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ABSTRACT MARTINGALE CONVERGENCE THEOREMS

FRANK S. SCALORA

Introduction, The study of probability theory in abstract spaces
became possible with the introduction of integration theories in such
spaces. Thus the idea of the expectation of a random variable which
takes its value in a Banach space was studied by Frechet [6] with what
amounted to the Bochner integral, and by Mourier [13] with the Pettis
integral. Doss [2] studied the problem in a metric space. Kolmogorov
[10] generalized the notion of characteristic function. Generalizations
of the laws of large numbers and the ergodic theorem appear in Mourier
[13] and Fortet-Mourier [5]. In this paper we generalize the concept
of martingale and prove various convergence theorems.

Chapter I is devoted to listing various definitions and theorems which
we shall have to refer to later. In Chapter II we introduce the idea
of the conditional expectation of a Banach space valued random variable.
We also prove the existence of the strong conditional expectation for
strongly measurable random variables. This part of our work was also
done by Moy [14] independently, and without the knowledge of the
author. Chapter III is devoted to the definition and study of weak and
strong ϊ-martingales, with emphasis on the latter.

In Chapter IV we prove a series of convergence theorems for 36-
Martingales with the help of theorems of Doob [1]. The main theorem
says that if {xn, Ĵ Γ, n ^ 1} is an X-Martingale where 36 is a reflexive
Banach space, and if {|| xn\\, n ^ 1} is a uniformly integrable class of
functions, then there is a strongly measurable X-valued function x^ such
that || xn{ω) — x^ω) || —> 0 as n—>oo with probability 1 and {xnJ ^, 1 <Ξ
n ^ oo} is an ϊ-martingale. We close by discussing examples where 36
is one of the standard Banach spaces, lp, LP(I), and C(I).

CHAPTER I.

PRELIMINARY DEFINITIONS

1* Measurability concepts. A. Let {Ω, P, ^) be a probability
space. Thus Ω is an abstract set of points ω, ^ is a Borel field of
subsets of Ω, and P is a probability measure defined on ^ . We recall
that a Borel field of sets is a class of sets which is closed under count-
able unions and intersections, and complementation. A probability
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measure P is a completely additive non negative set function defined
on a Borel field of sets, such that P{Ω} = 1. We will be concerned with
functions cc( ) defined on Ω, and taking their values in a Banach space
X. The sets of ^€ will be referred to as the measurable sets.

DEFINITION 1.1. x is a weak random variable if it is a weakly
measurable function from Ω to X.

DEFINITION 1.2. x is a finitely {countably) valued random variable
if it is constant on each of a finite (countable) number of disjunct
measurable sets Λό\ with Ω = L M J

DEFINITION 1.3. # is a strong random variable if it is a strongly
measurable function from β to ϊ .

DEFINITION 1.4. x is almost separably valued if there is a set A in
^// such that P{A} = 0 and x(Ω — A) is separable.

Note, x is strongly measurable if and only if it is weakly measur-
able and almost separably valued. (Pettis [15] and Hille-Phillips [9]
Theorem 3.5.3, p. 72).

B The measure induced in X. Suppose x is a function from Ω
to X. We define a class of subsets of X in the following way: Let J^
be a Borel field of measurable subsets of Ω, ^ C ^€. Let ^ be the
class of subsets of X with the property that sf e ^ Γ if Szf C X and
{ω: #(ω) e S/} is an ^ set. ^ζΓ is a Borel field.
If j y e J^Γ define Px{j^} = P{ω: α(α>) e j ^ } . Clearly P x is a probability
measure on ^Γ. This gives us a probability triple on X, (X, Px, ^ζ).
Now, let J?r — ̂ ', the class of measurable sets of Ω. In order to
assure that ^ C will contain some interesting subsets of X we shall
have to assume some measurability properties for x, which we now
proceed to do.

a. Suppose that x is weakly measurable. Then f(x) is a real
measurable function for all f e X*, the real first conjugate space of X.
Thus for every real Borel set J5, {ω:f(x{ω)) e B} is an ^£ set. Next
{ω:f(x(ω)) e B) = {ω: x(ω) e f-\B)}. Hence f'\B) is in ^ C for every
/ in X* and real Borel set B. Since / is continuous, f~\B) is open
(closed) if B is open (closed).

Further, ^/fx contains all the weak neighborhoods of X if x is weakly
measurable. In fact, let N(ξo;flf " ,fn;ε) be a weak neighborhood of
X. Then
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N(ξ
t
; f

lt
" , /.; e) = {ξ: | f,(ξ) - /,(£,) |< e, i = 1, , n}

But the inverse image of each of the sets in the intersection by x is
clearly an ^f set since f(x) is a real valued measurable function for
every linear functional /. Thus ^//x contains all of the weak neighbor-
hoods of 36, and hence the smallest Borel field containing the weak
neighborhoods.

Conversely, if ,yf/x contains all the weak neighborhoods of 9c then
x is weakly measurable. To prove this, we must show that f(x) is a
real valued measurable function on Ω for every / in 9c*. If / is the
zero functional then f(x(ω)) = 0 for all α>, and thus f(x) is clearly
measurable. Otherwise /takes on all real values. In this case we show
that {ω: f(x(ω)) e B] is an ^f set for every real Borel set B and linear
functional/. If Bis the open interval (a — ε,a + ε), then {ω: f(x(ω)) e B} —
{ω: \f(x(ω)) — a | < ε}. Since / takes on all real values there is an
element ξ0 in 9c such that f(ξ0) = a. Hence {ω: f(x(ω)) e B) =
{ω: x(ω) e N(ξ0; /; ε)} which is an ^/ί set by hypothesis for ^ C contains
all the weak neighborhoods of 9c. Next, every open set in the reals, in
fact, in any separable metric space, is a countable union of open spheres.
Thus, if B is an open set in the reals B — \Jn Vn where Vn is an open
interval for every n. Since ^/f/ is closed under countable unions
{ω:f(x(ω)) e B) = \Jn {ω: f(x(ω)) e Vn) is an ^// set. Finally, the class
of real sets B for which {ω:f(x(ω)) e B} is an ^fέ set is a Borel field
which contains the open sets, thus it must contain all the real Borel
sets, and so x is weakly measurable. Thus the definition of weak
measurability may be rephrased as follows:

DEFINITION 1.1.* x is weakly measurable if ^f/x contains all the
weak neighborhoods of 96, that is, if {ω: x(ω) e N} is an ^ set for
every weak neighborhood N.

b. Suppose that x is strongly measurable. Then there is a sequence
xn of finitely valued functions, and a set A in ^/ί such that P{A} = 0,
|| xn(ω) — x(ω) \\ —• 0 as n —* oo for ω e Ω — A. Let g be a real valued
continuous function. Then g(x) is a real valued measurable function on
Ω. Consequently, {ω: g(x(ω)) e B} is an ^f set and g~\B) is an ^//x

set for every real Borel set B and real continuous function g. Next let
if7 be the class of real valued functions g defined on 96 such that g(x)
is a real valued measurable function on Ω. Then & contains the
continuous functions and is closed under the limit operation, thus it
contains all the Baire functions on 9c to the reals. Now let A be a
Borel set in 96. Then there is a real number a and a Baire function g
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such that A = {ξ: g{ξ) > a}. Now A = g~\B) where B = (α, oo). Thus
4̂ is an ^ x set since {ω: flr(α?(α>)) e B) is an ^>f set by the measur-

ability of g(x). Therefore if x is strongly measurable, then ^/ίx contains
all the Borel sets of X, or {ω: x(ω) e B) is an ^/ί set for every Borel
set B of X.

C* Independence, Let x and y be (weakly or strongly) measurable
random variables on Ω to 36. We can then define a Borel field ^€x>y of
subsets 3c x 9c in an analogous way. Consider ^ C x ~^y — {A x J5: A e ^fxf

B e ^fy}. Let Px y(A x B) = P{ω: x(ω) e A, y(ω) e B). This probability
is well defined for the set on the right is the intersection of two ^
sets and hence is itself an ^// set. Let Rx>y be the field of finite unions
of sets of ^y//x x ^fίy. Then Px>y can be defined on Rx>y to be a probability
measure in the obvious way in a unique fashion. Next Px>y can be
extended uniquely to ^fx,y, the smallest Borel field of measurable subsets
of X x X containing RXtV (Doob [1] Theorem 2.2, p. 605).

DEFINITION 1.5. x and y are said to be independent if P{ω: x(ω) e
A, y(ω) e B} = P{ω: x(ω) e A}P{ω: y(ω) e B) for A, B subsets of % when-
ever all of the probabilities in the equality are defined; i.e., whenever
the above sets are in ^f. The equality may be rewritten as Px y(A x B) =
Px(A)Py(B).

Notice that this definition can be rephrased to say that the product
relationship holds whenever A is in ^ C and B is in ^fy, for only then
will all of the probabilities in the product be defined. This is the type
of definition that has been given by Kolmogorov; e.g., Gnedenko-Kolmo-
gorov ([7], p. 26). The definition used by Doob [1] differs in that it
says that the product relationship holds whenever A and B belong to
a possibly smaller class of sets, namely the Borel sets. For a full dis-
cussion of the connection between the two types of definition the reader
is referred to Doob's appendix to the above mentioned book by Gnedenko
and Kolmogorov.

THEOREM 1.1. If x and y are independent, thenfτ(x), •••,/„(#) are

independent of gx{y), * m,gm(y) in the sense of Kolmogorov for every

finite set of real valued linear functionals flf ,/w, glf , gm on 9c.

Proof. Let Alf , An, Bιy* ,Bm be real sets such that {ω: f3{x(ω)) e Aό)

and {ω: gτc{y{ω)) e Bk} are ^ sets for j = 1, , n and k = 1, , m.

Then fj-'iAj) is in ^ C and g?(BJ is in ^ . Next, ΠUfί\Aj) e ^€x

and n?- i 9ΛBκ) e ^ . Thus
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P{ω: Ux(ω)) e i , , - . , fn{x(ω)) e An, gMω)) eBu-", gm(y(ω)) e Bm}
n m

= P{ω: x(ω) e Γ\fΓ\A}), y(ω) e f| gΛB*)}

= P{ω: x(ω) e f) fΛAj)}P{ω: y(ω) e Γ\ g^(Bk)}
3=1 fc=l

by the independence of x and y

= P{ω: fλ(x{ω)) e A19 , fn(x(ω)) e An}P{ω: gM*>)) € Blf ,

flrm(jί(ω))e.Bni} Q.E.D.

THEOREM 1.2. // cc αticZ 7/ are weakly measurable and independent,

then /L(#), •••,/«(») are independent of g±(y), m ,gm(y) in the sense of

Doob for every finite set of real valued linear functionals flf •••,/»,

9i, '",9m on ϊ .

Proof. Let Aj and ί?fc in the above proof be real Borel sets; then
{ω: fj(x(ω)) e A3) and {ω: g^yiω)) e 5 J are ^£ sets for /^a?) and gh{y)
are real valued measurable functions by the weak measurability of x
and y. The rest of the proof goes as above.

THEOREM 1.3. If x and y are weakly measurable, and such that
fi(x)> ••>/»(») are independent of g^y), , #w(τ/) /or every finite set of
real valued linear functionals f19 •• yfn9gu , gm on 9c, then x and y
are independent relative to the smallest Borel field of X sets contain-
ing the weak neighborhoods; i.e.,

P{ω: x{ώ) e A, y(ω) e B} = P{ω: x(ω) e A}P{ω: y(ω) e B}

for all A and B in the smallest Borel field containing the weak neigh-
borhoods of X.

Proof. Let A = N(ξQ; flf , fn; ε) and B = JSΓ(%; ̂ , , ̂  δ): then

P{ω: ^(o)) e A, y{ω) e B]

= P{ω: \ft(x(o>)) - A(ξo) \<ε, i = h , n

I gj(y(ω)) - s^o) I < δ, i = 1, , m}

= P{ω: |/f(α?(ω)) - /4(f0) | < ε, i = 1, . . , n)

P{ω: I g3(v(ω)) - g3(ηQ) | < δ, i = 1, . . . , m}

by the hypothesis, and so

P{ω: x(ω) e A, y(ω) e B) = P{ω: a?(ω) 6 A} P{ω: y(α>) e J5}

when A and J5 are weak neighborhoods of 96. Now the class of weak
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neighborhoods is closed under finite intersections and thus the inde-
pendence multiplicative relationship is preserved if we extend this class
to the smallest Borel field containing it (Loeve [12] p. 225).

The notion of independence is easily generalized to aggregates of
random variables. For a fuller discussion of the measurability concepts
mentioned in this section, see Pettis [15] and Hille and Phillips [9].

Note. Let ( ^ ) e ϊ x ϊ . Define || (f, η) \\ = V\\ξ\\2 + \\η\\\ By
this definition, 3 E x ϊ becomes a Banach space. Let / be a real linear
functional on ϊ x 9c. If Λ(ξ) = f[(ξ,θ)] and Mη) = f[(θ,η)], then f,
and /2 are real linear functionals on X, and f[(ξ, η)] = fx(ξ) + f*(rj). If
x and y are weakly measurable X-valued functions on Ω, then fτ{x) and
f2(y) are real valued measurable functions on Ω. Thus the weak meas-
urability of x and y implies the weak measurability of (x, y) on Ω to
36 x X. Similarly, if x and y are strongly measurable, there exist
sequences xn and yn of finitely-valued measurable X-valued functions
such that ||a?n — x || —• 0 and \\yn — v\\ —> 0 as w —> oo with probability 1.
But (xn, yn) gives a sequence of X x 36 finitely-valued functions, and
II («», Vn) ~ (x, y) II = V\\xn-x\\2 + ||!/„ — 1/|Γ—^ 0 with probability 1 as.
w—> oo. Thus, if x and 2/ are strongly measurable, then so is (x, y).

2. Integrability concepts* Let x be a countably valued function
taking the value ξό on the measurable set Δ5. Then x is said to be
Bochner integrable if and only if | |#( )ll is integrable, and by definition

(B) \x{ω)dP=±ξjP{Λ)).
JΩ 3 = 1

DEFINITION 2.1. x{ ) is integrable in the sense of Bochner if there
is a sequence α?Λ( ) of countably valued random variables converging
with probability 1 to #(•), and such that

lim ( \\xm(ω)-xn(ω)\\dP=0.
<m,n->°° J Ω

Then the limit of (B)\ xn(ω)dP exists and by definition
JΩ

(B)\ x(ω)dP = lim (B) [ xn(ω)dP .
JΩ n-*°o JΩ

Since P{Ω} = 1, we may again replace the word countably by finitely.
We will later need the following result apparently proved first by

Pettis ([15] Theorem 5.2, p. 293), and later by Moy ([14] Theorem 1,
PP. 3, 4.)

THEOREM 2.1. If x is strongly measurable relative to the Borel field
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of measurable sets and Bochner integrable and such that I x(ω)dP —

θ for every set A in ^ then x(ω) = θ almost everywhere.

CHAPTER II

GENERALIZATIONS OF THE RADON-NIKODYM THEOREM

AND ABSTRACT CONDITIONAL EXPECTATIONS

1# It is well known that a real or complex valued completely addi-
tive set function which is absolutely continuous on a σ-finite measure
space is actually the integral in the usual sense of a finite measurable
point function (unique almost everywhere). The existence of this point
function is assured by the classical Radon-Nikodym theorem (Halmos
[8] p. 128).

Using a theorem due to Dunford and Pettis ([4], p. 339) it is possible
to get a definition of conditional expectations for more general random
variables such as Dunford and Pettis integrable functions. Since it is
too weak for our purposes, we will no longer refer to it in this paper.

2 Strong conditional expectations* If we restrict ourselves to
Bochner integrable random variables it is possible to get a sharper
version of the conditional expectation.

With this end in mind, let x{ );Ω-+lί be finitely valued; in fact,
let x(ω) = ξj on A5\ j = 1, , k. Then x(ω) = Σ*=i £r &/<*>) where χ^
is the characteristic function of A3.

D E F I N I T I O N 2 . 1 . ^ s { x \ ^ } ( ω ) = ψ = 1 ξ j

is the ordinary conditional expectation (Doob [1]) of χΛj relative to j ^ ~ .
%?s{x\J?r} will be referred to as the strong conditional expectation of
x relative to ^ .

In this section all integrals will be in the sense of Bochner, so we
will remove the letter B preceding the integral sign.

LEMMA 2.1. If x is a measurable finitely valued function on Ω to

X, then [ x(ω)dP= [ &s{x\^}{ω)dP for every A e
JΛ JΛ

Proof.

\

where the integral is in the ordinary sense



354 FRANK S. SCALORA

= 1 x(ω)dP . Q.E.D.
JΛ

LEMMA 2.2. If x is a measurable finitely valued function on Ω tσ
then \\^s{x\ J H M II ̂  #{11 x IIIJH (ω) with probability 1.

Proof.

for χ^ = 1 or 0.

= E{\\ x || I JH(ω) . a.e. Q.E.D.

LEMMA 2.3. // xlf , α;fc are finitely valued measurable functions,
and a1 fah are scalars, then

with probability 1.

Proof. Let {AJ: m = 1, « ,p be a decomposition of Ω such that
each Xj takes on only one value on each Am; in fact, let Xj(ω) = ^(A^)
for ω e Am. Then since £f s{# | ̂ "} depends on x and ̂ ^ and not on the
decomposition of Ω, the same representation holds for all the ^s{
Hence

= Σ

Thus

= Σ [<hΦi(AJ + + akφk(AJ]E{χAn
m=l

= «i Σ ^(ΛJ^ϋL., I ^"}(o>) + + α» Σ
l l

= Σ α ^ s t e I ^}(o)) with probability 1. Q.E.D.
3
Σ
3=1

THEOREM 2.1. Lei cc( ): Ω —> ϊ δe integrable in the sense of Bochner
and ^ a Borel field of measurable Ω sets. Then there exists a func-
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tion Ws{x\J^~}( ): Ω—*% which is Bochner ίntegrable, strongly measur-
able relative to j ^ ~ , unique a.e., and

x(ω)dP = I &s{x I JH(ω)dP for all A e

Proof. Let x be strongly measurable and integrable in the sense
of Bochner. Then there exists a sequence xn of finitely valued measur-
able functions such that xjω) —> x(ώ) with probability 1 as n —• oo

1 || xJω) — xjω) II dP—* 0 as n, m —> oo; and 1 xn(ω)dP—* \ x(ω)dP.
JΩ JΩ }Ω

ISίow ^"{Xnl^} is defined for all xn by Definition 2.1. Also

) || dP

= ( II ί f ' K - %m I J?H(α>) II d P by Lemma 2.3.

^ ϊ JS7-CH *„ - a?m | | I J^"}(ύ))dP by Lemma 2.2.

= ( || X"(Q)) _ a- ( ω ) || d P by the definition of ordinary con-

JΩ ditional expectations
—• 0 by the defining property of the xn's as n, m—> oo.

Then according to Hille and Phillips ([9] p. 82, Theorem 3.7.7), there
exists a function, y, which is Bochner integrable, strongly measurable
relative to ^ , unique a.e., and such that

(1) ( |( gf {*n I jr}(ω) - y(ω) \\ dP-> 0 as n - oo
JΩ

Next,

( y(ω)dP - ( x(ω)dP
JΛ JΛ

- \ x{ω)dp\\
JΛ II

^ t \\y(ω)-ϊ?s{xn\jr}{ω)\\dP
JΛ

+ II ί xn(ω)dP - [ x(ω)dp\\ by Lemma 2.1.
II U JΛ II

—> 0 as n —> oo by (1) above and by the definition of I x(ω)dP. Thus
y(ώ)dP — \ x(ω)dP for all A e ^ . We are now justified in calling

A JΛ

y(>) the strong conditional expectation of x relative to ^ and we use
the notation ξ?8{x |J^}( ) Q.E.D.
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DEFINITION 2.2. ί?*{x\^~} is called the strong conditional expect-
ation of x relative to ^".

We shall now examine the properties of the strong conditional ex-
pectation. In what follows we will be concerned mainly with the strong
Yather than the weak conditional expectation.

THEOREM 2.2.

1. If x(ω) — ξ on Ω then &s{x \^}(ω) = ξ with probability 1..

2. g^JΣ CJXJ I βΛ = Σ c0s{x31 Ĵ ~} with probability 1.
U = i ) ? = 1

3. || Ws{x I &~}(ω) || ^ E{\\ x \\ \ J Π with probability 1.
4. // || a?Λ(α>) — α?(tt>) || —• 0 as n—> oo with probability 1, and'

there is a real random variable a(ω) ^ 0 such that \ \ xn(ω) \ \ S
a(ω) with probability 1 and E{a} < oo, then l inv^ &s{xn \

with probability 1.

Proof.
(1) The function x(ω) = ξ has the defining property of

and is measurable relative to any Borel field

(2) ί %"l'ΣWj\^J\(ω)dp= \ (ΣiθjXj(ω))dP by Theorem 2.1.
JΛ u=i J JΛ\;=I /

= ( ( Σ Cj&'ix, I ^-}(ω))dP for all ΛeJ?~.

Thus

l 1 = Σ ^^s{^^ I ^ H with probability 1.

(3) Let α;w be as in the proof of Theorem 2.1. and let A e ^ .
Now 11 gf s{xn I JΠ(α>) \\^E{\\xn\\\ ^~}(ω) with probability 1 by

Lemma 2.2. Thus

But

( II ϊfs{Xn I JΠ(«>) II d P ̂  ( JB7-CN ^
JΛ JΛ

\ II ^ s ^

by Theorem 2.1., and

( JS?{|| xn || I JH(ω)dP = ί II *»
JΛ JΛ

as n



ABSTRACT MARTINGALE CONVERGENCE THEOREMS 357

Ήence

( || ϊfs{x I JH(ω) II dP ^ ( E{\\ x || I ^}(ω)dP for A e j T ,

.and thus || ξ?s{x \J^}(ω) || ^ E{\\x\\\^}{ω) with probability 1.

(4) || if S K I

= II &s{Xn - x I J^Π(ω) II by (2) with probability 1.

^E{\\xn-x\\\jr}(ώ) by (3) with probability 1.

-> 0 as w -> co by Doob ([1] p. 23). Q.E.D.

Next it will be convenient to show that every linear transformation
•distributes over §?s.

THEOREM 2.3. Let x be Bochner integrable, J^" a Borel field of
measurable sets, f a linear (bounded) transformation from 3c to another
Έanach space 2). Then

f[^s{x\^}(ω)] = ^s{f(x)\^}(ω) with probability 1.

Proof. Since / is a linear (bounded) transformation, fix) and
S\^5{x\^)λ are Bochner integrable (Hille-Phillips [9] p. 84). Let

. Then

{x \ JT}(ω)]dP =

(Hille-Phillips [9] Theorem 3.7.12, p. 83)

= (B)\ f(x(ω))dP by the preceding reference
JΛ

'Thus f[%"{x\^~}(oή] = ^s{f(x)\^}(ω) with probability 1 by Theorem
2.1. of Chapter I. Q.E.D.

COROLLARY. Let x be Bochner integrable, ^~ a Borel field of
measurable Ω sets, / e £ * , then

)] = E{f(x)\^}(ω) with probability 1.

A final remark. If ^ S S^, then
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with probability 1. For

( for A e

for A e

= I x(ω)dP for Ae £*; Λ also for A e

U

\
JΛ

= \E{X
JΛ

X\ ̂ }{ω)dP for A e &~. Q.E.D

CHAPTER III.

ABSTRACT MARTINGALES

l Preliminary definitions*

DEFINITION 1.1. Let T be a linear index set. Let xΓ( ): Ω-^% be
integrable in the sense of Bochner for τ e T and ^ Γ be a Borel field
of measurable subsets of Ω f or τ e Γ. Let ^ c c^* if a < τ. Suppose
xT is strongly measurable relative to J?ζ or equal almost everywhere to
such a function. If &s{xT \ ^ } = xσ with probability 1 when σ < r
then {#τ, ^ ' j r e Γ} is a strong Ίί-martingale.

In most of our work we will be concerned with the case in which
T is the set of positive integers, and in this case the martingale will
be denoted by {xn, ^ , n ^ 1} and the martingale equality becomes
<ίfs{%n I ^m) = %m with probability 1 for n > m.

By using the Dunford-Pettis Theorem alluded to in Chapter II, it
is possible to get a definition of weak X-martingales, but because of a
separability assumption in the theorem, they turn out to be strong X-
martingales.

2* General properties of strong X-martingales. From this point we

will denote (B)[ x(ω)dP by ( %(ω)dP, (B)\ x(ω)dP by &{x}> and
]A JA JΩ

by ^{x\^} and omit the word strong when discussing st

]A JA J

by ^{x\^}f and omit the word strong when discussing strong mar-
tingales.

THEOREM 2.1. {xXJ SK, T e T} is an %-martingale if and only if

I xτ(ω)dP — I xσ(ω)dP for σ < τ and A in J ^ .

Proof. If {xτj J*Γ, τ e T) is an ^-martingale, then &{xτ,
with probability 1. Thus for every A in i ζ we have the equality



ABSTRACT MARTINGALE CONVERGENCE THEOREMS 359

xσ{ώ)dP = \ &{xτ I JK}(ω)dP = ί xτ{ω)dP ,
JA JA

the last equality following from the definition of conditional expectations.

Conversely, if I xτ(ω)dP = I xσ(ω)dP, for A in J^, σ < τ, then

( ί f K | J ^ } ( ω ) d P = ί x<r(ω)dP.Λ Therefore, g 7 ^ | ^ } = a?σ with prob-
J A J A

ability 1 by Theorem 2.1 of Chapter I, and hence the process in ques-
tion is an 3£-martingale.

THEOREM 2.2. // {xτ, J^, τ e T) is an ϋ-martingale, and f is a
linear (continuous) transformation from X to another Banach space 2),
then {f(xτ), ^\, τ e T} is a ^-martingale. Thus, in particular, the
conclusion is true for every f in X*. On the other hand, if
{f(Xτ), ^, T e T} is a real martingale for every f in £*, and the xτ

are Bochner integrable, then {xτ, Jϊζ, τ e T) is an ^-martingale.

Proof.
(1) xτ is strongly measurable relative to J?ζ\ thus f(xτ) is also

strongly measurable relative to ^Γ by the continuity of /. Next,
&{f(Xτ)\J^K<o)=f[ξf{xr\Jζ}(ω)] with probability 1 by Theorem 2.3
of Chapter II, where both sides of the equality are in 2). The expression
on the right is equal to f{xσ{ω)) with probability 1 by the definition of
ϊ-martingale. Hence, <^{f{xτ)\^}{(o)=f{xσ{θ))) with probability 1;
thus, {f(xτ), Jζ, τ e T) is a 2)-martingale. In particular, this is true
for all real linear functional /, and in this case, the resulting martin-
gale is a real one.

(2) On the other hand, if xτ is Bochner integrable and strongly
measurable relative to ^ζ, then by hypothesis $?{f(xτ) I ̂ σ} = f{xσ)
with probability 1 for every / i n 9c*. Then we can write

for every / in X* and A in JK. Therefore, ί x
τ
(ω)dP = \ x

σ
(ω)dP for

JA JA

every A in ^ . Hence {xτ, jζT, τ e T} is an X-martingale by Theorem
2.1. Q.E.D.

Note. By virtue of Hille-Phillips ([9] Theorem 3.7.12, p. 83), the
theorem is true for /, a closed additive transformation from ϊ to 2), if
we assume that f(xr) is Bochner integrable for every τ in T.

DEFINITION 2.1. Let 2) be a Banach space. A subset B of 2) is
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called a positive cone if
(1) flefi,
(2) ξ e 5ΐ and a nonnegative imply aξ e ££,
(3) if I e Λ and - £ e ft, then £ = 0,
(4) if I e J8 and 27 6 ft, then f + ^ e ft,
(5) ft is closed. By definition ξ ^ η if and only if f — 27 € ft. The

order thus induced is a partial order (Hille-Phillips [9] Theorem 1.11.1,
p. 15).

DEFINITION 2.2. Let 2) be a Banach space with a positive cone.
Let T and ^ Γ for τ e T be as in Definition 1.1 of this chapter. Let xτ

be a Bochner integrable 2)-valued strongly measurable (relative to ^Γ)
function on Ω for τ e Γ. Then {τ/τ, J*Γ, τ e T) is a 2)-semi-martingale if

) ^ 2/σ(ω) with probability 1 for σ < τ.

DEFINITION 2.3. A function g defined on X with values in 2), a
Banach space equipped with a positive cone, is said to be sub-additive
|f β(ξ + V) ^ #(£) + #0?)> positive-homogeneous if #(α£) = ag(ξ) for α ^ 0.

THEOREM 2.3. If x is a Bochner integrable H-valued function on
Ω, J?~ a Borel field of measurable subsets of Ω, and g a continuous
subadditive positive-homogeneous function on X to 2), a Banach space
with a positive cone, such that g(x) is Bochner integrable, then
g([x(ω)dPj ^^g(x(ω))dP and g{W{x |^~}(ω)) ^ &{g(x) \^~}(ω) with

probability 1. In particular, the conclusion follows for real valued g
without the assumption of integrability on g{x).

Proof. If x and g(x) are Bochner integrable, then by the methods
of Hille-Phillips ([9] Corollary, p. 81, and Theorem 3.7.17, p. 83) there
exists a sequence of countably valued integrable random variables xn

such that II xn(ω) — x{ω) || —> 0, || g(xn(ω)) — g(x(ω)) \\ —> 0 uniformly with

probability 1 as n —> 00, and also I 11 xn(ω) — x(ώ) 11 dP —> 0 and
\\g(xn(ω)) — g(x(ω))\\dP—>0 as n—> 00 for every measurable set A.

Λ Γ Γ Γ Γ
Thus I xn(ω)dP-+ \ x{ω)dP and g(xn(ω))dP-+ \ g(x(ω))dP as n-> 00.

Furthermore, &{x»\ JT}-> g 7 ^ | Jr}9 &{g(χn) \ J"\-> &{g(χ) \ jr} u n i -

f ormly with probability 1 as n -> co, and I 11 g7{ct;w | jr\ — <ξf{χ\ ^ } \ \ dP-> 0,

(Moy [14] p. 7) JJ | 8^M^) | ^ } - &{g(x) \ JT} \\ dP-> 0 as n — co for
every measurable set A. Let #w(ω) = ξj

n for ω in Aj

w, where the Aj

n are
disjunct measurable sets such that

Σ P{Aί] = 1 .
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Then

( xn(ω)dP = Σ ξίP{Ai} = lim Σ &P{A>>}.
JΩ 3=1 iV->ooj=i

Now

jy the subadditivity and positive-homogeneity of g. Further,

f g(xn(ω))dP - Σ 9(ξJn)P{Al} = lim Σ g{Ά)P{A$ .
JΩ 3=1 N^oo 3=i

Hence,

g(\ xn(ω)dp) = g (lim Σ U-P{-Ai}) = Km gif, ξj

nP{Ai})
\JΩ J \N->ooj=i / iV-̂ oo \j=i /

rg Mm Σ ff(^»)-P{^i} = jflί7(a?»(ΰ>))dP ,

since g is continuous and the positive cone in 5) is closed. Similarly,

almost everywhere and thus,

•-»oo j = l

a.e.

Finally, sf(jβ*re(ω)(ίp) — ^ ^ ( ω μ p ) and ί7(g'{ajlι|^"})-»fr(g'{!B|^"}) a.e.

by the continuity of g and the known convergence of the integrals and

conditional expectations in question. Thus,

g(\ x(ω)dP) = g(\im\ xn(ω)dp) = lim g(\ xn(ω)dp

g lim ί g(xn(ω))dP = \ g(x(ω)dP
n-+oo JΩ JΩ

and

{ n \ } ) a.e.
71—*<x>

= lim flr(gf {a, | ^"}) a.e. ^ lim g-M*M) | j^"} a.e.

= &{g(x) I J Π a.e.

If, in particular, fir is a real valued subadditive positive-homogeneous
continuous function, then there exists a finite nonnegative number
Mβ, Mg = sup [g(ξ); \\ξ\\£ 1], such that | g(ξ) | ^ ϋf,(|| f || + 1) (Hille-
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Phillips [9] Theorem 2.5.2, p. 25). Thus, \g(x(ω))\ ̂  Mg(\\x(ω)\\ + l)r

and, since the function on the right is integrable on Ω, it being a finite
measure space, g(x) is Lebesgue integrable, and the conclusion of the
theorem follows. Q.E.D.

THEOREM 2.4. Let {xτ, ζ̂~, τ e T} be an %-martingale, and let g be
a continuous subadditive positive-homogeneous function on 3£ to 2), a
Banach space with a positive cone such that g{xτ) is Bochner integrable
for every τ in T. Then {g(xτ)> *̂Γ, τ e T) is a ^-semi-martingale. In
particular, if g is a continuous subadditive positive-homogeneous func-
tional the conclusion is that the resulting process is a real semi-martin-
gale without assuming that g(xτ) is integrable. Finally {\\ xτ ||, ^, τ e T)
is a real semi-martingale.

Proof. By Theorem 2.3, &{g(xτ)\^}{ω)^g(&{xτ\^}(ω)) a.e..
But the righthand side is equal almost everywhere to g(xσ(ω)) since
{xτ, ^Γ, τ e T) is an X-martingale. Thus, &{g(xτ) | ^~σ}{oή ̂  g(xσ(ω)) a.e.
for σ < τ. Since g(xτ) is clearly strongly measurable relative to
{g{%τ), ^Γ, τ e T} is a 2)-semi-martingale. Q.E.D.

Next we consider some examples.

EXAMPLE 2.1. Let z be Bochner integrable and {^} as before..
Let xτ = if {z 1^0. Then {xτy ^ , r e Γ } is an 3c-martingale. For let
Λ e J^ς, σ < r,

( xσ{ω)dP =[&{z\ &~σ}(ω)dP - ( z(ω)dP
Λ JΛ JΛ

as a consequence of the definition of i?{z|^v}, and

xτ(ω)dP= \ ϊ?{z\jς}(ω)dP= \ z(ω)dP,
Λ JΛ JΛ

the last equality being true for all A e ^ and hence for all A e j^~σ £ ^..

Thus ( xJω)dP = [ xτ{ω)dP for A e ^ . Hence, by Theorem 2.1,.
JΛ JΛ

{xτ, ^, T e T} is an ϊ-martingale.
Before proceeding to the next example we shall have to prove the

following lemma.

LEMMA 2,1. Let x and y be strongly measurable independent
random variables. Let JF* be the Borel field of measurable sets gener-
ated by x; i.e., the smallest Borel field of measurable sets with respect
to which x is strongly measurable. Suppose ^{y \ ^} exists, and define
ξf{y\x} = $?{y\jr }. Then <ίf{y\x} = £?{#} with probability 1.
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Proof. If x and y are independent, then f(x) and f{y) are real
valued independent random variables by Theorem 1.1 of Chapter I for
every / in X*. Thus E{f(y) | J Π = E{f(y)} with probability 1. Next,
let A be an ^ set. Then

by Theorem 3.3 of Chapter II. Thus

&{y\x}(ω)dP= \ ξ?{y}dP,
A JA

for every A in ^~. Hence &{y \ x] — &{y} with probability 1 by
Theorem 2.1 of Chapter I. Q.E.D.

In like manner, it can be shown that if {yn} are mutually independ-
ent, then &{yn\^~} = &{yn} with probability 1 if ^ is the smallest
Borel field relative to which ylf "-fyn-i are strongly measurable.

EXAMPLE 2.2. Let {yjfj^ 1} be mutually independent, ξf{yj] = 9
for j > 1, ^ 7 be the smallest Borel field relative to which yly , yό are
all strongly measurable, and xn — Σ?=il/j Then {xn> ^ , n ^ 1} is an.
3c-martingale.

We show that &{xn\^Z-i} — ®n-i with probability 1.

J\fnt£> ζ^J/y 1 έΐΓ' \ — ζ^ ΐ^* \ 11 01 \ O?^ J/y» \ /γ . . . rp \
lyUlV. <g? \JUn I κj^n-\) — ^ v"n I ί/l> > Un-li — & X"n I *Ίt 9 ^n-lί

Clearly

n n—\

Then

-i} = if K-i + ^ I
- g 'K-i I ^- i } + ϊ?{yn I ^- i } by Theorem 2.2 of Chapter IK
= xn-x + g?{t/w I ^ - J with probability 1 for α;w_! is meas-

urable relative to J^~n-.x.

= xn-λ + tf{yn} with probability 1 by Lemma 2.1

= x n - λ f o r &{yn} = θ ίor n>l .

Thus {o7n, . ^ , n ^ 1} is an 36-martingale.
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CHAPTER IV

MARTINGALE CONVERGENCE THEOREMS

IN A BANACH SPACE

Let ϊ be a Banach space. We will prove various convergence
theorems for 3E-martingales. Thus we will show that if {xn, ̂ , n ^ 1}
is an 3t-martingale, then under certain conditions there will exist an X-
valued random variable x such that xn —> x with probability 1 in various
senses.

THEOREM 1. Let {xn, ̂ , n 2> 1} be an H-martingale, and let
be the smallest Borel field of Ω sets such that ^ C B (j£=i - ^ Let
2/»(α>) = | | & n ( ω ) | | . Then

a 11} ss ... <*

(1) If l.u.b.w E{\\ xn ||} < oo then lim^oo || xn || = y^ exists with prob-
ability 1, and E{yoo) < oo. In fact, the boundedness condition reduces
to \\mn^E{\\xn\\} = K< CXD, and then E{yJ\ ^ K.

(2) a. If the ||a?«||'s are uniformly integrable then

and the process {yn, ̂ , l ^ t ι ^ c o } i s a real semi-martingale dominated
by a semi-martingale relative to the same fields. (Doob [1] p. 297)

b. If l.u.b.n2?{||scn||} < oo so that y^ exists, and if the process
{yn> ̂ ι> l ^ w ^ o o } i s a real semi-martingale, then lim^^^ E{\\ xn ||} = E{yJ\
and the || call's are uniformly integrable.

Proof. If {xn, <β^, n ^ 1} is an ϊ-martingale, then {|| xn ||, ̂ , n ^ 1}
is a real semi-martingale by Theorem 2.4 of Chapter III, and then
E{\\ xL ||} ^ E{\\ xn ||} ^ . . . according to Doob ([l] Theorem 2.1 (ii) p.
311). The other conclusions follow from Theorem 4.1 s of Doob ([1] p.
324-325). Q.E.D.

THEOREM 2. Let {xn, ̂ , n ^ 1} δβ an 1-martίngale. Let 3c δβ
reflexive. Suppose l i n v ^ E{\\ xn ||} = i ί < oo. T/i-βti ίΛerβ is an H-valued
strongly measurable random variable x^ such that xn —> x^ weakly as
n —-> oo ^ίίfc probability 1.

Proof. Since #w is strongly measurable, there is a measurable set
An such that P{AJ = 0 and xn(Ω — ̂ 4n) is separable, for strongly meas-
urable functions are almost separably valued (Hille-Phillips [9] Theorem
3.5.3, p. 72). Let 2)w = xn(Ω — An) and let 2) be the closed linear mani-
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fold spanned by U»=i?)n Then 2) is a separable subspace of X and
xn(ω) e 2) for almost all ω, for each n. Now 2) is reflexive since X is.
(Hille-Phillips [9] Corollary 1 to Theorem 2.10.3, p. 38). Further, since
2} is separable, then so is 2)** for 2) = 2)**. But then 2)* is separable
by Theorem 2.8.4 of Hille-Phillips ([9] p. 34). Now if feψ then
{f(%n)> ^y w ^ 1} is a real martingale by Theorem 2.2 of Chapter ΠL
Also

E{\f(xn) |} ^ #{| |/ll || xn\\} =

because E{\\ xx ||} ^ #{11 ®» 111 ^ ^ ^ by Theorem 1. By virtue of
Doob ([1] Theorem 4.1, p. 319) for every / e 2)* there exists a real
measurable function zf, and a measurable set J r such that P{Af} = 0
and I/(#»(<*>)) — £/(ω) | —> 0 as w -+ oo for ω e Ω — Af. By the separability
of 2)* there is a countable dense subset {/,} of 2)*. Thus for every /^
there is a Λ^ and zfj as we have seen, such that P{Afj} = 0 and
|/Xa?n(ω)) — £//ω) I —> 0 as n —> oo for ω e Ω — Λfj. Let A = (JΓ=i As^
Then

By Theorem 1 there is a measurable set M such that P{M} = 0 and
such that || xn{ώ) || is a convergent sequence for ω e Ω — M. Let J =
Λ U M. Then P{J} = 0. Next, let ω e Ω — A. Then ω e Ω — M so
that ||#n(ά>)|| is a convergent sequence. Thus there is a constant C
such that || xn(ω) \\ ^ C for all w.

Define Qn(/) — f(%n(ω)) for/ e 2)*. The Qw

7s form an equi-continuous
sequence of functions on 2)*, for, given e > 0, gδ = ε/C such that for
every n, \\f — g \\ < 8 implies

I Qnif) - Qn(flf) I = \f(Xn(ω)) - g ( x n ( o ) ) \ ^ \\f - Q \\ \\ xn(o>) \\ < ε\C*C = ε .

Furthermore, since ω e Ω — Afj for every j ,

I Qnifj) - Qn(fj) I - IΛ(&»(α>)) - Λ(ajΛ(ω)) | -> 0 as ti, m -> oo .

But, an equicontinuous sequence of functions converging on a dense set
of a metric space converges on the whole space. Thus for every
feψ,\ Qn(f) - Qm(f) I -> 0 as %, m -> oo; i.e., \f(xn(ω)) - f(xjω)) I -> 0
as n, m —* oo for every ω 6 β — A.

Therefore f(xn(ω)) is a convergent sequence for all ω e Ω — A and
/ e 2)*. The reflexiveness of X and 2) implies that 9c and 2) are weakly
complete. Thus there is an x^ (strongly measurable) such that for every
/ e 2)* and ω e Ω — A we have |/(a?n(ω)) — f(x«>(ω)) \ —> 0 as w —> oo; i.e. a?Λ

converges to ^ weakly with probability 1. Q.E.D.
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Note, #«, is strongly measurable since it is the weak limit of strongly
measurable functions (Hille-Phillips [9] Theorem 3.5.4, p. 74). Theorem 2
may be restated as follows:

1
THEOREM 2*. Let {xn, ̂ , n ^ 1} be an Tί-martingale. Let X be

weakly complete and suppose that 3c* is separable, and limn̂ oo E{\\ xn ||} =
K < oo. Then there is an H-valued strongly measurable random vari-
able x*, such that xn converges to x^ weakly with probability 1.

COROLLARY 1. Let {xn, ̂ n , n ^ 1} be an H-martingale. Suppose 3c
is a Hilbert space, and that lim^oo E{\\ xn ||} = K < oo. Then there
exists a strongly measurable H-valued random variable x<» such that
wn —> x^ weakly with probability 1.

Proof. Since 3c is a Hilbert space, it is reflexive and weakly com-
plete. Hence all of the hypotheses of Theorem 2 are satisfied, and so
the above conclusion follows. Q.E.D.

By making a stronger assumption on the Hull 's we will show that
the last result may be sharpened to give strong convergence with prob-
ability 1.

THEOREM 3. Let {xn, ̂ , n ^ 1} be an Tί-martingale; let 3c be
reflexive. If the | | # w | | ' s are uniformly integrable, then there is a
strongly measurable Ίί-valued random variable x^ such that
|| xn{ώ) — x^ω) || —• 0 as n—*oo with probability 1, and in fact

Kii 1 ^ n ^ oo} is an H-martingale.

Proof. As in the proof of Theorem 2, there is a separable sub-space
2) of 3c, and for each n, xn{ω) e ?) for almost all ω. Also 2) is reflexive,
so therefore 2)** is separable, which implies that 2)* is separable. Now
E{\\ xλ ||} S E{\\ xM\\}<z...£ E{\\ xn ||} S since {|| xn | |, J ξ f n ^ 1} is a

.semi-martingale. Thereforelim^oo {̂11̂ 11} = K^ oo,whilelimw^oJ?{|/(#w)|}^
lim^o. 11/11 E{\\xn ||} = | | / | | K. But the uniform integrability of the
Hull 's makes K< oo (Doob [1] Theorem 4.1, p. 319). Theorem 1 tells
us that there is a y^ such that 111 xn \ \ — y^ \ —* 0 as n —• oo with prob-
ability 1, and such that {yn, J^n, 1 ^ n ^ oo} is a real semi-martingale,
where yn(ω) = \\ xn(ω) \\ and yjω) = lim^«, || xn(ω) | |. In fact,
E^y^ — \\xn\\ |}—> 0 as n—^ oo. By Theorem 2, there is a strongly
measurable ϊ-valued random variable #«, such that \f(xn(ω)) — f(x«>{<o))\—>0
as n—> oo with probability 1 for every / e 2 ) * . Furthermore, if the
|| xn ||'s are uniformly integrable, then so are the f(xn)

fs for every/ e 2)*
because, first of all,

{ω: \f(xn(ω)) | > M} s
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if H/IKO. (If | | / | | = 0 , then trivially the f(xn)'s are uniformly
integrable.) Thus

( \f(xn(ω))\dP^\ \f(xn(ω))\dP
J {ω: \f(xn{ω))\>M] J {ω: | \xn{ω) \\>M/\ \f\ |}

xΛ(ω)\\dP-+0

uniformly in n as ikΓ—> co .

By the uniform integrability of the | | # J | ' s , thus proving the uniform
integrability of the f(xnys for every / e 2)*. Hence {/(&»), ̂ , 1 ̂  n ^ co}
is a real martingale for every / e 2)* by Doob ([1] Theorem 4.1, p. 319).

Next, #oo is strongly measurable (in fact, relative to ̂ Q by Theorem
2. Furthermore, i?{||#oo||} < °°, for, xn—> x^ weakly with probability 1.
Hence \\ x^iω) \\ ̂  lim^^ inΐ \\ xn(ω) \\ for almost all ω. But the right
hand side equals y^Jω) with probability 1 by Theorem 1. Thus || x^iω) || ^
yoo{o)) a.e. Since y^ is integrable, so is ||aJoo||; hence, by Theorem 3.7.4
of Hille-Phillips ([9] p. 80), x^ is Bochner integrable. Thus, by Theorem
2.2 of Chapter III, {xn, ^~, 1 ̂  n g oo} is an X-martingale. Then
{II %n \\> ^n, l ^ t ι ^ o o } i s a semi-martingale by Theorem 3.4 of Chapter
III. But so is {|| a?x ||, •••, \\xn\\, , ̂  relative to J^Γ, •• , ^ , « , ^ « .

We now show that || #«, || — y~> with probability 1. We have already
shown E{\\ x^ ||} ^ E{yJ. But E{\\ xn ||} ^ JE7{|| x . ||} since {|| xw ||, ̂ , 1 ^
•w ̂  oo} is a semi-martingale, and since E{\\xn\\)-^ E{y00} by Theorem 1,
we have E{yoo} ^ E{\\ x^ ||}. Hence, JS?{|| x«, ||} = J ? ^ } . But || ̂ ( ω ) || ^
3/00(0)) for almost all ω. Therefore by Theorem B of Halmos ([8] p. 104),
II Xoo(ω) II = #oo(ω) for almost all ω, and || xn{ω) \\-+\\ Xoo(ω) || with prob-
ability 1, even as Xn-^Xo* weakly with probability 1. Next, let ξ e 2).
Then {xn — ξ, ̂ , n ^ 1} is an ϊ-martingale, for

= &{x»\ <^Q -&{ξ\ <^Q with probability 1 by Theorem
2.2 of Chapter II

= χm — ζ with probability 1, since
{Xm ̂ ίf n ^ 1} ίs an 36-martin-
gale, and by Theorem 2.2 of
Chapter II.

Now by what we have already proved in this theorem, since the
i| #w — ίrll's a r e clearly uniformly integrable, there is a u*, such that
f(xn — ξ) —>/(Ko) with probability 1 for every / e 2)* and || xn(ω) — ξ \\ —>
^oo(ω) with probability 1. But /|>w(α>) — ξ] =/(»»(ω)) — /(!)—>

.f(x~(ω)) - / ( | ) = /[Xoo(ω) - §] as n -> 00 with probability 1. Thus
u^iω) = ̂ ((w) — I with probability 1. Hence || xn(ω) — ξ || —> || ̂ (α)) — 11|
with probability 1. Let {̂ } be a denumerable dense set in 2). Then
there is a ^ such that P ^ } = 0 and || xn(ω) — ξ5 \\ -> || ̂ ( ω ) — ̂  || for
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ωe Ω - Λj. Let A = U~=i Λ T h e n piA) = ° L e t o> e. Ω - A, and
define JRn(f) = || $n(α>) — f || for £ e 2). The Rn's form an equicontinuous
sequence of functions on 2), for given ε > 0, 38 = ε, such that for every
n, II f - 7 I K 8 = * implies | jβ;(f) - ββfo) | = 11| ajΛ(α>) - 1 1 | - II an(ω) - VIII ^
III — VIK ε Furthermore, since ω e Ω — A3 for every i ,

But, as an equicontinuous sequence of functions converging on a dense
set of a metric space converges on the whole space, thus for every
ξe%\Rn(ξ)-\\x^ω)-ξ\\\ = \\\xn{ω)-ξ\\-\\x^ω)-ξ\\\^Own-+*>
for every ω e Ω — A. Now, for ω φ A, let ξ — ̂ ( ω ) . Then || #w(ω) — x^ώ) ||—•
II ̂ ^(ω) — Xoo(o>) || = 0. Thus there is a measurable set A such that P{J} = 0
and such that for ω e Ω — A, || xn(ω) — x^ω) || —> 0 as ^—> 00. Q.E.D»

COROLLARY 2. If Tί is a Hilbert space, or lp, or Lp, 1 < p < 00,
{#w> -^> ̂  ^ 1} is a n Tί-martingale in which the \\%n\\'s are uniformly
integrable, then there is an x^ such that {xn, J^,, 1 S n ^ 00} is an ϊ -
martingale, and \\xn(ω) — xoo(ω)\\-^0 as n—* 00 with probability 1.

Proof. All of the above named Banach spaces are reflexive, and
thus the result follows from Theorem 3.

REMARK. Let ϊ be a Banach space with a partial order induced
by a positive cone. Suppose {xn, J^, n ^ 1} is an X-semi-martingale.
Then, as in Doob ([1] p. 297), xn can be represented in the form

where Δx = θ; Δ5 = ^{x5 \ ^]^ — x3^ ^ θ, j > 1; and {x'n, J^, n ^ 1} is
an X-martingale. Thus convergence problems for X-semi-martingales
can be reduced to convergence of X-martingales if reasonable conditions
can be found for the convergence of the monotone sequence yn = Σ7= 1 Δy.

THEOREM 4. Let {xn,^n,n ?g — 1} be an %-martingale in which X
is reflexive, and let ^1^ = Γ\zL ^ . Then cc_oo exists, such that
II xn(ω) — x_oo(ω) II —> 0 as n —> — 00 with probability 1, ami {a?

?ι ^ — 1} is an H-martingale.

Proof. {|| xn II, ̂ , % ̂  — 1} is a real semi-martingale; thus by Doob
([1] Theorem 4.25, p. 329) l i π v ^ || xn(ω) \\ = y^ exists with probability
1, and —00 SV-oo< 00, while {\\xn\\,-^n, —°° ^nS —1} is a semi-
martingale. By Theorem 4.2 of Doob ([1] p. 328) l i n v ^ f(xn) exists,
for almost all ω and every / e ϊ * . Using the methods of Theorem 2>
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we can show that there is an x^ such that f(xn(ω)) —•/(2c_0O(ft>)) as
n —> — oo for almost all ω and all /. Using the methods of Theorem 3,
we show that {xn, ̂ n, — oo <; n ^ — 1} is an ϊ-martingale, and that
|| x^ || = y_oo and || xn{ω) — ̂ -^(ίo) || —> 0 as w —• — oo with probability 1.
Q.E.D.

THEOREM 5. Let z be a strongly measurable random variable, ϋ
reflexive, with E{\\ z ||} < oo; Zeί ••• J*C n S S ^ S S £

_ ^ S δe I?oreZ fields of measurable Ω sets. Let ^Co — Π~=-~ <^C
be the smallest Borel field of Ω sets with j^Z a \Jζ=-~>J^. Then
limn̂ _-ββ gf {z I j ^ } = g^z I J C 4 , αwd limn^co gf{z | j ^ } = gf {z | ̂ 1} with
probability 1.

Proof. L e t # w = g 7 ^ | ^ } , — 00 ^ n ^ 00. T h e n {a?w, ̂ , — 00 ^

w ^ 00} is an X-martingale by Example 2.1 of Chapter III. Thus by
Theorem 4, l i n v ^ gf {z | ̂ } = g 7 ^ | ̂ CJ\. Next, {|| a?n ||, j ^ , - 00 ^
n ^ 00} is a real semi-martingale, with a last term in which all the
random variables are nonnegative. Thus by Theorem 3.1 of Doob ([1]
p. 311) the II xn ||'s are uniformly integrable. Hence by Theorem 3, there
is a y such that 11 xn(ω) — y(ω) \ \ —> 0 as n-+ 00 for almost all o) and
{xn,l^n<oo1y} is an ϊ-martingale. We finally must show that
Xoo {(o) — y(ω) with probability 1. But this is true for both x«> and y are
equal almost everywhere to functions measurable relative to J C . Also

\ x00(ω)dP = \ ξf{z I JKo}(ω)dP = ί z(ω)dP for J e ^ I and ( y(ω)dP =

I xn(ω)dP =\ ξ?{z\ J^}(ω) dP = ί z(ώ)dP for every Δ e ^ n and thus for

every J e (Jw - ^ Hence I y{ω)dP — \ xoa{ώ)dP for every A e \Jn J\;

thus, ^f(y(ω))dP = \f{x^ω))dP for every J e U ^ a n d / e X*. But

these integrals define completely additive set functions of ^C sets which
are identical on the fields \Jn ̂ n and therefore identical on ^ C (Doob
[1] Theorem 2.1, p. 605). Thus ί y(ω)dP = \ x^dP for every A e JK>.

}Λ JΛ

Hence y(ω) = x^ω) with probability 1 and lim^^^ g 7 ^ | ̂ } = &{z | ^Z}
with probability 1. Q.E.D.

COROLLARY 3. Let z be a strongly measurable random variable,
with E{\\z\\} < 00 and let ylfy2, ••• be strongly measurable. Let Sζ,
be the smallest Borel field with respect to which yn, yn+1 are strongly
measurable. Then l i m ^ if {z | ̂ } = gf {z | Π*=i ^n}, Umn^ ξ?{z \ £έQ =
^{z\c%Q where J%ζ is the smallest Borel field relative to which
Vi,y2, 9"yVn are strongly measurable, £ίC the smallest Borel field con-
taining |Jn

Proof. In Theorem 5, let £ζ = ̂ Cn and 3ifn = jrn% Q.E.D.
Using this corollary it is possible to get a proof of the Banach space
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version of the strong law of large numbers. In fact, such a proof is
virtually along the lines outlined in Doob ([1] p. 341). Mourier [13] has
proved an ergodic theorem, more general than this one, by a more
direct approach.

EXAMPLE 1. Let X = lp, 1 < p < co (real lp). Then

xn(o)) = (ξίn)(ω), , f jΛ)(α>), •) where Σ I fjn)(*>) |* <
J = l

and

If #u is Bochner integrable, then its integral satisfies the equation

where the components are ordinary Lebesgue integrals; thus the com-
ponents of xn are real-valued Lebesgue integrable functions.

The martingale equality becomes

={5/w)(ω)dPf , J^ΓίωJdP, •}, m < tι, A e jTm c

or, alternatively,

= ( |jw)(α>)dP, m < w, Λ 6 ^ c ^ for j = 1, 2,

Thus for every j , {ξ{jn), ^ , n ^ 1} is a real martingale, which can also
be seen by noticing that the mapping from an lp vector to any of its
components is a linear functional. Then if

E{\\xn\\} = \ Ω { ± Ifj">(ω) ήlPdP <z K< - ,

by Theorem 2 there is an x(ω) = {ξ1(ω)f • 9ξi(ω), •} e lp such that for
every η = (ηu ---,yj9---) e I*, 1/p + 1/q - 1, ΣΓ=i %?iw)(^) - ΣΓ-i %&(̂ >)
as ^ —> oo for almost all ω. Note that the boundedness assumption on the
2£{||<B||}'S implies boundedness for E{\ξ$n) |}'s for every j ; thus we could
get convergence in each component by the ordinary martingale convergence
theorems.
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Finally, if the ||α?n | | 's are uniformly integrable, that is, if

-uniformly in n as K-> oo, Λfc = {ω: [Σ~=i I£?M I T * > K). We can get

l y the ordinary martingale convergence theorem that \ ξj{ω)dP —

S JΛ
ξJ(ω)dP for A e ^ , w ^ 1 for every j .

A

However, we get more by Theorem 3, namely, ΣΓ=i I Sj(ω) — &(<*>) \p ~> 0
vrith probability 1 as n —> oo, and also, of course Σ£=i I ^ ί ^ ) 1 "̂̂  ΣΓ-i I l:j(α)) I3'
with probability 1 as n —> oo.

EXAMPLE 2. Let X = I/P(ί), where / is the closed unit interval

withLebesguemeasure, p > l . Ύhenxn(ω)=gn(t, ω) where I \gn(t,ω)\pdt< oo.
JΩ

Now if xn(ω) is strongly measurable relative to ^ , there is a represent-
ation #w(£, ώ) which is measurable over Ω x I such that gn( , ω) = xn(ω)
in LP(I) a.e. in Ω, and any two representations of xn( ) differ over
Ω x I on at most a set of measure zero. (Dunford-Pettis [4] Theorem
1.3.2, p. 336).

If xn( ) is Bochner integrable, then besides being strongly measur-

able, f ||αn(α>)||cZP< oo.

Thus

\ j \ I gn(t, oή \pdt\ PdP= \ | |a?n(α>)||dP< oo .
jolji J }Ω

Hence

S ec ^ f re l i / p

\ \ I Qn(t> ω) I dt\dP ^ I \ \ I ^w(ί, α>) \pdt\ dP < co
β l j l J JfllJl J

by the Holder Inequality. Therefore, by the Fubini Theorem,

\ \ gn(t, ω)dt dP = I I gn(t, ω)dPdt ,

and

S f f f

\ΰn{t, o))dt dP = \\9n(t, ω)dPdt .
Hence
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for almost all t.

If {xni J^l, n ^ 1} is an Lp-martingale, then I xn(ω)dP = \ xm(ω)dP

S P JΛ JΛ

gn(t,ω)dP= 1 gm(t, ω)dP for almost all ί, and
A JΛ

Λ e ^n, m <n. Hence, for almost all t e I (Lebesgue measure) if ^
is generated by countably many sets, {gn(t, *),^nyn ^ 1} is a real marting-
ale.

Next, if
f Γ f ~μ/2>

#{ll». Ill = I Quit, ω)\pdt dP^κ<^ ,
JβLJi J

there is an x(ω) = g(t, ω) e LP(I), I \g(t, ω) \pdt < oo by Theorem 2 such

that I h(t)gn(t, ω)dt —• I h(t)g(t, ω)dt as n —> oo with probability 1 for

every fc e Lq(I), 1/p + 1/g = 1
Furthermore, by Theorem 3, if the || xn ||'s are uniformly integrable,,

then \ I gn(t, ω) \pdt —> \ | g{t, ω) \pdt as n—* oo with probability 1, and even
Ji P Ji

better, I \gjt9 oή — g(t, ω) \pdt —> 0 as n—> oo with probability 1.

The uniform integrability condition says that

uniformly in n as N—• oo,

[ j flrn(t, ω) I 'dtJ^ > N} = ΛN

This implies uniform integrability of the random variables in the real
martingales {gn(t, •), jβ^, n ^ 1}. Thus for almost all t, we can apply
the ordinary Doob martingale theorems, and thus get convergence
theorems in each coordinate.

The functions gn{t, ω) as functions of t might, as a further illustra-
tion, be sample functions of a sequence of measurable stochastic proc-
esses (Doob [1] p. 60) with the property of being absolutely integrable
over Ω x I.

EXAMPLE 3. We have seen in Example 2.2 of Chapter III that if
{Vjf j ^ 1} are mutually independent, as ϊ-valued random variables, with
tfiVj} = θ for i > 1, and ^ is the smallest Borel field relative to which
Vi," ,yj are all strongly measurable, and if #n = Σ?=i!/^ then
{ft™ ^,wΞ>l} is an X-martingale. Theorem 2 tells us that if limn_,«2i7{||a;n||} =
K < oo, then Σti=if(yA<t>)) converges with probability 1. If, further, the
|| xn ||'s are uniformly integrable, then by Theorem 3, ΣJ=iVj(ω) converges,
with probability 1.
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Examples 1 and 2 above illustrate an important point. It is clear
from them that an ϊp-martingale is really a countable collection of one-
dimensional martingales, while an ZZ-martingale is a non-denumerable
collection of ordinary real martingales. Thus, it is possible to prove
convergence theorems for lp or Lp by first proving convergence in each
coordinate, using the Doob theorems on convergence of ordinary martin-
gales. One could prove the convergence theorem for abstract Hubert
space by first proving the theorem for i2 in each coordinate and then
using the fact that there is a one-to-one linear norm preserving trans-
formation between I2 and abstract Hubert space. In fact, one could
prove convergence theorems for any 36-martingale in which ϊ is a
function space or a coordinate space by first proving martingale conver-
gence theorems in each coordinate.

Let {ξtJ t e I = [0,1]} be a separable Brownian motion process (Doob
![1] p. 52, p. 392). Then there is a measurable set Ωo c Ω, such that
P{Ω — Ωo} — 0, and such that for ω e Ωo, ξt{ω) is a continuous function
of t e I. Let x(ω) — ξt(ω) — g(t, ω). Then x( )\ Ω —> C(/), the continuous
function space on the unit interval, and ||#(α>)|| = sup ί 6 z | g{t, ω) |.

We next show that x( ) is strongly measurable. L e t / e X* = C(I)*.
Then there is a function of bounded variation F such that f(x(ω)) =

g(t, ω)dF(t)

= lim Σ Ufa, ω)[F(tj) -
max|{ j —Cj—il-^O j = l

Λvhere 0 = t0 < tx < < tn = 1 and t^λ < uό < t5. But each sum is
dearly measurable in ω, so the limit must be too. Thus x( ) is weakly
measurable, but since C(I) is separable, this is equivalent to strong
.measurability of x.

To show that #(•) is Bochner integrable, we need only show that
JS'ίll^H} < co, for #(•) is strongly measurable. To this end, let ξQ = 0
with probability 1, and let h(ω) = \\ x(ω) \\ = sup i€z \g(t,ω)\.

Then

P{ω:h(ω) ^n}^—-J—
n r π

<Doob [1] p. 392) Thus

/ 9 °° 1 —W2/2σ2

P{ω h{ω) ^ n] ^ σ-J—Σ — β <
r π1 i 72

Hence, 2£{|| a? ||} < oo, and x( ) the sample function of a separable
Erownian motion process is Bochner integrable.

Let ^ be the Borel field of Ω sets generated by ξQ9 ξlί2, ξx; ^ζ the
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Borel field generated by ξOf ξlli9 ξ1/2, ξil4f ξ19 and in general J^ the Boret
field generated by ξ0, £1/2», , fan-1/2n, ξx. ThenJ^Γ c J^Γ c c ^ c
Let fn(t)(ω) = E{ξt \ J^}(ω). Levy ([11]) p. 18) has shown that /n(ί)(α>>
is a polygonal line function of t for almost all ω, and that |/»(t)(α>) — fί(β>)| —•
0 as w —• oo uniformly in t for almost all ω. If we let yn((o) —
fn{t)(ω) e C(I) for ω e Ω, then {ynJ ^ , w ^ 1} is a C(J)-martingale.
Levy's result does not as yet come out of our work because C(I) is not
reflexive.

The validity of the Martingale Convergence Theorem for non-reflexive
spaces is not known to the author. In fact, various, attempts in proving
it have failed. If it were established, then further interesting examples
like the last one for important non-reflexive spaces, e.g., U or I1, could
be given.
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