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In this paper we will answer Fuchs' PROBLEM 32 (a), and the
corresponding part of his PROBLEM 33. (See [1], pg. 203.) The state-
ments of these PROBLEMS are the following.

I. "Which are the torsion groups T that are endomorphic images
of all groups containing them as maximal torsion subgroups?"

II. "Which are the torsion groups T such that a basic subgroup
of T is an endomorphic image of any group G containing T as its
maximal torsion subgroup ?"

Actually, we will answer question II and the following question
which is more general than I.

III. What groups H are endomorphic images of all groups G con-
taining H such that G/H is torsion free?

The solutions will be effected by using some homological results of
Harrison [2]. All groups considered here will be Abelian. The definitions
and results stated in the remainder of this paragraph are due to Har-
rison, and may be found in [2]. A reduced group G is cotorsion if
Ext (A, G) = 0 for all torsion free groups A. If H is a reduced group,
then Ext (Q/Z, H) = H' is cotorsion, where Q and Z denote the additive
group of rationale and integers, respectively. Furthermore, H is a sub-
group of Hf, (that is, there is a natural isomorphism of H into H') and
H'jH is divisible torsion free. This implies, of course, that if T is a
torsion reduced group, then T is the torsion subgroup of T"=Ext (Q/Z, T).

Now it is easy to see that if G is a group such that Ext (A, G) — 0
for all torsion free groups A, then any homomorphic image of G is
the direct sum of a cotorsion group and a divisible group. In fact,
let H be a homomorphic image of G. This gives us an exact sequence

0 — K-* G~~* H-+0

which yields the exact sequence

0 — Horn (A, K) -> Horn (A, G) -> Horn (A, H) ->
Ext {A, K) -» Ext (A, G) -> Ext {A, H) — 0 .

If A is any torsion free group, then Ext {A, G) = 0, and so Ext (A, H) = 0.
Write H= D@Ly where D is the divisible part of H. Then L is
reduced, and 0 = Ext (A, D@L)^ Ext (A, D) ® Ext (A,L) = Ext (A, L), so
that L is cotorsion. Our assertion is proved.
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Now we are ready to give the solutions promised earlier. The
following theorem settles III.

THEOREM. The group H is an endomorphic image of every group
G containing it such that G(H is torsion free if and only if H—D^C,
where D is divisible and C is cotorsion. This is equivalent to the as-
sertion that H is a direct summand of every such G.

Proof. Suppose H is an endomorphic image of every group G con-
taining it such that G/H is torsion free. Let H = D 0 C, where D is
divisible and C is reduced. Then C is a subgroup of the cotorsion group
Ext (Q/Z, C) = C" such that C'/C is torsion free, so that H is a subgroup
of D 0 C" = Hf such that H'/H is torsion free. Therefore H is an
endomorphic image of Hr. Ext ( 4 , ΰ φ C ' ) = 0 for all torsion free groups
A, and as we have just proved, any homomorphic image of Z) 0 C is
the direct sum of a cotorsion and a divisible group. It follows that C
must be cotorsion.

If H = D 0 C, with D divisible and C cotorsion, then Ext (A, H) = 0
for all torsion free groups A, and hence H is a direct summand of any
group G containing it such that GIH is torsion free. If H is a direct
summand of any such G, then clearly H is an endomorphic image of any
such G. Thus our theorem is proved.

The torsion group T is a direct summand of every group containing
it as its maximal torsion subgroup if and only if T = Z) 0 B, with D
divisible and B of bounded order. (See [1], pg. 187.) Thus, by our
theorem, we see that the torsion group T is an endomorphic image of
every group containing it as its maximal torsion subgroup if and only if
T = Z) 0 B, with D divisible and B of bounded order.

The solution of II goes as follows. Suppose a basic subgroup of T
is an endomorphic image of every group G in which T is the maximal
torsion subgroup. Let T = ΰ φ B, with D divisible and B reduced.
Then a basic subgroup of T must be an endomorphic image of D@Bf —
D 0 Ext (Q/Z, B). Therefore a basic subgroup of T must be cotorsion,
since it is reduced, and since it is torsion, it is of bounded order. (See
UL Pg 1̂ 7. The remark by Harrison in [2], pg. 371 is incorrectly
worded.) Writing T as D®B, we see that a basic subgroup of B is a
basic subgroup of T. But any two basic subgroups of T are isomor-
phic, and if B has a basic subgroup of bounded order, then B must be
of bounded order. In fact, the only basic subgroup of B is B itself.
Thus T = D 0 B, with D divisible and B of bounded order. If Γ =
Z) 0 B9 with D divisible and B of bounded order, then B is a basic
subgroup of T. Now D 0 B, and hence B, is a direct summand of any
G in which T is the maximal torsion subgroup. Therefore B is an
endomorphic image of any such G, and hence any basic subgroup of T
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is such an endomorphic image. Thus we see that the answers to ques-
tions I and II are the same.
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