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APPLICATIONS OF THE SUBORDINATION

PRINCIPLE TO UNIVALENT FUNCTIONS

M. S. ROBERTSON

l Introduction. Let

(1.1) f(z) = z + a2z
2 + + anz

n + •

be regular and univalent in | z \ < 1 and map | z \ < 1 onto a simply-
connected domain D. Let

(1.2) φ(z) = bλz + b2z
2 + + bnz

n +

also be regular in | z \ < 1. φ(z) is said to be subordinate to f(z) if for
each z of the unit circle | z | < 1 the corresponding point w = Φ(z) lies
in the domain Zλ In this case [2] there exists an analytic function
ω(z) regular in | z | < 1 for which ω(0) = 0, | ω(z) | ^ | z | < 1 and

It is the purpose of this paper to establish the following basic
Theorems A and B which concern analytic functions F(z91) and ω(z, t),
depending upon a real parameter t, and then to use them to obtain
results in the theory of univalent functions. Some of the results are
well known and others are new, but the method of attack seems to be
novel, simple and of sufficient generality to be of interest in itself. The
functions F(z, t) and ω(z, t) will be related to the univalent function f(z)
of (1.1) by means of the subordination concept.

An interesting biproduct of Theorem B is the following statement.
A sufficient condition that f(z), regular and univalent in | z \ < 1, be
convex in | z \ < 1 is that the de la Vallee Poussin means VJz) of (1.1)
be subordinate to f{z) in | z \ < 1 for n = 1, 2, . Recently [3] G. Pόlya
and I. J. Schoenberg showed that this condition for convexity is also
necessary.

THEOREM A. Let

(1.3) ω(z,t) = ±bn(t)zn

1

be regular in \ z | < 1 for 0 ^ t ^ 1. Let

I ω(z, t)\<l for \ z \ < 1, 0 ^ t g 1, ω(z, 0) Ξ= Z .

Let p be a positive real number for which

(1.4) ω(z) = li
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exists. Then

(1.5) £0ω(z) ^ 0 for \ z | < 1 .

If ω(z) is also analytic in \ z | < 1 and &ω(0) Φ 0, then

< 0 for I z \ < 1 .

Proof, By Schwarz' lemma we have for 121 < 11 ω(z, t) \ ^ 12: | with
equality only if ω{z,t) = zexipiθ(t), then the function

(1.6) μ(z, t) = ***> *> 7 z

ω(z, t) + z
is regular and &μ{z, t) < 0 for | z | < 1. But when ω(z, t) = z exp iθ(t),
μ(z, t) — i tan (l/20(ί)) is purely imaginary. Thus μ{z, t) is regular and
&μ{z, t) ^ 0 in | z | < 1 with equality occurring only if ω{z, t) ~z exp iθ(t).

For £ > 0, I z I < 1 we may write

(1.7) ^(ω(z,t)-z 2z I = J2^f)ΐ < 0 .
v X ztp ω{z,t) + z) I ίp J "

(1.4) implies that lim^o+^ί^, t) = 3 = ω(z, 0). Therefore, on letting t —>0
in (1.7) we obtain ^ ω ( z ) ^ 0 for \z\ < 1. When ω(z) is also analytic
in I z I < 1 and &ω(0) ΐ O w e have further that &ω(z) < 0 in | z | < 1.
This follows since the maximum, in this case zero, of a non-constant
harmonic function cannot occur at an interior point.

As an illustration of Theorem A, the following example is useful.
Let

? ί £ o s ί s l

Then ω{z, 0) = z, \ ω(z, t) \ ̂  1 in | z \ < 1, 0 ^ t ^ 1.

(1.9) ω(z) = lim {<«*> * ~ ^ °>} = ̂ ^ , t)] =

(l.io) ^r<Φ) = 2&(-^±.) < o, 121 < l .
\ 2 + 1 /

Theorem A is a special case of Theorem B to follow. However,
the proof of Theorem B depends upon Theorem A.

THEOREM B. Let

(1.11) f(z) = z + a2z
2 + + anz

n + ..

be regular and univalent in | z | < 1. For 0 ^ t ^ 1 Zeί JP(2, ί) 6e r e ^ -
Zαr in \ z \ < 1. Let F (z, 0) Ξ= /(#) and! i^(0, ί) = 0: Let p be a positive
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real number for which

(1.12) F(z) = lim j F(z, t) - F(z, 0) |

exists. Let F{z, t) be subordinate to f(z) in \ z | < 1 for 0 ^ t ^ 1.
Then

(1.13)

// in addition F(z) is also analytic in | z | < 1 and &F(0) Φ 0,

Proof. Since JF(Z, £) is subordinate to /(a;) in | z \ < 1 we have

F(z, t) - f{ω(z, t)} , b | < 1 , 0 ^ ί ^ 1 ,

where ω(z, t) is regular and bounded | ω{zf ί) | ^ 1 in | « | < l , 0 ^ ί ^ l .
Since F(z, 0) = f(z) and since f(z) is univalent in | z \ < 1 we have
ω(z, 0) = «. Also since /(0) = 0, F(0, t) = 0 and since /(z) is univalent
we have ω(0, 0 = 0. We now write

( 1 u ) F(z, t) - F(z, 0) = Γf(ω(z, t)) - f(ω(z, 0))Jω(z, t) - ω{zy 0) 1
ztp L ω(z, t) - ω{z, 0) JL ztp J '

(1.12) implies that F(z, t) is continuous from the right at t = 0 and a
similar statement holds for ω(#, t) because of the subordination. Let
t—>0+ in (1.14). The left side of equation (1.14) has for a limit F(z)
by (1.12). On the right side of (1.14) the square bracket has a limit
f\z) Φ 0. Thus

(1.15) ω(z) = lim Γ«*M)-<Φ,0)]

exists and equals F(z)lf(z). Furthermore &ω(0) = &F(0). If F(z) is
analytic so is ω(z). Since the conditions of Theorem A are fulfilled by
0){zy t) we have

(1.16) 4 l
ί («)

When ί7^) is analytic in 121 < 1 and ^ ^ ( 0 ) ΐ θ we also have

(1.17)

2 Applications to univalent functions. The properties of univalent
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functions W — f(z), given by (1.1), which are also star-like with respect
to the origin in \z\ < 1 are well-known [2]. If W = f(z) maps \z\ < 1
onto a star-like domain D of the TF-plane, then by definition the line
segment joining the origin to the point W = f(z) lines entirely within
D for each z in \z\ < 1. One then shows that it is necessary that

(2.1) ^ M M l > o in |«| < 1 .

In establishing (2.1) one is obliged to show first that if f(z) is star-like
with respect to the unit circle it is also star-like with respect to each
smaller circle | z | = r < 1. At this stage one then appeals to an alter-
native definition of a star-like domain/ This requires that the radius
vector, joining the origin to the point f(z), turns always in one direction
as the argument of z advances.

A much simpler proof of the necessity of (2.1) follows immediately
from Theorem B. Since (1 — t)f(z) is subordinate to f(z) for 0 S- t ^ 1,
we have

(2.2) (l-t)f(z)=f{ω(z,t)}

where ω(z, t) satisfies the conditions of Theorem A. Taking p — 1 and
letting

(2.3) F(z, t) = (1 - t)f(z)

in Theorem B we obtain at once F(z) = —f(z)\z Φ 0, so that (2.1) follows
from (1.17) very simply.

More generally we have the following theorem.

THEOREM 1. Let.

f(z) = z + a2z
2 + + anz

n + •

be regular and univalent in \ z | < 1 and such that (1 — teiΛ)f(z) is sub-
ordinate to f(z) in I z I < 1 for an interval 0 ̂  t ^ t0, a a real constant
I a I < π/2, then

(2.4) ^ > o , |* | < 1 .

For the proof of Theorem 1 we take

(2.5) F(z, t) = (1 - te")f(z)

in Theorem B and (1.13) becomes (2.4) in this case. The condition (2.4)
is the one given for spiral-like functions by L. Spacek [7].

The following theorem from an intuitive point of view appears to
be almost self-evident. Our new technique, however, furnishes an easy
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and precise proof.

THEOREM 2. Let f(z) of (1.1) be regular and univalent in \ z \ < 1.
For an interval 0 ^ t ^ t0 let the function

(2.6) ^r[f(euz) + f(e~»z)]

be subordinate to f(z) in \ z | < 1. Then.

(2.7)

(#) is convex in 12 | < 1.

Proof. In Theorem B we choose ^ = 2 and i*7^, 0 to be the func-
tion (2.6). Then

(2.8) F(z) = lim F ^ *> ~ *<«' °> = limlim lim
ί-o 2ί2 ί-o 2^ί βί

Since /'(0) = 1, it follows that F(0) - - 1 so that ^ F ( O ) Φ 0. Thus
(1.17) of Theorem B is equivalent to

(2.9)

It is well known [2] that (2.9) implies that f(z) is convex in | z \ < 1.
For odd functions and an appropriate choice of F(z, t) we obtain a

result perhaps not so intuitively obvious as Theorem 2. It is the follow-
ing theorem.

THEOREM 3. Let

(2.10) /(*) - z + ta^z^-i ,
2

be an odd function, regular and univalent in \z\ < 1. For all real a

and for an interval 0 ^ t ^ ί0 Zeί £fce function

(2.11)

6e subordinate to f(z) in \z\< 1. Then f(z) is convex in \z | < 1.

For the proof of Theorem 3 we take F(z, t) of Theorem B to be
the function (2.11) and select p = 2. A calculation of F(z) in (1.12),
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together with (1.16), leads to the inequality

(2.12) &\(1 - e-zi«zjen«£M _ 2(1 - e~2i«z2)\ ^ 0 , | z \

L zf (z) J

Choose a = amp z. Let | z \ = r < 1. Then (2.12) becomes

(2.13) ^ Γ ( l - r2)2 4 3 f t - 2(1 - r2)] ̂  0 ,
L r2f'(z) J

Similarly, for α = π/2 + amp 2, we obtain

It follows from (2.15) that/(2) is convex for | g | < 1. It is to be noticed
that equality occurs in (2.13) for the convex function

when a = 0. In this case F(z) = 0.
For another application of Theorem B we turn now to a class of

function which need not be convex but which form a subclass of the
class of close-to-convex functions introduced by W. Kaplan [1].

It is well known that if

(2.16) f(z) = z + ±anz
n

2

is univalent and convex in | z | < 1, then | an \ ̂  1 [2]. The author [5, 6]
has shown that if the coefficients are all real and if f(z) is univalent
and convex only in the direction of the imaginary axis for \z\ < 1, then
again \an\ ^ 1, but that if the coefficients are complex the results
\an\ ^ n is sharp. For the class of functions f(z) which are close-to-
convex in \z\ < 1, the inequalities \an\ ^n again hold [4]. We now
consider another class of functions, which are also close-to-convex in
| s | < 1, but not necessarily convex, for which | α n | <£ 1. This class con-
tains the odd star-like functions as a sub-class. The result is stated in
the following theorem.

THEOREM 4. Let the function

(2.17) (1 - t)f(z) + tf(-z)

be subordinate to the univalent, regular function
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(2.18) f(z) = z + a2z
2 + + anz

n + •

in I z I < 1 for an interval 0 ̂  t ^ t0. Then

(2.19) &I *£!<&—Λ
L/(z)-/(-z)J

and the vector {f(z) —/(—«)} £wws continuously in one direction as z
traverses each circle \ z | = r < 1. f(z) is close-to-convex in | 3 | < 1.

Proof. Let ̂  = 1 and let JF(s, ί) be the function in (2.17). Then
F(z) of (1.12) reduces to (l/z)[f(-z) -f(z)] and F(0) Φ 0. (1.13) then
leads to (2.19).

Now let

arg [f(z) - f(-z)] =φ,argz = 0 .

by (2.19).

Since by (2.20) {/(2) — /(—z)} is univalent and star-like in \z\ < 1, it
follows t h a t

(2.21) ψ(z) = dt , 121< ,
t

is convex in | s | < 1. Thus (2.19) may be cast in the form

(2.22) ^\IMλ > o , I z I < 1 , φ(z) convex,
I ψ'(z))

which implies that f(z) is close-to-convex [1] in | z \ < 1. This completes
the proof of Theorem 4.

In a recent paper [3] G. Pόlya and I. J. Schoenberg have shown
that if f(z) of (1.1) is univalent and convex in | s | < 1 then so are the
de la Vallee Poussin means VJz) of the power series (1.1),

(2-23) V.(z) = ^ ΐ5 z + ̂ ΐ ^n + 1 (n + 1)(^ + 2)

+ α z

(n + 1)(^ + 2) (2rc) " '
and if D and Dn denote the convex domains into which the unit circle
is mapped by f(z) and Vn(z), respectively, then Dn c D. In other words,
Vn(z) is necessarily subordinate to f(z) for n — 1, 2, when f(z) is
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univalently convex. By means of Theorem B we can now prove that
the condition Dna D for infinitely many values of n is also a sufficient
condition that f(z) be convex when f(z) is univalent. The theorem of
Pόlya and Schoenberg in its extended form is now stated as Theorem 5.

THEOREM 5. A necessary and sufficient condition that the function

f(z) = z + a2z
2 + + anz

n + ,

regular and univalent in \z\ < 1, be convex in \z\ < 1 is that the de
la Vallee Poussin means Vn(z) in ( 2 . 2 3 ) be subordinate to f(z) in\z\<l
for n = 1, 2, .

Proof of sufficiency. In Theorem B we choose p = 1 and F(z, t) =
Vn(z) where t = (n + I)"1. We define F(z, 0) = lim^0+ F(z, t) =
l im,^ Vn(z) — f(z)f uniformly in | z | ^ r < 1. For p = 1 we shall show
that the limit defining F(z) in (1.12) exists uniformly and is precisely
the analytic function -~{zf"(z) + f'(z)}9 F(0) = - 1 . When this is done
(1.17) will give

and the convexity of f(z) follows. We need the following lemma.

LEMMA. If n and k are positive integers, k ^ n, then

(2.24) (n + l)Γl - / ^ - 1 ) ( w-f + 1

L (n + ΐ)(n + 2) . (n + k)
We establish the lemma by mathematical induction. Let n be an

assigned positive integer. It is readily seen that (2.24) holds for k — 1.
Assuming that (2.24) is true for a value k < n we prove that (2.24)
also holds when k is replaced by (k + 1). Indeed, we have

(2.25) (» + l)Γl n(n-l)...(n-k + l)(n - k) 1
v ' v \ (n + l)(n + 2) (Λ + k)(n + fc + 1) J

= ί n + i f i _ n(n-l) '(n-k + l) (± _ 2k + 1 \ ]
L (w + l)(n + 2) (n + k) V w + Jfc + 1 λl

= ίw + l)Γl - '"•(̂  — 1) (^ — fc + 1) Ί
L (n + l)(w + 2) (w + fc) J

+ (2k + 1) {-n + v>

^ A;2 + (2k + 1) = (fc + I) 2 .
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Turning to the calculation of F{z) we have

(2.26)

F(z) = lim Γ F{z, t) - F(z, 0) 1 = ^ *±l(Vn(z) - f{z))
t->o+L tz J ŵ oo z

= -lim (» + 1) t i l - (

nin-P':'o^'~IC+ΛW'1' * = !'»-« *=i I (n + l)(w + 2) (n + k))

- lim (w + l)z M fχ + M + 1 z v .
n—»oo v=0

Let I z I ^ r < 1. Since f(z) is univalent we have | av+n+1 \ < e{v + n + 1).
Consequently for large n

(2.27) (n + l)z»± av+n+1z* = θ{ ^ } - p M ,
v=o 1(1 —rf)

(2.28) lim p n = 0

uniformly in | z | ^ r.
Let ΛΓ be a positive integer. Then

(2.29) lim (n + l ) s { l - ^ ~ D ' (^ ~ fc + 1) 1 ,-t„-. ^ ;ήΊ I ( n + i)(Λ + 2) (n + A;) /

For w > iV, I 2 I ^ r, by the lemma we have

(2.30) (w + 1) ± U -
(w + l)(n + 2) (n + k)

g t fc2l α* I*1*"1 < e Σ fcV*-1 .

Given ε > 0, we now choose N0(e, r) so that for N > No

(2.31)

From (2.26), (2.28), (2.29), (2.30) and (2.31) it follows that the limit in
(2.26) exists uniformly in | z | ^ r < 1 and is the analytic function

(2.32) F(z) - -

This completes the proof of the sufficiency part of Theorem 5. The
necessity part was shown in [3]. In (2.26) since n is a positive integer
we have let t —* 0 through a discrete set of values of t. This, however,
in no way affects the validity of Theorem B.
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