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It is known [2, p. 208] that if a locally compact group acts effec-
tively and differentiably on E, then it is a Lie group. The object of
this note is to show that if the differentiability requirements are replaced
by some weaker restrictions, given later on, the theorem is still true.
Let G be a locally compact group acting on E, and let the coordinate
functions of the action be given by fi(g, 2, +-+,2,), 1 =<t =<n. For
economy we introduce the following notation

Qj(g t x):fi(gyxl""!wj+t, "'7xn)_f'i(gvx1’ "'7xj,”"xn)
i )y Uy n .

We denote by d(Q;(e,0,x)) the oscillation of @,,(g,t, ) at the point
(e, 0, x).

Before proceeding there is one simple remark to be made on matrices.
If A= (a;) is an n x n» matrix such that |[a,; — §;,| < (1/n) then A is
non-singular. If A were singular there would be a vector # such that
Swi=1 and Ax = 0. From the Schwarz inequality it follows that
x: = (S fa;; — 8%, < (1/n) and consequently 1 = S x! < 1 which is im-
possible. If |a,; — 6] < (a/n), where 0 < a < 1, then the determinant
of A is bounded away from zero since the determinant is a continuous
function and the set {a;:|a;; — 8;;| = (a/n)} is compact in E ,.

THEOREM 1. If T is a pointwise periodic homeomorpvhism of K,
then T is periodic.

Proof. [2, p. 224.]

THEOREM 2. If G is a compact, zero dimensional, monothetic group
acting effectively on E, and satisfying

(%) a(Qise, 0, 2)) < %, 0<e<l1, for each x in E,;
then G is a finite cyclic group.
Proof. Since G is monothetic, let @ be an element whose powers

are dense in G. It is enough to show that there is a power of a which
leaves E, pointwise fixed since the action of G is effective.
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If q is a positive integer we let
Tdg, ) = x; + filg, ) + +++ + filg? 7}, 2) .
If y=(y;) and z = (x;) let

Tf.q(gv Lyy 2oy Ly, yjs ) yn) — Tiq(g9 Ly 2y Lgy Yjr1y **°, yn)
Yy — Xy

Ti(g, %, y) =

for y, #+ x, and zero otherwise. If we let y = f(g, 2) then we obtain
fl9%, ®) — ;= THg, y) — TXg, »)
:%Ti%(gy X, y)(yj - xj)

=03 T0, 2 Vs — @)

Because of the fact that fi(e, x) = x;, and because of () it follows that
there is a compact neighborhood U(x) of the identity of G such that if
g, -+, 9°e Ulx) then |(1/Q)Tig, %, y) — 3| = (afn), 0 <e<a <l It
follows that if 7 is the matrix with entries (1/9)T%g, =, y) then T is
non-singular and its determinant is bounded away from zero uniformly
in ¢, so the determinant of the inverse is bounded uniformly in q; thus

(Flg, 0) =) = (v = 7) = (du)- T (fl0", ) — ).

Since G is monothetic and zero dimensional there is a power of a
such that if g = a® then all the powers of g lie in U(x). Since U(x)
is compact it follows that the vectors f(g? ) — « are bounded uniform-
ly in ¢ and thus f(g,x) — 2 = f(a?,x) — x = 0. Hence a is pointwise
periodic on E, and it follows from Theorem 1 that it is periodic and
consequently has a power leaving E, pointwise fixed.

From this it follows quickly that if G is a locally compact group
acting effectively on E, and satisfying (%) then it is a Lie group.
This follows from the fact that since G is effective it must be finite
dimensional [1] and then if G is not a Lie group it must contain a
compact, non-finite zero dimensional subgroup H [2, p. 237] which acts
effectively. H has small subgroups which act effectively and it follows
from Newman’s theorem [3, 4] that H cannot have arbitrarily small
elements of finite order. Thus H has an element a of infinite order
such that the compact subgroup generated by a acts effectively on E,
and satisfies (*) but by Theorem 2 this is impossible.
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