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ON INVARIANT PROBABILITY MEASURES II

J. R. BLUM AND D. L. HANSON

1. Summary, We continue the work begun in [1]. In this paper
we investigate convergence properties of sequences of probability measures
which are asympototically invariant.

2 Introduction* Let Ω be a set, s$f be a o -algebra of subsets of Ω,
and T be a mapping of Ω onto Ω which is one-to-one and bimeasurable.
A set A e jzf is said to be invariant if A = TA, a probability measure Q
defined on sf is invariant if Q(A) = Q(TA) for all i e j / , and an
invariant probability measure P is said to be ergodic if every invariant
set A is trivial for P, i.e., if P(A) = 0 or P(A) — 1. Alternately an
invariant probability measure P is ergodic if whenever P(A) > 0 we
have

) =
/

J TnA

Let {Qn} be a sequence of probability measures defined on j*Λ We
shall say that the sequence is asymptotically invariant if limw [Qn(A) —
Qn(TA)] = 0 for every A e s*/. In § 3 we give a simple condition
which yields convergence of such a sequence to a given ergodic measure.
In § 4 an example is given which shows that a reasonable conjecture is
in fact false, and further conditions are given which insure uniform
convergence of a sequence of asymptotically invariant measures. In the
last section we investigate convergence properties of certain sequences
of probability density functions.

Throughout the paper we shall have occasion to refer to the following
theorem, proved in [1]. We state it here as:

THEOREM 1. If P and Q are invariant measures which agree on
the invariant sets then P = Q.

3, A convergence theorem. Let P be an ergodic measure (we shall
assume throughout that every measure considered is a probability
measure) and let Q be a measure absolutely continuous with respect to
P. Define the sequence {Qn} for n = 1,2, by the formula

Qn(A) = — ΣQ(T*A), A e j /
n *=o

Then it is an immediate consequence of the individual ergodic theorem
that limn Qn(A) = P(A) for every A e jy. Clearly the sequence {Qn} is
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asymptotically invariant. It is equally clear that the sequence {Qn} is
uniformly absolutely continuous with respect to P. It is the object of
this section to show that in fact these properties alone are sufficient to
insure convergence to P, and that the averaging is only incidental in
this case.
More precisely we have

THEOREM 2. Let P be an ergodic measure and {Qn} a sequence of
measures satisfying

( i ) limw [Qn(A) - Qn(TA)] = 0 for every Aej^f.
(ii) For every a > 0 there exists δ > 0 and for every A e szf an

integer NAfΰύ>8 such that if P(A) ^ δ and n ^ NAtCΰt5 then Qn(A) ^ a.
Then limw Q(A) = P(A) for every A e

Proof. If the conclusion is false there exists a0 > 0, a set A e
and a subsequence {QJ (to avoid multiple subscripting we shall index
subsequences in the same way as the original sequence) such that

(3.1) \Qn(A)-P(A)\^a0, all n.

Now let Σ be the class of sets {φ, Ω, TnA, TnAc, n = 0, ± 1, •••}, let
J^ be the smallest field of sets containing Σ, and let Ssf' be the
smallest σ-algebra containing ^ . We have Σ c ^~ c £/' c jy\ Note
that if β e Σ then TB e Σ and T~τB e Σ. Now ̂  consists of finite
intersections of finite unions of sets in Σ and it follows from the prop-
erties of T that ^ has the same property, i.e., T is bimeasurable with
respect to J?~. Let

& = {A IA e sf\ TA e sf\ T~XA e

Then ^ c & c s/\ Suppose A e ^ . Then TAC = (ΓA)C and T-M.0 =
(T~M.)C and it follows that Ac e ̂ . Similarly let {An} be a sequence of
elements of &. Then Γ | J Λ = UnTAn and Γ"1 U*A. = UnT'1^. It
follows that ^ is σ-algebra and consequently ά& — Sf*. Thus T is
bimeasurable with respect to sf*.

Now ^ is generated by a denumerable collection of sets and is
itself denumerable. By the usual diagonalization procedure we may
extract a further subsequence {Qn} which converges on every set of ̂ ~.
Define Q(B) = \imn Qn(B) for B e ̂ . Since each Qw is a measure on
^ it follows that Q is finitely additive and monotone on J^. Note that Q
satisfies (3.1); i.e., \Q(A) — P(A)\ ^ a0. We proceed to show that Q is
a probability measure on ̂ " . Clearly Q(42) = 1. Let {i?J be a sequence
of sets in &~ which decrease to the null set. Then {Q(Bn)} is a non-
increasing sequence of numbers. Suppose limw Q(Bn) = p > 0. Let
a = jθ/2 and choose an appropriate δ > 0 according to (ii) of the hypothe-
sis. Since \imn P(Bn) = 0 we may choose Bk so that P(Bk) < δ. Then
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for n sufficiently large Qn(Bk) <Ξ p/2 and hence Q(Bk) < p which is a
contradiction. Thus p — 0 and Q is completely additive ^ .

Since Q is a measure on j ^ we may employ the usual Caratheodory
technique to extend Q uniquely to ssf\ From the hypothesis it follows
that Q is invariant on j^~ and the method used in extending Q to j ^ / '
insures that Q is invariant on jy".

Now let I? e s/' and suppose i? is invariant. Then P(B) = 0 or
P(β) = 1. Suppose P(B) = 0. It is clear from the hypothesis that in
that case Q(B) = 0 and similarly Q(5) = 1 if P(B) = 1. Thus Q agrees
with P on the invariant elements of jy", and it follows from Theorem
1 that Q = P on j ^ \ In particular Q(A) = P(A), which is a contradiction.
The theorem is proved.

Theorem 2 has an interesting corollary. Consider the condition

(3.2) lim — n^P(TtA Π B) = P(A)P(B) for all i , 5

It is trivial to verify that if (3.2) holds then P is ergodic. Conversely
if P is ergodic one may verify (3.2) by using the individual ergodic
theorem. However (3.2) is also an immediate consequence of Theorem
2. It is clearly sufficient to consider the case when P(B) > 0. In that
case define the sequence {Qn} by

Σ
n «=o

It follows at once that the hypotheses of Theorem 2 apply and (3.2)
holds.

4* On uniform convergence* The converse of Theorem 2 evidently
holds. If limn Qn(A) = P(A) for every A e j^ then (i) and (ii) of Theorem
2 are true. Furthermore if limn Qn(A) = P(A) uniform for A e j^f then
limn [Qn(A) - Qn(TA)] = 0 uniformly for 4 e j / . It might therefore be
reasonable to except that if hypothesis (i) of Theorem 2 is strengthened to
limw [Qn(A) — Qn( TA)] = 0 uniformly for A e sf we might obtain uniform
convergence of Qn to P. The following example, which is of some in-
dependent interest, shows that this is not the case. Let Ω be the unit
interval closed on the left and open on the right, and j^f the Borel sets.
Define T by Tx = (x + c) mod 1, where c is an irrational number. Then
T is one-to-one, onto, and bimeasurable. Let P be Lebesgue measure.
Clearly P is invariant and it can be shown that P is ergodic. For n =
4, 5, . . . let An = [0, 1/n]. Since P(An) > 0 we have

p

and consequently for each n there is a unique first integer kn such that
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Let

Bn=\J

and let 6M = P(Bn). Define the sequence {Qn} by Qn(A) = P{ABn)jbn. Since
6m S 1/4 it follows that the probability measures Qn are uniformly
absolutely continuous with respect to P. Furthermore

I Qn(A) - QniTA) I = (1/6.) I P(ABJ - P(TABJ \

^ 41 P(TATBn) -P(TABn) \

g 4[P(TA(TBn - Bn)) + P(TA(Bn - TBn))]

^ 4[P(TBn - Bn) + P(Bn - TBJ] .

Now

Bn - TBn c

and

Hence

I Qn(A) - QΛTA) I ̂  8P(AM) = 8/n .

Thus

On the other hand Qn(Bn) - P(Bn) ^ 1 - 3/4 = 1/4 and we do not have
uniform convergence. The remainder of this section remain is devoted
to exhibiting conditions under which one does obtain uniform convergence
of the sequence {Qn} to P. For this purpose we shall need several lemmas.

LEMMA 1. Let P be an invariant measure and Q be an arbitrary
measure. Then

sup I Q(A) - Q{TlA) I g 2 sup \Q(A) - P(A) \ .
ί

Proof.

I Q(A) - Q(TΆ) I ̂  I Q(A) - P(A) + \ P(A) - P{T*A) \

+ \P(TiA)-Q(TiA)\.

Since P is invariant the middle term on the right vanishes and the
lemma follows.
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LEMMA 2. Let P be an ergodic measure and f be a non-negative
measurable function which is integrable with respect to P. Then for
every A e s/ and a > 0 there exist infinitely many values of n such
that

^nJ(x)dP(x) < (^βf(x)dP(xήp(A) + a .

Proof. Let β = \ fdP. If β — 0 there is nothing to prove. Con-

sequently assume β > 0. Define the measure Q by Q(A) = I fdPjβ for

A e j y , and the sequence {QJ by

Since Q is absolutely continuous with respect to P it follows Theorem
2 that limwQw(A) = P(A) for A e jy\ If the conclusion of the lemma
is false then for some A e s/ and a > 0 we have for sufficiently large

n, [ n fdPjβ = Q{TnA) ^ P(A) + α/2. But then limn Qn{A) > P(A) which

is a contradiction.

LEMMA 3. Let P be an ergodic measure and Q be a measure
which is absolutely continuous with respect to P. Then

sup I Q{A) - P(A) I ̂  2 sup I Q(A) - Q{TlA) \ .

Proof. Let / be the Radon-Nikodym derivative of Q with respect
to P, and let B = {x \f(x) ^ 1}. Then

sup I Q(A) - P(A) I = ( [f(x) - l]dP(x) .

Assume that P(B) ̂  1/2; in the contrary case we can use Bc. Now if
i is any integer we have

sup I Q(A) - Q(TιA) I ̂  Q(B) - Q(T'B)

= [Q(B) - P(B)] - [Q(TιB) - P(TlB)]

= \ [f-l]dP-\( [f-l]dP.
JB JT B

Hence

sup \Q(A) - P(A) I ̂  sup I Q(A) - Q(T*A) | + L [/ - l]dP
Ae& Jτ B

^ sup I Q(A) - Q(T*A) \ + \ , [/ - l)dP .
i JBf\T B
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Now let

Q{%) = L
10, x

- 1, x € B
e B°

Then

ί t[f-ΐ\dP=\tgdP.
JBΓ\T B JT B

Let a > 0. Then from Lemma 2 there exist integers i such that

But P(B) ^ 1/2 and

\ gdP=\[f- 1] dP £ sup I Q(A) - P(A) | .
JΩ JB Ae&

Hence

\τiβΰdP < 1/2 sup I Q(A) - P(A) \ + a

and we obtain

sup I Q(A) - P(A) I ̂  2 sup I Q(A) - Q{T*A) \ + a

for abritrary a > 0.

THEOREM 3. Let P be an ergodic measure and let {Qn} be a sequence
of measures each of which is absolutely continuous with respect to P.
Then

lim sup I Qn(A) - P(A) \ = 0
n A£$.

if and only if

\imsuv\Qn{A)-Qn{T*A)\ = 0.
n i

Proof. The theorem follows from Lemmas 1 and 3. Theorem 3 may
also be formulated in terms of Lλ convergence. For if fn is the Radon-
Nikodym derivative of Qn with respect to P, then

sup

Thus

I Qn(A) ~ P(A) I = ( [fn - l]dP =\ [1 - fn]dP .

lim sup I Qn{A) - P(A) \ = 0
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if and only if

limί | / n - l | d P = 0.
n JΩ

Similarly we have

limsup|QΛ(A)-Qn(Γ*il)| = O
n i

if and only if

lim sup ( \fn(x) - fn(T*x) I dP(x) = 0 .
n i JΩ

Consequently we have the

COROLLARY. Let P be an ergodic measure, let {Qn} be a sequence of
measures each of which is absolutely continuous with respect to P, and
let {fn(%)} be the corresponding sequence of Radon-Nikodym derivaties.
Then

limί \fn(x)-l\dP(x) = 0
n JΩ

if and only if

lim sup \ \fn(x) - /Λ(T*α0 | dP(x) = 0 .
n i JΩ

5. Uniform convergence of densities* In this section we shall be
concerned with probability density functions with respect to an ergodic
measure P, i.e., a function / is a probability if / is measurable, non-
negative, and \ fdP = 1. We begin with

LEMMA 4. Let P be an ergodic measure and let f be a probability
density with respect to P. Let a > 0 and define the sets A and B by

A = sup I /(Γ'α) - f(Tjx) \ < α}

and

B = {x\\f(x)-l\>a}.

Then P(AB) - 0.

Proof. Let B' = {x\f(x) > 1 + a}. Suppose P(ABf) > 0. Let
C = U-oo T\ABf). Since P is ergodic P(C) = 1. If x e C there exists
an integer m such that Tmx e AB\ Hence
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sup \f{Tιx) - f{T}x) I ̂  sup \f(T>x) - f(T}x) | g α .
ij

In particular \f(x) - f(Tmx) | ^ α or f(x) ^ /(T 7 ^) - a. But Twα; e £ '
which means f(x) > 1. Since an integer m can be foμnd for each x e C
we have f(x) > 1 for all x e C. Then ί fdP = ί /<ZP > 1, a contradic-
tion to the fact that / is a probability density. A similar argument
applies to the set B" = {x \f{x) < 1 — a}.

THEOREM 4. Let P be an ergodic measure and let {fn} be a sequence
of probability densities with respect to P. Then the following statements
are equivalent:

( i ) Phim sup \fn(Tιx) - fn(T>x) I = 0 > 0 .
V n ίj I

(ii) P(lim sup l/ΛT'a;) - fΛ(T>x) | = o) = 1 .

(in) Pίlim sup \fn(x) - 11 = 0 = 1 .
\ n x /

Proof.

(a) (i) implies (ii). Suppose (i) is true. Let B be a set such that
P(B) > 0 and such that

n ij

for x e B. But clearly this is also true for

x e C = U T'B ,

and P(C) = 1. Thus (ii) holds.
(b) (ii) implies (iii). Let C be the set of measure one such that for

x € C we have

n ίj

Then for x e C and every positive integer k there exists a positive
integer Nk such that

j

for w ^ ΛΓfc. Let

= u U\fn(χ) - 11 >

It follows from Lemma 4 that P(Ak) = 0 for fc = 1, 2, . Let A =
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C - \JhAh. Then P(A) = 1, and for x e A we have \fn(x) - 11 ^ 1/fc
for n^ Nh. Consequently

lim sup I /„(&) — 11 = 0

and (iii) follows.
(c) (iii) implies (i). Let A be the set of measure one such that

l i m s u p | / n ( α 0 - l | = O.
n xβA

Let

Λ = ή τ*A .

Then P(A0) = 1 and for x e Ao we have

sup \fn(T'x) - fn(T'x) I ̂  2 sup \fn(T*x) - 11

and the last quantity approaches zero. Thus (i) holds and the theorem
is proved.
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