Pacific Journal of Mathematics

ASYMPTOTICS. II. LAPLACE'S METHOD FOR MULTIPLE INTEGRALS

WATSON BRYAN FULKS AND J. O. SATHER

Vol. 11, No. 1

November 1961

ASYMPTOTICS II: LAPLACE'S METHOD FOR MULTIPLE INTEGRALS

W. FULKS AND J. O. SATHER

Laplace's method is a well known and important tool for studying the rate of growth of an integral of the form

$$I(h) = \int_a^b e^{-hf} g dx$$

as $h \to \infty$, where f has a single minimum in [a, b]. It's extension to multiple integrals has been studied by L. C. Hsu in a series of papers starting in 1948, and by P. G. Rooney (see bibliography). These authors establish what amount to a first term of an asymptotic expansion. All but one (see [7]) of these results are under fairly heavy smoothness conditions.

In this paper we examine multiple integrals of the form

$$I(h) = \int_{R} e^{-hf} g dx$$

where f and g are measurable functions defined on a set R in E_p . Without making any smoothness assumptions on f and g, and using only the existence of I(h) and, of course, asymptotic expansions of f and g near the minimum point of f we obtain an asymptotic expansion of I. The special features of our procedure are the lack of smoothness assumptions and the fact that we get a complete expansion.

Without loss of generality we may assume that the essential infimum of f occurs at the origin, and that this minimal value is zero. We introduce polar coordinates: $x = (\rho, \Omega)$ where

$$ho = |\,x\,| = \sqrt{x_1^2 + x_2^2 + \, \cdots \, + \, x_p^2}$$
 ,

and where $\Omega = x/|x|$ is a point on the surface, S_{p-1} , of the unit sphere. Our hypothesis are the following:

(1) The origin is an interior point of R.

(2) For each $\rho_0 > 0$ there is an A > 0 such that $f(\rho, \Omega) \ge A$ if $\rho \ge \rho_0$. (This says that f can be close to zero only at the origin.)

(3) There is an $n \ge 0$ and n+1 continuous functions $f_k(\Omega)$, $k = 0, 1, 2, \dots, n$, defined on S_{p-1} with $f_0 > 0$ for which

$$f(\rho, \Omega) = \rho^{\nu} \sum_{k=0}^{n} f_k(\Omega) \rho^k + o(\rho^{n+\nu}) \text{ as } \rho \to 0$$

Received April 29, 1960. The work on this paper was performed under sponsorship of the Office of Naval Research, Contract Nonr 710 (16), at the University of Minnesota.

where $\nu > 0$. (This is meant in the following sense: for each $\varepsilon > 0$ there is a $\rho_0 > 0$ for which

$$|f(
ho,arOmega)-
ho^{
u}\sum\limits_{k=0}^{n}f_{k}(arOmega)
ho^{k}|$$

whenever $\rho \leq \rho_0$. Besides giving the asymptotic behavior of f near the origin (3) implies that the infimum of f in R is indeed zero.)

(4) There are n + 1 functions $g_k(\Omega), k = 0, 1, \dots n$, for which

$$g =
ho^{\lambda - p} \sum\limits_{k=0}^n g_k(\Omega)
ho^k + o(
ho^{n+\lambda-k}) ext{ as }
ho o 0$$

where $\lambda > 0$. (Thus g is permitted a mild singularity at the origin. The expansion is meant in the same sense as the one in (3).)

Under these conditions we will prove that if there is a h_0 for which I(h) exists then it exists for all $h \ge h_0$ and

$$I(h) = \sum_{k=0}^{n} c_k h^{-(k+\lambda)/\nu} + o(h^{-(n+\lambda)/\nu})$$

where the c_k 's are constants depending only on the f_j 's and g_j 's for $j \leq k$. Their evaluation will be described in the proof of this result. In particular

$$C_{\scriptscriptstyle 0} = rac{ \Gamma((\lambda+1)/
u)}{\lambda} {\int_{s_{\mathcal{P}-1}}} g_{\scriptscriptstyle 0}(arOmega) / [f_{\scriptscriptstyle 0}(arOmega)]^{\lambda/
u} darOmega$$

where $d\Omega$ is the element of (p-1)-dimensional measure on S_{p-1} .

In the course of the proof we will use the following lemmas, which are given now so as to not interrupt the main thread of the argument.

LEMMA 1. Let f be a measurable function on a set R in E_p , and let $g \in L_1(R)$. Then the function G(z) defined by

$$G(z) = \int_{\{f \leq z\}} g dx$$

has bounded variation on $\{-\infty < z < \infty\}$.

Proof. Let $g = g_1 - g_2$, where

$$g_{1}(x) = egin{cases} g(x), \ g(x) \geq 0 \ 0, \ g(x) < 0 \end{cases}; \qquad g_{2}(x) = egin{cases} 0, \ g(x) \geq 0 \ -g(x), \ g(x) < 0, \end{cases}$$

and define G_1 and G_2 by

$$G_{_1}(z) = \int_{_{\{f \leq z\}}} g_{_1} dx \;, \qquad G_{_2}(z) = \int_{_{\{f \leq z\}}} g_{_2} dx \;.$$

Clearly G_1 and G_2 are increasing and bounded on $\{-\infty < z < \infty\}$, and $G = G_1 - G_2$.

LEMMA 2. Let F(t) be a continuous function defined on a possibly infinite interval $\{a < t < b\}$, and let f be a measurable function on a set R in E_p taking values in the interval $\{a < t < b\}$. If $g \in L_1(R)$, and $F(f)g \in L_1(R)$ and G is defined as in Lemma 1, then

$$\int_{R} F(f)gdx = \int_{a}^{b} F(t)dG(t) \; .$$

Proof. Suppose first that a and b are finite, and that $g \ge 0$. Form a partition: $a = t_0 < t_1 < \cdots < t_n = b$, and set

$$E_{j} = \{ x \, | \, t_{j - 1} \, < f \leqq t_{j} \}$$
 ,

and let $M_j = \sup_{\{t_{j-1} \le t \le t_j\}} F(t)$ and $m_j = \inf_{\{t_{j-1} \le t \le t_j\}} F(t)$. Then

$$egin{aligned} &\int_{R} F(f)gdx = \sum\limits_{j=1}^n \int_{E_j} F(f)gdx &\leq \sum\limits_{j=1}^n M_j iggle_{E_j} gdx \ &= \sum\limits_{j=1}^n M_j [G(t_j) - G(t_{j-1})] \; . \end{aligned}$$

Similarly

$$\int_{R} F(f)gdx \ge \sum_{j=1}^{n} m_{j}[G(t_{j}) - G(t_{j-1})] .$$

If we let $n \to \infty$ so that $\max_{1 \le j \le n} (t_j - t_{j-1}) \to 0$ then both

$$\sum_{j=1}^{n} M_{j}[G(t_{j}) - G(t_{j-1})] \text{ and } \sum_{j=1}^{n} m_{j}[G(t_{j}) - G(t_{j-1})]$$

converge to $\int_{a}^{b} F(t) dG(t)$, since F is continuous and G monotone.

If g is not positive we can write $g = g_1 - g_2$ as in Lemma 1, apply the proof just completed to each of g_1 and g_2 , and combine the results to complete the proof for the case where a and b are finite.

Suppose for example b is infinite. Then for any finite b',

$$\begin{split} \int_{R} F(f)gdx &= \lim_{b' \to \infty} \int_{\{f \leq b'\}} F(f)gdx = \lim_{b' \to \infty} \int_{a}^{b'} F(t)dG(t) \\ &= \int_{a}^{\infty} F(t)dG(t) \;. \end{split}$$

A similar argument applies if $a = -\infty$.

We now return to the proof of the main theorem. First we note that if $h \ge h_0$ then $e^{-h_0 f}g$ forms a dominating function for $e^{-hf}g$, so that

I(h) exists.

For each $\varepsilon > 0$ we define the two functions $f_+(\rho, \Omega)$ and $f_-(\rho, \Omega)$ by

$${f}_{\pm}(
ho,\, arOmega)=
ho^{
u}\sum\limits_{k=0}^{n}{f}_{k}(arOmega)
ho^{k}\pmarepsilon
ho^{n+
u}$$
 .

These functions are defined in all of E_p . Now given an $\varepsilon > 0$ there is a ρ_0 so that

(i) $|f(\rho, \Omega) - \rho^{\nu} \sum_{k=0}^{n} f_k(\Omega) \rho^k| < \varepsilon \rho^{n+\nu}$

(ii) $|g(\rho, \Omega) - \rho^{\lambda-p} \sum_{k=0}^{n} g_k(\Omega) \rho^k| < \varepsilon \rho^{n+\lambda-p}$ for $\rho < \rho_0$,

and so that

(iii) both the functions $f_{\pm}(\rho, \Omega)$ are increasing in ρ for $\{0 \leq \rho \leq \rho_0\}$ for each $\Omega \in S_{p-1}$. This can easily be achieved since f_0 is positive (and therefore bounded away from zero) and the other f_k 's are bounded.

(iv) the sphere $\{\rho \leq \rho_0\}$ is in R.

We denote $\{\rho \leq \rho_0\}$ by R_0 and write I(h) in the form

$$I(h) = \int_{R_0} e^{-hf} g dx + \int_{R-R_0} e^{-hf} g dx \equiv I_1(h) + I_2(h)$$

respectively. We proceed to estimate I_2 : by hypothesis (2) there is an A > 0 so that $f \ge A$ if $\rho \ge \rho_0$. Thus

$$egin{aligned} &|I_2(h)| \leq \int_{R-R_0} e^{-hf} |g| \, dx \leq e^{-(h-h_0)A} \int_{R-R_0} e^{-h_0f} |g| \, dx \ &= C e^{-hA} \ ext{where} \ C \ ext{is a constant.} \end{aligned}$$

That is,

$$I_{\scriptscriptstyle 2}(h) = O(e^{-hA}) \, \, {
m as} \, \, h o \infty$$
 ,

so it is clear that the dominant part of I(h) must arise from $I_1(h)$. The remainder of the proof is largely concerned with estimating I_1 .

In R_0 we define $r(\rho, \Omega)$ by

$$g(
ho, arOmega) =
ho^{\lambda-p} \sum\limits_{0}^{n} g_k(arOmega)
ho^k + r(
ho, arOmega)
ho^{n+\lambda-p}$$

Let

$$g_{k}^{+}(arOmega)=egin{cases} g_{k}(arOmega),\ g_{k}(arOmega)\geqq 0\ 0,\ g_{k}(arOmega)< 0\ \end{pmatrix},\qquad g_{k}^{-}(arOmega)=egin{cases} 0,\ g_{k}(arOmega)\geqq 0\ -g(arOmega),\ g_{k}(arOmega)> 0\ \end{pmatrix}$$

and

$$r^+(
ho,\, arOmega) = egin{cases} r(
ho,\, arOmega), & r(
ho,\, arOmega) \geqq 0 \ 0, & r(
ho,\, arOmega) < 0 \end{cases}; \ r^-(
ho,\, arOmega) = egin{cases} 0, & r(
ho,\, arOmega) \geqq 0 \ -r(
ho,\, arOmega), & r(
ho,\, arOmega) < 0 \end{cases}.$$

In R_0 we now define $g^+(\rho, \Omega)$ and $g^-(\rho, \Omega)$ by

$$g^{\scriptscriptstyle +}(
ho,\,arOmega)=
ho^{\lambda^{-p}}\sum\limits_{k=0}^ng^{\scriptscriptstyle +}_k(arOmega)
ho^k+r^{\scriptscriptstyle +}(
ho,\,arOmega)
ho^{n+\lambda-p}$$

and

$$g^{-}(
ho,\,arOmega)=
ho^{\lambda-p}\sum\limits_{k=0}^ng^{-}(arOmega)
ho^k+r^{-}(
ho,\,arOmega)
ho^{n+\lambda-p}\;.$$

Then $g = g^+ - g^-$ and

$$I_1 = \int_{R_0} e^{-hf} g^+ dx - \int_{R_0} e^{-hf} g^- dx$$

Thus we may assume that $g \ge 0$ in R_0 .

We recall the definition of f_+ and f_- and define $I_+(h)$ and $I_-(h)$ by

$$I_{+}(h) = \int_{R_{0}} e^{-hf_{+}}gdx, I_{-}(h) = \int_{R_{0}} e^{-hf_{-}}gdx.$$

Since $g \ge 0$ we conclude

$$I_{\scriptscriptstyle +}(h) \leq I_{\scriptscriptstyle 1}(h) \leq I_{\scriptscriptstyle -}(h)$$
 .

Next we turn our attention to I_+ : Let $R_t = \{x \mid f_+ \leq t\}$ and choose a so small that $R_a \subset R_0$. Then

respectively. Now f_+ is bounded away from zero in R_0 outside any neighborhood of the origin. Thus by the same argument used on I_2 we get

$$I_+^{\prime\prime} = O(e^{-hA^\prime})$$
 .

Furthermore e^{-hf_+} is bounded away from zero in R_a , since f_+ is bounded there. Thus $e^{-hf_+}g \in L_1(R_a)$ and by Lemma 2,

$$I'_{\scriptscriptstyle +} = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle a} \! e^{-\hbar t} dG(t)$$
 ,

where $G(t) = \int_{R_t} g dx$. Integrating by parts we get

We next do some preliminary calculations, preparatory to estimating G(t). For each $t, 0 \leq t \leq a$, the equation $t = f_+(\rho, \Omega)$ has a unique solution for ρ which is continuous in Ω , since f_+ is increasing in ρ .

Thus the solution defines a star-shaped curve (or surface) given by $\rho = \rho(t, \Omega)$. We proceed to estimate $\rho(t, \Omega)$. Set $t = U^{\nu}$ then $t = f_{+}(\rho, \Omega)$ can be written in the form

$$U^{
u} =
ho^{
u} igg[\sum\limits_{0}^{n} f_k(arOmega)
ho^k \, + \, arepsilon
ho^n igg]$$

or

$$U =
ho [f_0(\Omega) + f_1(\Omega)
ho + \cdots (f_n(\Omega) + \varepsilon)
ho^n]^{1/
u}$$
.

From here on we assume n > 0, for if n = 0, we can solve directly for ρ and the estimates are considerably simpler than those which follow.

Now the right hand side of the last equation is a monotone function of ρ , $0 \leq \rho \leq a$, hence an inverse function exists. Since, for each fixed Ω , U is an (n + 2)-times differentiable (it's even analytic!) function of ρ , $0 \leq \rho \leq a$, then ρ is an (n + 2)-times differentiable function of U, and it can therefore be expanded in a Taylor series with remainder. Thus since $f_0(\Omega) > 0$ we get

$$ho=\psi_{\scriptscriptstyle 1}(arOmega)U+\psi_{\scriptscriptstyle 2}(arOmega)U^{\scriptscriptstyle 2}+\cdots+\psi_{n+1}(arOmega,arepsilon)U^{n+1}+\psi_{n+2}(arOmega,arepsilon,U)U^{n+2}$$

where $\psi_1(\Omega) = 1/[f_0(\Omega)]^{1/\nu}$. Since the ψ_k 's are expressible in terms of the f_k 's it is easy to check that ψ_k depends only on f_j 's for $j \leq k$, that ψ_k is independent of ε for $k \leq n$, that ψ_{n+1} depends only linearly on ε and finally that ψ_{n+2} is uniformly bounded for $\Omega \in S_{p-1}$, $0 \leq \varepsilon \leq 1$, and $0 \leq U \leq a^{1/\nu}$.

Since $U = t^{1/\nu}$ we express ρ in terms of t, Ω , and ε by

$$egin{aligned}
ho(t,\,arOmega) &= \psi_1(arOmega)t^{1/
u} + \psi_2(arOmega)t^{2/
u} + \cdots + \psi_{n+1}(arOmega,\,arepsilon)t^{(n+1)/
u} \ &+ \psi_{n+2}(arOmega,\,arepsilon,\,oldsymbol{U})t^{(n+2)/
u} \end{aligned}$$

By definition $G(t) = \int_{R_t} g dx$, which we can write as

$$G(t)=\int_{s_{p-1}}\!\!\int_{0}^{
ho(t,arOmega)}\!\!g(
ho,arOmega)
ho^{p-1}d
ho darOmega$$
 ,

where $d\Omega$ represents the element of measure on the sphere $S_{p-1}: \{\rho = 1\}$. We proceed to compute:

If we substitute for $\rho(t, \Omega)$ the expression previously computed for it, the preceding integral can be written in the form

$$G(t) = \int_{S_{p-1}} \left[t^{\lambda/\nu} \sum_{0}^{n-1} \gamma_k(\Omega) t^{k/\nu} + \gamma_n(\Omega, \varepsilon) t^{(n+\lambda)/\nu} + o(t^{(n+\lambda)/\nu}) \right] d\Omega$$

where γ_k is independent of ε for $k = 0, 1, 2, \dots, n-1$, and γ_n is linear in ε . We may also note that each of the g_j 's enter the γ_k 's linearly. In particular

$$\gamma_{\scriptscriptstyle 0} = g_{\scriptscriptstyle 0}(arOmega) / [f_{\scriptscriptstyle 0}(arOmega)]^{\lambda /
u}$$
 .

Now if we write $\gamma_n(\Omega, \varepsilon) = \gamma_n(\Omega) - \varepsilon \gamma'_n(\Omega)$ we have

where $\eta_k = \int_{s_{p-1}} \gamma_k(\Omega) d\Omega$. In particular $\eta_0 = (1/\lambda) \int_{s_{p-1}} [g_0(\Omega)/[f_0(\Omega)]^{\lambda/\nu}] d\Omega$.

Now by Watson's lemma we can multiply this asymptotic formula for G by e^{-ht} and integrate termwise to get

$$I'_{+} = \sum_{0}^{n} c_{k} h^{-(k+\lambda)/\nu} - \varepsilon c'_{n} h^{(n+\lambda)/\nu} + o(h^{-(n+\lambda)/\nu})$$

where $c_k = \eta_k \Gamma((k + \lambda + 1)/\nu)$. In particular $c_0 = \eta_0 \Gamma((\lambda + 1)/\nu)$. Since $I_+ = I'_+ + I''_+ = I'_+ + o(e^{-\hbar A'})$, we have also

$$I_+ = \sum\limits_0^n c_k h^{-(k+\lambda)/
u} - arepsilon c_n' h^{-(n+\lambda)
u} + o(h^{-(n+\lambda)/
u}) \;.$$

By the same argument, since I_- differs from I_+ only in the sign of ε , we get

$$I_- = \sum\limits_0^n c_k h^{-(k+\lambda)/
u} + arepsilon c_n' h^{-(n+\lambda)/
u} + o(h^{-(n+\lambda)/
u}) \;.$$

Now as we have shown before

$$I_+(h) \leqq I_{\scriptscriptstyle 1}(h) \leqq I_-(h)$$
 .

Thus

$$I_+ - \sum\limits_{_0}^n c_k h^{_{-(k+\lambda)/
u}} \leq I_1(h) - \sum\limits_{_0}^n c_k h^{_{-(k+\lambda)/
u}} \leq I_- - \sum\limits_{_0}^n c_k h^{_{-(k+\lambda)/
u}} \, .$$

If we multiply through by $h^{(n+\lambda)/\nu}$ and let $h \to \infty$ we get

$$-arepsilon c'_n \leq arepsilon arepsilon arepsilon (I_1(h) - \sum\limits_0^n c_k h^{-(k+\lambda)/
u}) h^{(n+\lambda)/
u} igg] \leq arepsilon c'_n \; .$$

But $I(h) = I_1(h) + o(e^{-hA})$ so that we have also

for every $\varepsilon > 0$. Let $\varepsilon \to 0$ to complete the proof for $g \ge 0$.

If g may change sign near the origin we can decompose g with g^+ and g^- as described earlier. The proof just completed applies to each of these. We can then subtract the results to obtain the result for g. Also since g'_j 's enter into the c'_k 's linearly, the same formula for the c's applies whether g is one signed or has a variable sign near the origin.

BIBLIOGRAPHY

1. L. C. Hsu, Approximations to a class of double integrals of functions of large numbers, Amer. J. of Math., **70** (1948).

2. _____, A theorem on the asymptotic behavior of a double integral, Duke Math. J., **15** (1948).

3. _____, An asymptotic expression for an integral involving a parameter, Acad. Sinica Sci. Record, **2** (1949).

4. _____, The asymptotic behavior of an integral involving a parameter, Sci. Rep. Nat. Tsing Hua Univ., 5 (1949).

5. ____, On the asymptotic behavior of a class of multiple integrals involving a parameter, Amer. J. Math., **73** (1951)

6. _____, The asymptotic behavior of a kind of multiple integrals involving a parameter, Quart. J. Math. Ser., 2 (1951).

7. _____, A theorem concerning an asymptotic integration, Chung Kuo L'o Hsueh (Chinese Science), 2 (1951).

8. _____, One kind of asymptotic integrals having absolute maximum at boundary points, Acta Math. Sinica, **4** (1954).

9. ____, On an asymptotic integral, Proc. Edinburgh Math. Soc. (2), 10 (1956).

10. P. G. Rooney, Some remarks on Laplace's method. Trans. Roy. Soc. Canada. III, **47** (1953).

OREGON STATE COLLEGE AND INSTITUTE OF TECHNOLOGY

UNIVERSITY OF MINNESOTA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

F. H. BROWNELL University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7. California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
T. M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON'

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Reprinted 1966 in the United States of America

Pacific Journal of MathematicsVol. 11, No. 1November, 1961

A. A. Albert, <i>Generalized twisted fields</i>	1
Richard Arens, <i>Operational calculus of linear relations</i>	9
John Herbert Barrett, <i>Disconjugacy of a self-adjoint differential equation of the</i> <i>fourth order</i>	25
Paul Richard Beesack, <i>Hardy's inequality and its extensions</i>	39
Julius Rubin Blum and David Lee Hanson, On invariant probability measures.	
П	63
Robert Allen Bonic, Symmetry in group algebras of discrete groups	73
R. Creighton Buck, <i>Multiplication operators</i>	95
Jack Gary Ceder, Some generalizations of metric spaces	105
Meyer Dwass, Random crossings of cumulative distribution functions	127
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, <i>Radial distribution and</i>	
deficiencies of the values of a meromorphic function	135
William Cassidy Fox, <i>Harmonic functions with arbitrary local singularities</i>	153
Theodore Thomas Frankel, <i>Manifolds with positive curvature</i>	165
Avner Friedman, A strong maximum principle for weakly subparabolic	
functions	175
Watson Bryan Fulks and J. O. Sather, Asymptotics. II. Laplace's method for	
multiple integrals	185
Adriano Mario Garsia and Eugene Richard Rodemich, An embedding of Riemann	
surfaces of genus one	193
Irving Leonard Glicksberg, <i>Weak compactness and separate continuity</i>	205
Branko Grünbaum, On a conjecture of H. Hadwiger	215
Frank J. Hahn, On the action of a locally compact group on E_n	221
Magnus R. Hestenes, <i>Relative hermitian matrices</i>	225
G. K. Kalisch, On similarity invariants of certain operators in L _p	247
Yitzhak Katznelson and Walter Rudin, <i>The Stone-Weierstrass property in Banach</i>	
algebras	253
Samir A. Khabbaz, <i>The subgroups of a divisible group G which can be represented</i>	
as intersections of divisible subgroups of G	267
Marvin Isadore Knopp, Construction of a class of modular functions and	
forms	275
Charles Alan McCarthy, <i>Commuting Boolean algebras of projections</i>	295
T. M. MacRobert, <i>Transformations of series of E-functions</i>	309
Heinz Renggli, An inequality for logarithmic capacities	313
M. S. Robertson, <i>Applications of the subordination principle to univalent</i>	
<i>functions</i>	315
David Sachs, <i>Partition and modulated lattices</i>	325
Frank S. Scalora, <i>Abstract martingale convergence theorems</i>	347
	5.7
Elbert A. Walker, <i>Torsion endomorphic images of mixed Abelian groups</i>	375
Elbert A. Walker, <i>Torsion endomorphic images of mixed Abelian groups</i>	