(x) = 1}. Then
sup | Q(4) — P(A)| = | [/(0) — 114P()
Assume that P(B) < 1/2; in the contrary case we can use B°. Now if
7 is any integer we have
sup | Q(4) — QT*'A)[ = Q(B) — AT"B)
e g
= [Q(B) — P(B)] — [(T'B) — P(T'B)]
- SB[f— 1]dP — STiB[f— 1]dP .

Hence
sup [Q(4) — P(4)| = sup | Q) — QT4)| + | , [f —11aP
< sup |QA) — QT'A) [ + |, [F—11dP.

2
€ g



68 J.R. BLUM AND D. L. HANSON

Now let

fx)—1,2€e B

9(@) = {0, v e B°

Then
S Lf—11dP = j . gdP.
BNT B T'B
Let a > 0. Then from Lemma 2 there exist integers ¢ such that
S . gdP < (S gdP) PB)+a.
T B 2

But P(B) =1/2 and

SﬂgdP = | 1r—1uap < sup |Q(4) — P(A)| -

Hence
|,,99P < 1/25upQ(4) — P(4)] + @
T'B A€

and we obtain

fgng(A) —P(4)| = 2sgp |Q(A) — QTA)| + a
AE KL
for abritrary a > 0.

THEOREM 3. Let P be an ergodic measure and let {Q,} be a sequence
of measures each of which is absolutely continuous with respect to P.
Then

lim félg |Q.(A) — P(A)| =0
if and only if

lim sup |Q.(A) — Q.(T'A)| = 0.
A€

Proof. The theorem follows from Lemmas 1 and 8. Theorem 3 may
also be formulated in terms of L, convergence. For if f, is the Radon-
Nikodym derivative of @, with respect to P, then

sup | @,(4) — P(4)| = |
Aest

[f, — 11dP = § 1 - £,1dP.

{Fn>1} {fp<1

Thus
lim sup | Q,(4) — P(4)| =0
n A€ELY
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if and only if
Iimg If,—1]dP =0 .
n 2

Similarly we have

lim sup | @.(4) — Q.(T*4)| =0
" ey
if and only if

lim sup S | fu(2) — fu(T'%) | dP(x) = 0 .
n 2
Consequently we have the

COROLLARY. Let P be an ergodic measure, let {Q,} be a sequence of
measures each of which is absolutely continuous with respect to P, and

let {f.(x)} be the corresponding sequence of Radon-Nikodym derivaties.
Then

lim 89’ fu(@) — 1| dP@) = 0
if and only if

limsup | [£,(0) = £(T"9) | 4P (@) = 0 .

5. Uniform convergence of densities. In this section we shall be
concerned with probability density functions with respect to an ergodic
measure P, i.e., a function f is a probability if f is measurable, non-

negative, andS fdP =1. We begin with
Q

LEMMA 4. Let P be an ergodic measure and let f be a probability
density with respect to P. Let o > 0 and define the sets A and B by

4 = {a|sup | £(T'0) — £(T'0)| <
and

B={x||f(x) —1|>a}.
Then P(AB) = 0.
Proof. Let B'={x|f(x)>1+ a}. Suppose P(AB’)>0. Let

C=U>.T!AB’). Since P is ergodic P(C) =1. If x € C there exists
an integer m such that T™x € AB’, Hence
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sup | f(T'@) — f(T'z)| = sup | f(T"%) — f(T’2) | = a .

z€EA

In particular | f(x) — f(T™x)| < @ or f(x) = f(T™x) — a. But T™x € B’
which means f(x) > 1. Since an integer m can be found for each x € C

we have f(x) > 1 for all x € C. Then S fdP =\ fdP > 1, a contradic-
Q

[
tion to the fact that f is a probability density. A similar argument
applies to the set B” = {z | f(x) <1 — a}.

THEOREM 4. Let P be an ergodic measure and let {f,} be a sequence
of probability densities with respect to P. Then the following statements
are equivalent:

(i) P(li;n sup | £u(T') — £ T'0) | = 0) >0.
(i) P(timsup |f(T') — f(T')| = 0) = 1.
(iif) P(lim sup | fu@) — 1] = o) 1.

Proof.

(a) (i) implies (ii). Suppose (i) is true. Let B be a set such that
P(B) > 0 and such that

lim sup | f(T'x) — f(T'x)| = 0
n %)
for x € B. But clearly this is also true for

xeC= U TB,

f=—o0

and P(C) = 1. Thus (ii) holds.
(b) (ii) implies (iii). Let C be the set of measure one such that for
x € C we have

lim sup | fu(T*) — fu(T?)| = 0.

Then for x € C and every positive integer k there exists a positive
integer N, such that

sup | £u(T'a) — £(T*0) | < 1k
for n = N,. Let
Ac= U {e]1f0) = 11> 1k} .

It follows from Lemma 4 that P(4,) =0 for £ =1,2, ..., Let A=
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C — Us4s. Then P(A) =1, and for x € A we have |f,(x) — 1| = 1/k
for » = N,. Consequently

limsup | fu(x) — 1] =0
n xTEA
and (iii) follows.
(¢) (iii) implies (i). Let A be the set of measure one such that
limsup | f(x) —1|=0.
n z€EA
Let

A= N TA.

t=—o0

Then P(4,) =1 and for x € A, we have
sup |f(T*0) — £(T'9) | S 2 sup | £u(T') — 1|

and the last quantity approaches zero. Thus (i) holds and the theorem
is proved.

REFERENCE

1. J.R. Blum and D. L. Hanson, On Invariant Probability Measures I, Pacific J. Math.,
10 (1960), 1125-1129.

SANDIA CORPORATION AND INDIANA UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Rarpu S. PHILLIPS

Stanford University
Stanford, California

F. H. BROWNELL

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

L. J. PaGeE

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH
T. M. CHERRY

D. DERRY
M. OHTSUKA

H. L. ROYDEN
E. SPANIER

E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA

CALIFORNIA INSTITUTE OF TECHNOLOGY

UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE

UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE.
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Reprinted 1966 in the United States of America



Pacific Journal of Mathematics
Vol. 11, No. 1 November, 1961

A. A. Albert, Generalized twisted fields . . ............. ... it ..

Richard Arens, Operational calculus of linear relations ........................ 9
John Herbert Barrett, Disconjugacy of a self-adjoint differential equation of the

fourthorder . ... ... .. . . 25
Paul Richard Beesack, Hardy’s inequality and its extensions .................... 39
Julius Rubin Blum and David Lee Hanson, On invariant probability measures.

/7 63
Robert Allen Bonic, Symmetry in group algebras of discrete groups.............. 73
R. Creighton Buck, Multiplication operators ................... ... 95
Jack Gary Ceder, Some generalizations of metric spaces........................ 105
Meyer Dwass, Random crossings of cumulative distribution functions............ 127
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, Radial distribution and

deficiencies of the values of a meromorphic function....................... 135
William Cassidy Fox, Harmonic functions with arbitrary local singularities . . . . .. 153
Theodore Thomas Frankel, Manifolds with positive curvature .. ................. 165
Avner Friedman, A strong maximum principle for weakly subparabolic

JURCHIONS . . . . oot e e et e 175
Watson Bryan Fulks and J. O. Sather, Asymptotics. IlI. Laplace’s method for

multiple integrals ... ........ ... i 185
Adriano Mario Garsia and Eugene Richard Rodemich, An embeddi i
SUFfACeS Of GENUS ONE . ...

Irving Leonard Glicksberg, Weak compactness and separate ¢
Branko Griinbaum, On a conjecture of H. Hadwiger .. .......
Frank J. Hahn, On the action of a locally compact group on E,
Magnus R. Hestenes, Relative hermitian matrices. ...........
G. K. Kalisch, On similarity invariants of certain operators in
Yitzhak Katznelson and Walter Rudin, The Stone-Weierstrass

algebras .......... .

Samir A. Khabbaz, The subgroups of a divisible group G whic
as intersections of divisible subgroups of G .............

Marvin Isadore Knopp, Construction of a class of modular fun

Charles Alan McCarthy, Commuting Boolean algebras of proj
T. M. MacRobert, Transformations of series of E-functions . ..
Heinz Renggli, An inequality for logarithmic capacities . . . . ..
M. S. Robertson, Applications of the subordination principle t

JURCHIONS . . oo oo e
David Sachs, Partition and modulated lattices ...............
Frank S. Scalora, Abstract martingale convergence theorems . .
Elbert A. Walker, Torsion endomorphic images of mixed Abeli
Morgan Ward, The prime divisors of Fibonacci numbers. . . . ..
Charles R. B. Wright, On the nilpotency class of a group of ex,



	
	
	

