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Introduction. If G is a multiplicative group with elements , ¥, «- -,
we define the commutator (x, ¥) by (¢, ¥) = *y &y and, inductively for
length n, (2, <+, £,q, ) = (21, *++, Z,0), £,). We also use the notation
(@, o, y; +o+;2, +»+, w) for the commutator ((z, +++,¥), -+, (2, +++, W)).
For each positive integer n, let G, be the subgroup of G generated by
all commutators of length =.

A group, G, is of exponent 4 in case x* = 1 for every « in G but
y*# 1 for some y in G. Let F be a free group of rank k, and let F™
be the subgroup generated by fourth powers of elements of F. Let
B(k) = F/F*. Then B(k) is clearly a group of exponent 4 on k gener-
ators. Moreover, every group of exponent 4 on k generators is a homo-
morphic image of B(k).

I. N. Sanov has shown that B(k) is finite. (See [2], pp. 324-325,
or [3]). Unfortunately, his proof gives very little additional information
about B(k). The present paper is devoted to the study of relations be-
tween commutators in the group B(k), a consequence of the relations
obtained being that B(k)y, = 1.

Preliminaries. Let G be a group of exponent 4, and let a, b, .-+ be
elements of G. Then

(1) (a, b)’ = (a, b, b, b)(a, b, b, @) (a, b, @, @) mod G,
(2) (a,b,a) =(a, b,a,a,a) = (a,b,a;a,b)

(3) (a,b,¢) = (b, ¢, a)(c, a, b) mod G,

(4) (a,b;¢,d) = (a, c; b, d)(a, d; b, ¢) mod G,

(5) (a,b; ¢, d; ) = (a, d; ¢, f; b)(a, f; ¢, b; d) mod G,

where the bold-face type in (5) has no significance other than to point
out which entries are left fixed while the others are cyclicly permuted—
whenever bold-face type appears in a computation an application of (5)
is about to be made. The relations (1) and (2) can be shown to hold in
B(2); hence they certainly hold in any group, G, of exponent 4. Relation
(3) is simply the Jacobi identity (which holds in any group) adapted to
exponent 4. Relations (4) and (5) were proved in [4] for the case in
which the entries are of order 2, but the proofs clearly go through
without this restriction, since in proving the relations we are simply

Received April 25, 1960. This work was supported by the Office of Naval Research
under contract MR 044-213.

387



388 C. R. B. WRIGHT

looking at the first significant terms of (abed)* and (abedf)* as collected
by P. Hall’s process. It should be noted that these relations are
““identical’’ in the sense that they hold for every choice of a,b,c, d
and f in G. This property gives us the freedom of substitution which
we shall use later.

The following result, which appeared in a slightly different form as
the Corollary to Lemma 3.2 in [4], is easily proved using (1) and (3).

(A). Let G be a group of exponent 4. Let

C= (xly sty Ly Ay Liygy ** %, wn—l)

where ,, «++, %,_, and a are in G. Then, modulo G,,, C is a product of
commutators of the form (a, Yy, *++, Ys Liz1, ***y Xpyey), Where Yy, +++, Y;
are &, «++,x; in some order.

Finally, we need to know that if a and b are the generators of
B(2), then B(2); is generated by (b, a,a;b,a) and (b,a,b;b,a), and
B(2); = 1. These results may be verified directly or deduced from
Burnside’s original work in [1].

Throughout this paper we shall be concerned with the relations
between commutators in B(k). Our first lemma gives us a method of
reducing our problems to a few relatively tractable cases.

LEMMA 1. Suppose (&, ++-, %,) s a commutator of length n in a
group, G, of exponent 4. If one of % ++-, %, 18 @ and one b, then,
modulo G,y (%, <+, 2,) 18 @ product of commutators of length m of
the following four types:

(i) (@, 9, ==+, @b, =)
(ii) (z, 9, =++, b, a, ++*)
(i) (x, ¥y, *-+,a,2,b)
@iv) (z,y,++-,b,2,0).

Loosely stated, Lemma 1 says that we may bring a and & more or
less together and keep them out of the first two positions.

Proof of Lemma 1. Observe first that we can rewrite (3) as
(a, b, c) = (a, c, b)(a; b, c)mod G, .
Using this form and working modulo G, we have

(x,y,a,2,b, w) =(x, 9, a, b, 2, w)(x, y, a; b, 2; w)
= (x, ¥, @, b, 2, w)(x, y, 2; b, w; @) (x, ¥y, w; b, a; z)
= (z,9,a,bd, 2, w)(x, ¥y, 2 b, w,a)(x, y, 2, w, b, a)
«(x, ¥, w, b, a, 2) (2, y, w,a,b,?) .
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Let G(n, a, b) be the (normal) subgroup of G generated by G,., and
all commutators of length % of types (i) and (ii). Let G*(n, a, b) be the
(normal) subgroup of G generated by G(n, ¢, b) and all commutators of
length n of types (iii) and (iv). Then certainly if w is in G(n, a, b) and
g is in G, (w, g) is in G(n + 1, a, b), and by the relation just proved, if
z is in G*(n, a, b), then (z, ¢) is in G*(n + 1, @, b). Thus it will be suf-
ficient to prove the lemma under the assumption that z, is either a
or b (say b).

We have reduced the problem to showing that if C has length n
and if C=(x, %+, 2,0a,--+,b), then C is in G*(n,a,b). If
2=n—1=3, then C is in G*(n,a,b). We proceed by induction on
n — 1. Suppose for induction that for some j =4 and all n =J + 2,
C is in G*(n, a, b) whenever n — 1 < j. We shall show that if n — 1 =3,
then C is in G*(n, a, b), so that by finite induction we shall have C in
G*(n,a,b) for all ¢ such that 2<n—1=<n—2, ie. such that
2=<1=n~-— 2. Thus the lemma will be proved.

Let ¢ =% —j. By the inductive assumption and (3) we have,
modulo G*(n, a, b),

(xly Lgy o200y Ly Wy ¢ 20y Xyygzy Ty b) = (X’ Xy Ay Lp—g5 Ln—gy b) ’

where X = (x,, -+-, x;), and where A = (d, eoe, ) if m—4>1 but
A=aif n —4 =1 Now, modulo G,,,, using (4), (8) and (5),

(X, @55 A, pg; Tp0; ) = (X, Bpg5 A, 45 Tpy; 0) (%, Xps; 4, X 0,5 D)
= (X, Tpsy Tosy A, 255 0) (4, X3, Tpsy X, X5 D)
(4, X, Tpy; T4y Xns; 0) (A, X X4, Xgy Tpss D)
= (X, ®nosy Buos A, 5 0) (A, T4y X5 b, Bpsi Bys) (A, T4y b5 Tipmgy By X)
(4, X, 05 b, Tys; Bys) (A, X, b5 By Bs; )
(A, s} X4y X, by X) (A, b; 25y Zpeygy X Xs)

But by the inductive assumption (X, %,_s, %, 4, 2;;0), (4,2, 0; %o, sy X)),
(xh Ln—3» b; Ar Lr—2 X) and (Ay b, Lp—zy Lsy X; xnvz) are a‘ll in G*(’l’b, a, b)'
Further,

(A! xi; X; b’ xn—:}; xn—z) (A? X! mz; b! xn—?); xn—2)
= (X! Ly A; by Ln—3; xn—?) mOd Gn+1 .

Thus, modulo G*(n, a, b),
(X, 2 A, y_g; Ty b)
= (X, x4, A; b, %,—; T,s) (A, X, b; Xy, Tpps; )

= (Xr xi! xn—:i; b; xn~2;A) (Xr xm wnfz; b) A; xnf?,)
'(A7 X; xn—z’ xnfsy by xi) (xn—:n xn—s; A; X; b; xi)
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= (A, X; X9, Xposy b5 2,) (Xpsy Ty A, X; b; )
= (4, b; Lpsy Tps, 55 X) (A, 45 Tpyy Tpgy X; D)
(Fnes X A, b5 Tg; B0) (T b5 A, g5 X @)

= (Tp-2r b; A, Tpg; X; @)

= (Xp-s, b5 A, Lns; Ty3 X) (X602 b5 4, X053 X, )

= (Tn-2y Tn-sy Ay 45 b; X) (s, 245 A, b; 5 X)
*(Zn-ay A; X, sy Bnss D) (X, %45 Tps; b, Ty A)

1.

fi

Hence, (1, ®;, «++, %4y @, ++ ¢, Lyey, €y, ) is in G*(n, a, b), as desired.
Thus the lemma is proved.
An immediate consequence of Lemma 1 is the following.

COROLLARY. If C = (%, +++, 2,) and if two of &,, ++-, X, are a, then
modulo G,.,, C is a product of commutators of length n of the forms:

(1) (wry""ya"a’r"')
(11) (xyy’ ---,a,z,a).
We next observe that, using (1),

(xl’ Y x'm" a2) = (xli ccy xm) a)z(xu sy, mm, CL, a)
= (xl! c0cy mm; a, a) mod Gm+3 .
Hence,
(6) (B, =o)Xy @)y @y Lgygy * o0y L) = (L 00y Lgy O Typgy =0y yp)
modulo G,.,.

We may now prove the following useful result.

LEMMA 2. Let G be a group of exponent 4, and let (x,, ++-, x,) be
a commutator of length n in elements of G. If some three of x; «+-, %,
are a, then modulo G,y (X, -+, 2,) 18 o product of commutators of
the forms:

(1 ) (yI! Yas ** %y Yn—s A, Ay a)
(11) (yu Yoy ** s Yn—ay Oy Oy Yps,y a’) .

Proof. We first derive two shifting relations. Using (1) and (3)
we obtain modulo G,,

(z, v, a,a,a,z) =(x,v9,a)p 2= @,v9,a, 2} = (2,9 a, 2)x, Y, 2, a)
=@, 9,20 =(19,20,0,0).

Hence,
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(7) (*,v9,0,0,a,2) = (x,9, 2 ¢, a,a)mod G, .

Thus, modulo longer commutators, a string of three a’s can be shifted
to the right.
We also have, modulo G,

(® ¥ 00,2 0)=(,9,0a,z2 a,a) (Y, a2 a0 =(Y,0aza0a0).
Thus
(8) %, 9,0a,z2 0a,0) = (2,9, a, &, 2, a) mod G, .
Further, modulo G,

(x,9,0,0,2,0,w) =, vy, a, a, a, 2, W)(x, Y, 6, a&; &, 2; W)
= (x, ¥, a, a, a, 2, w)(x, y, a*; a, &; w)
= (%, 9, a, a, &, 2, w)(x, ¥, ?; @, w; &)
= (x, 9, a,a,a,z WY, a waa)ey, 2 waaa).

Applying (7) and (8) we get
(9) (x, ¥y, 0,0,z 0, w) = (x,9,7, a,a, w,a) mod G, .

Thus, modulo longer commutators, a trio of a’s with one gap may be
shifted to the right.

It is clear from (7) and (9) that it is sufficient to prove the lemma
under the assumption that z, = a. Considering («x,, ---, #,_,) now, it is
clear from the Corollary of Lemma 1 that we may restrict ourselves to
the consideration of commutators of the following two types:

I (xlyxm"',a;a/y"',xn—lya')
II (xh Lgy o0y Uy Lpyy, A, G/) .

By (8), commutators of type II are already of type (ii), Further,
(xlv Loy ¢y Ay Uy ¢0*y Lpy_y, a') = (xlv Lay ** 0y a2’ sy Ly a’) mOd Gn+1 .

Now applying Lemma 1 with b replaced by a* we find that modulo
Griy @y Xoy vve,0% oo+, 2, ,a) is a product of commutators of form
Y1y Yoy +++,a,0,0a, +++) and commutators of form (y,, ¥, *++, &, &, Yp_y, @).
Thus, by (7), any commutator of type I is a product to commutators
of types (i) and (ii) modulo G,,,., The lemma follows.

The main theorems.

In this section we derive more consequences of Lemma 1 and find
an upper bound on the nilpotency class of B(k). The first theorem is
much like Lemma 2,

THEQREM 1. Let G be a group of exponent 4, and suppose (X, +++, T,)
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18 a commutator of lemngth n with entries from G such that some four
(or more) of Xy, +++, %, are a. If n =6, then (x, +++, T,) 18 0 Gpyi.

Proof. If (¢, ---,2,) # 1, then since four entries of (X, +--, %,)
are a, it follows that at least three of x,, ++-, %, are a. By Lemma 2
and (A) we may restrict attention to commutators of the following types:

(1) ((1,, Lyy **y By Ay A, a)
(11) (a7 Loy *0y Uy Ay T3, (1/) .

Applying (7) and (9), we may confine our study to commutators of the
following types:

(1) (@) @ @y @y @y Ty =+ o,y Ty y)
(ii') (@, oy @y @, Ty @, +=+) .

But now, modulo G,, using (2) and (5),
(@, a,a,a,9) =,z a0, 29 =@, x;azy) =1,
and

(@, x,a 0,9 0=,z d,vya) = (29 ¢ a) e, d, Y;a)
=(a,,9,a,0,0) =@,200aay) =1.

Thus a commutator of type (i') or (i') is in G,,,. The theorem follows.
Let x,, - -+, #; be generators of B(k). Then it is easy to show that
X, v+, %y, generate a group isomorphic to B(k — 1). We may thus
consider B(k — 1) as imbedded in B(k).
If A and B are subgroups of a group, G, we define (4, B) as the
subgroup of G generated by all commutators (e,b) with @ in A and
b in B.

THEOREM 2. For each positive integer k,

(B(E)st—1y Bk + 1)) S B(k + 1)gpss -

Proof. We first-show that the theorem holds for & = 2, then we
proceed by induction on k. Thus suppose first that k¥ = 2. Now as
noted above, B(2); is generated by (x,, ,, 2;; %, ¥,) and (X, &1, Lg5 X5y ©1).
But if ¥ is in B(3), then modulo B(3),,

(xh Ly L1y L1y L5 y) = (x%, X5 X1y Lo; y) =1.

Similarly, (x,, 2., %; %, %,; ¥) = 1 modulo B(3),. Thus the theorem is true
if k=2,

Now suppose inductively that for some % the theorem is true for
all &£ such that 2 < k < n. We shall show that
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9

(B(n)Sn—U B(n + 1)) g B(’ﬂ + 1)3n+1 .

It will be sufficient to show that if ¥, «--, ¥,,_, are chosen in any way
from ®, -+, 2, and if z is in B(n + 1), then (y,, «*+, Ysr, 2) is in
B(n + 1);,,,. Now if four of ¥, +--, ¥,,_, are equal, then by Theorem
2 Yy ***y Y1, 2) is in B(n + 1),,,. Thus suppose the contrary, i.e.,
suppose that each of (say) ., - - -, , appears three times among ¥,, *« +, Ysn—
and that x, appears twice. By (A) we may restrict attention to the case
in which ¢, = «,. But in this case, since n = 8, we must have at least
one (say «,) of «, ---,x, appearing three times among ¥, +--, ¥,, SO
that by Lemma 2 we may restrict ourselves to consideration of com-
mutators of the following types:

( i ) (yl? Yar ***y Ysn—ay Ly Ly Loy z)
(il) (yn Yoy =2y Ly Loy Ysn—as Ly Z) ’

where 2, appears twice among ¥, ***, ¥;,—, and each of x,, +--, 2,_, ap-
pears three times. Now by (9),

(ylr Yoy 22y Ly Ly Yzu—a9 Ly Z) = (?/1, 0y Ysn—as Luy Ty 2, xn)

modulo B(n + 1)y,4,. But (¥, -+, Y-y is in B(n — 1),,_,—, so that, by
the inductive assumption, a commutator of type (i) or type (ii) is in
B(n + 1)s4,.  The theorem follows.

Finally, we have the principal goal of this paper.

THEOREM 3. For each positive integer k, B(k), = 1.

Proof. It follows immediately from Theorem 2 that B(k),, = B(k):;
so that, since B(k) is nilpotent, B(k),, = 1. :

One may apply the foregoing results to obtain numerical estimates
of the derived length and order of B(k). It follows immediately from
Theorem 3 that if B(k)™ =+ 1, then 2™ < 3k, so that the derived length
of B(k) is at most log, (8k — 1). By means of the Witt formulae (see,
for example, [2], p. 169) one can also obtain an upper bound on the
order of B(k) using Theorems 2 and 3. Such estimates, both of derived
length and order, are easily seen to be imprecise. For example, the
Witt formula calculations give the order of B(3) as at most 2**, whereas
a little direct computation shows that the order is at most 2°. Also,
log, (3:3 — 1) = 3, but one can show that B(3)"”" = 1.

Finally we would like to point out that it can be shown that B(k), +# 1,
so that perhaps the upper bound on the class given here is not too
far from the true class. Indeed, the bound is precise for k =2, and
preliminary work suggests that it may be precise for k = 3.
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