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1. Introduction. In his work on capacities, G. Choquet proved
that for many capacities the inequality of strong subadditivity holds [1].
It is the purpose of this note to show that a similar inequality holds
for logarithmic capacities. More precisely we shall prove the

THEOREM. Let A and B be compact sets in the complex z-plane E.
By C(S) we denote the logarithmic capacity [2] of a given compact set
S, S ¢ E, where we agree to put C(S) = 0 whenever S = ¢. Then

C(A U B)-C(A N B) < C(A)-C(B) .

2. Proof of the theorem. Let S,S c E, be a compact set whose
boundary consists of a finite number of analytic arcs. By S* we denote
that component of E — S which is unbounded. Then Green’s function
of S* is defined by the properties: it is harmonic in S*, vanishes at
the finite boundary points of S* and has a logarithmic singularity at
infinity. We will denote this function by gs(z, o).

First we shall deal with the case when the respective boundarles
of 4, B and A N B consist of a finite number of non-degenerate analytic
arcs. We remark that the difference g,45(2, o) — g4(2, =) is harmonic
in A*, A*Cc (AN B)*, and at infinity. It is furthermore non-negative
on the boundary of A* and hence non-negative in A* by the maximum
principle. Similarly g,u5(%, ) = ¢4(2, ) holds in B*, B* < (A N B)*.

The function

h(z) = g4us(z, ©) + Guns(?, ©) — g4z, ©) — gs(z, )

is harmonic in (A U B)* and at infinity. From (A U B)* = A* N B* it
follows that the boundary points of (A U B)* belong either to the boundary
of A* or to the boundary of B*. Therefore g,uz(2, ) and either
942, ©) or gz(z, ) vanish at these boundary points. With the aid of
the remark made above we get the result that A(z) is non-negative in
(A U B)*.

Therefore

94(z, ) + gz, ) = gaup(®, ©) + gans(?, o)

holds in (4 U B)*. From this general inequality and using the fact
that
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}im {9s(z, ) — log |z}

is the constant ¥(S) of Robin [2] we deduce

v(A) + ¥(B) £ Y(AU B) + v(A N B).
But
C(S) = exp {—7(S)}

by definition. Hence our theorem is proven for the special case.
The general case follows by the usual approximation techniques [2].
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