Pacific Journal of Mathematics

TORSION ENDOMORPHIC IMAGES OF MIXED ABELIAN GROUPS

Elbert A. Walker

Vol. 11, No. 1

November 1961

TORSION ENDOMORPHIC IMAGES OF MIXED ABELIAN GROUPS

ELBERT A. WALKER

In this paper we will answer Fuchs' PROBLEM 32 (a), and the corresponding part of his PROBLEM 33. (See [1], pg. 203.) The statements of these PROBLEMS are the following.

I. "Which are the torsion groups T that are endomorphic images of all groups containing them as maximal torsion subgroups?"

II. "Which are the torsion groups T such that a basic subgroup of T is an endomorphic image of any group G containing T as its maximal torsion subgroup?"

Actually, we will answer question II and the following question which is more general than I.

III. What groups H are endomorphic images of all groups G containing H such that G/H is torsion free?

The solutions will be effected by using some homological results of Harrison [2]. All groups considered here will be Abelian. The definitions and results stated in the remainder of this paragraph are due to Harrison, and may be found in [2]. A reduced group G is cotorsion if Ext(A, G) = 0 for all torsion free groups A. If H is a reduced group, then Ext(Q/Z, H) = H' is cotorsion, where Q and Z denote the additive group of rationals and integers, respectively. Furthermore, H is a subgroup of H', (that is, there is a natural isomorphism of H into H') and H'/H is divisible torsion free. This implies, of course, that if T is a torsion reduced group, then T is the torsion subgroup of T'=Ext(Q/Z, T).

Now it is easy to see that if G is a group such that Ext(A, G) = 0for all torsion free groups A, then any homomorphic image of G is the direct sum of a cotorsion group and a divisible group. In fact, let H be a homomorphic image of G. This gives us an exact sequence

$$0 \to K \to G \to H \to 0$$

which yields the exact sequence

$$0 \to \operatorname{Hom} (A, K) \to \operatorname{Hom} (A, G) \to \operatorname{Hom} (A, H) \to$$

Ext $(A, K) \to \operatorname{Ext} (A, G) \to \operatorname{Ext} (A, H) \to 0$.

If A is any torsion free group, then $\operatorname{Ext}(A, G) = 0$, and so $\operatorname{Ext}(A, H) = 0$. Write $H = D \bigoplus L$, where D is the divisible part of H. Then L is reduced, and $0 = \operatorname{Ext}(A, D \bigoplus L) \cong \operatorname{Ext}(A, D) \bigoplus \operatorname{Ext}(A, L) = \operatorname{Ext}(A, L)$, so that L is cotorsion. Our assertion is proved.

Received April 28, 1960.

Now we are ready to give the solutions promised earlier. The following theorem settles III.

THEOREM. The group H is an endomorphic image of every group G containing it such that G/H is torsion free if and only if $H = D \oplus C$, where D is divisible and C is cotorsion. This is equivalent to the assertion that H is a direct summand of every such G.

Proof. Suppose H is an endomorphic image of every group G containing it such that G/H is torsion free. Let $H = D \oplus C$, where D is divisible and C is reduced. Then C is a subgroup of the cotorsion group $\operatorname{Ext}(Q/Z, C) = C'$ such that C'/C is torsion free, so that H is a subgroup of $D \oplus C' = H'$ such that H'/H is torsion free. Therefore H is an endomorphic image of H'. $\operatorname{Ext}(A, D \oplus C') = 0$ for all torsion free groups A, and as we have just proved, any homomorphic image of $D \oplus C'$ is the direct sum of a cotorsion and a divisible group. It follows that C must be cotorsion.

If $H = D \bigoplus C$, with D divisible and C cotorsion, then Ext (A, H) = 0for all torsion free groups A, and hence H is a direct summand of any group G containing it such that G/H is torsion free. If H is a direct summand of any such G, then clearly H is an endomorphic image of any such G. Thus our theorem is proved.

The torsion group T is a direct summand of every group containing it as its maximal torsion subgroup if and only if $T = D \bigoplus B$, with Ddivisible and B of bounded order. (See [1], pg. 187.) Thus, by our theorem, we see that the torsion group T is an endomorphic image of every group containing it as its maximal torsion subgroup if and only if $T = D \bigoplus B$, with D divisible and B of bounded order.

The solution of II goes as follows. Suppose a basic subgroup of Tis an endomorphic image of every group G in which T is the maximal torsion subgroup. Let $T = D \oplus B$, with D divisible and B reduced. Then a basic subgroup of T must be an endomorphic image of $D \oplus B' =$ $D \oplus \operatorname{Ext}(Q/Z, B)$. Therefore a basic subgroup of T must be cotorsion, since it is reduced, and since it is torsion, it is of bounded order. (See [1], pg. 187. The remark by Harrison in [2], pg. 371 is incorrectly worded.) Writing T as $D \oplus B$, we see that a basic subgroup of B is a basic subgroup of T. But any two basic subgroups of T are isomorphic, and if B has a basic subgroup of bounded order, then B must be of bounded order. In fact, the only basic subgroup of B is B itself. Thus $T = D \oplus B$, with D divisible and B of bounded order. If T = $D \oplus B$, with D divisible and B of bounded order, then B is a basic subgroup of T. Now $D \oplus B$, and hence B, is a direct summand of any G in which T is the maximal torsion subgroup. Therefore B is an endomorphic image of any such G, and hence any basic subgroup of T is such an endomorphic image. Thus we see that the answers to questions I and II are the same.

References

1. L. Fuchs, Abelian Groups, Budapest, 1958.

2. D.K. Harrison, Infinite Abelian groups and homological methods, Annals of Math., 69 (1959), 366-391.

NEW MEXICO STATE UNIVERSITY UNIVERSITY PARK, NEW MEXICO

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

A. L. WHITEMAN University of Southern California Los Angeles 7. California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
T. M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Reprinted 1966 in the United States of America

F. H. BROWNELL University of Washington

Seattle 5, Washington

Pacific Journal of Mathematics Vol. 11, No. 1 November, 1961

A. A. Albert, Generalized twisted fields	1		
Richard Arens, Operational calculus of linear relations	9		
John Herbert Barrett, Disconjugacy of a self-adjoint differential equation of the			
fourth order	25		
Paul Richard Beesack, Hardy's inequality and its extensions	39		
Julius Rubin Blum and David Lee Hanson, On invariant probability measures.			
Π	63		
Robert Allen Bonic, Symmetry in group algebras of discrete groups	73		
R. Creighton Buck, <i>Multiplication operators</i>	95		
Jack Gary Ceder, Some generalizations of metric spaces	105		
Meyer Dwass, Random crossings of cumulative distribution functions	127		
Albert Edrei, Wolfgang H. J. Fuchs and Simon Hellerstein, <i>Radial distribution and deficiencies of the values of a meromorphic function</i>	135		
William Cassidy Fox, Harmonic functions with arbitrary local singularities			
Theodore Thomas Frankel, <i>Manifolds with positive curvature</i>	153 165		
Avner Friedman, A strong maximum principle for weakly subparabolic			
functions	175		
Watson Bryan Fulks and J. O. Sather, Asymptotics. II. Laplace's method for			
multiple integrals	185		
Adriano Mario Garsia and Eugene Richard Rodemich, An embedding of Riemann			
surfaces of genus one	193		
Irving Leonard Glicksberg, Weak compactness and separate continuity	205		
Branko Grünbaum, On a conjecture of H. Hadwiger	215		
Frank J. Hahn, On the action of a locally compact group on E_n	221		
Magnus R. Hestenes, <i>Relative hermitian matrices</i>	225		
G. K. Kalisch, On similarity invariants of certain operators in L_p	247		
Yitzhak Katznelson and Walter Rudin, The Stone-Weierstrass property in Banach			
algebras	253		
Samir A. Khabbaz, <i>The subgroups of a divisible group G which can be represented</i>			
as intersections of divisible subgroups of G	267		
Marvin Isadore Knopp, Construction of a class of modular functions and			
forms	275		
Charles Alan McCarthy, <i>Commuting Boolean algebras of projections</i>	295		
T. M. MacRobert, <i>Transformations of series of E-functions</i>	309		
Heinz Renggli, An inequality for logarithmic capacities	313		
M. S. Robertson, Applications of the subordination principle to univalent	215		
functions	315		
David Sachs, <i>Partition and modulated lattices</i>	325		
Frank S. Scalora, <i>Abstract martingale convergence theorems</i>	347		
Elbert A. Walker, <i>Torsion endomorphic images of mixed Abelian groups</i>	375		
Morgan Ward, <i>The prime divisors of Fibonacci numbers</i>	379		
Charles R. B. Wright, On the nilpotency class of a group of exponent four	387		