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THE ANALYTIC-FUNCTIONAL CALCULUS IN
COMMUTATIVE TOPOLOGICAL ALGEBRAS

RICHARD ARENS

1. Introduction* The idea of an analytic-functional calculus involv-
ing holomorphic functions / of several variables seems to have originated
with Shilov [6], Shilov uses Weil's integral formula [8] to construct,
for each / holomorphic on the joint spectrum of elements alf •••, an of
a commutative Banach algebra A, an element b of that algebra, deserv-
ing the name f(al9 • • •, an) because of the function b yields on the space
of maximal ideals. Shilov's requirement that au •••,«„ generate the
algebra was removed in [1]. Waelbrock [8], perhaps idependently of [6],
treated the general case and indeed that of more general algebras.
Waelbrock uses the ordinary form of Cauchy's integral, but also deeper
ideal-theoretic results of K. Oka and H. Cartan. He shows moreover
that one can arrange the mapping /—•/(&!,•••, aw) so as to be an
algebra-homomorphism, which is not obvious for the method of Shilov-
Arens-Calderon [6, 1]. One purpose of the present paper is to show
that this results from that method also. Another is to give a careful
exposition of the Weil integral, or rather a weaker but more effective
form involving integration on affine rather that analytic polyhedra.
Although we have elsewhere sketched a proof of such a result, we dealt
only with n = 2, as Weil did, and there was some question about the
combinatorial procedure in the general case.

We desired to establish also a covariance property of the functional
calculus (see 4.2 below) which enables us (see § 5) to extend the functional
calculus to certain inverse limits of Banach algebras.

However, the most interesting discovery is that one can just as
well deal with holomorphic A-valued functions / , rather than merely
complex-valued functions. (For a trivial example, if /(X) = Xa on the
spectrum of 6, then f(b) = ab.) The attractive thing is that by extend-
ing the technique in this way, the distinction between the case in which
fli, *">an generate A, and that in which they do not, simply does not
arise, nor does the matter of polynomial-convexity which was the great
discovery of, but at the same time the indispensable tool for, Shilov.

The actual integral representation for functions holomorphic in the
usual sense, on a suitably convex, compact subset of Cn is then derived
from the theorem (4.1, 4.4 below) concerning the case of A-valued func-
tions.

2. Holomorphic differential forms with values in a topological
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algebra.

By a topological algebra A we shall mean a linear algebra over the
complex numbers C which is a locally convex topological linear space
with the property that each compact set lies in some compact convex
set, and in which the multiplication

A x A-^ A , (x,y)—>xy

is continuous. Banach algebra are the outstanding examples.
The condition involving the compactness is included in the definition

so that the existence of the Riemann integral of a continuous function
will be assured.

Let A be a commutative topological algebra with unit (written 1).
The case in which A = C is a special, but not trivial case from the point
of view of this section.

Let V be an open subset of Cn, and / a continuous A-valued function
defined on V. We shall say / is holomorphic on V, in symbols / e Hoi (V, A),
if t°f is holomorphic in the usual sense for every linear continuous
functional | of A [4, 92].

Now let wl9 • • •, wn be n elements of A. We shall say that an open
set V of Cn is an elementary resolvent set for wl9 • • •, wn if there exist
functions ql9 • • •, qn e Hoi (V, A),

2.1 ZQiQ<>)(\ -Wi) = l Xe V.

The union of all elementary resolvent sets is an open set which we call
the resolvent set, and denote by p(w; A). Here 'w' is, as it often shall be,
an abbreviation for '(wlf •••, w»)'«

The complement of p(w; A) denoted by

2.2 T(W; A)

we call the analytic joint spectrum of (wl9 • • • , w n ) . I t is a closed set.
The joint spectrum

2.21 a(w; A)

may be defined as the set of all X = (Xl9 • • •, Xn) e Cn for which there
do not exist bu • • •, bn e A such that

2.22 I(wt - Xi)bi = 1

(See [6, 2].) Thus <j(w; A) c z{w\ A).

2.23 For A a Banach algebra a(w; A) = r(w; A). Indeed, starting with
2.22, one sees that
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has an inverse /(/*), fi in a neighborhood V of X and fe Hol(F, A).
Thus q^fi) = —bifift) yields the g* for which 2.1 holds. T&ese ĝ  are
evidently rational functions.

An open set F c Cn, together with qu • • •, qn e Hoi (F, A), such that
2.1 holds will be called an elementary resolvent system.

Now suppose we have N elementary resolvent systems for the n-tuple

2.3 {<?*, K : a - 1,2, — , JV; i = l , - , n } .

For an ordered subset a: = (a^ • • •, am) of these indices, 1 ^ a^ g JV, we
denote FOi fl • • • D Vam by F^. If a = (au •••,«„) we can define on F^
a function

2.31 Qa = det ((zfl<i)4 j

(this is an n rowed determinant), and this Qa e HoUF*, A).
We want to study the symmetry properties of the system of functions

2.32 PROPOSITION. Let a0, • • •, an be n + 1 integers, 1 ^ a{ ^ N.

Let a{ be the n-tuple obtained by deleting 'a' from (a0, • • • , «„ ) .

2.33 Q.o - Q01 + Q«2 + {-)nQ«n = 0

The proof is as follows. The (n + l)-rowed determinant

1 Qa0l Qa02 * * ' Qaon

is surely 0 on Fa0...o , by 2.1. Expanding by minors of the first column
gives 2.33.

A more compact notation for 2.33 is convenient. Consider the
abstract complex ^r whose vertices are the numbers 1,2, • • •, N, with
m-simplices

2.34 (do, • • •, aJ ,

repetitions being allowed, but

2.35 (a0, • • • > a J = ±(60, ••-,&„)

if the a's are an even (resp., odd) permutation of the &'s. For an
n-chain

where the X{ are complex numbers (or even elements of A!) and the
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a5 are m-simplices, we define

2.36 Qp = 2XkQ«k (on Vfi)

which clearly depends only on /3.
Recall that d(aQf • • •, a9) is defined by (axa2* • *ap) — (a0a2- • -a) +
Using this notation, 2.32 can be expressed as follows:

2.37 if 7 = (aotti- • -an) taew Q9Y ^ 0 ow FY .

If / is a continuous A-valued function defined on V1 U • • • U VNJ we
can define a system of differential forms

2.4 £„(/, qai) = QJdz, A • • • A dzn , on F*

where a = (ax*^an). As in 2.37 we have

2.41 if 7 = (dod!- • *an) then Qdy — 0 on Fy .

Now suppose we have a polyhedral complex K (cf. [10, 357]) con-
tained in Cn. Suppose there are subcomplexes

2.5 Ka ( a - 1 , 2 , ...,N)

of K such that Ka is contained in Va (refer to 2.3). Let K0 be used
to denote the subcomplex

Kai n • • • n ifam (a - (alf • . . , a j ) .

Then for each n-cell in Kai...On we can define (see 2.4, and [10, 82])

2.51 oUfc) - ( O.(/f ffj
Jfc

where a = (ax, •••, an)% This gives an w-cochain in Ka. From 2.4, and
in the same notation

2.52 o)dy = 0 in Ky (y = (a0, • • •, aM)) .

However, the holomorphism of the forms Qa has another consequence.

2.6 The (Oa, is a cocycle in Ka, i.e., o)^(dh) — 0 for each (n + lychain
h in K#.

This is the ' ̂ -valued" analogue of the Cauchy-Green-Stokes theorem,
and can be reduced to the complex-valued case by the use of linear
functions (and there it is proved by use of the Cauchy-Riemann relations.)

A final remark on the topology of Hol(?7, A). It is that of uniform
convergence on each compact subset of the open set U.

3. Partitioning of boundaries. Let if be a finite complex. Let
Kl9 *",KN be subcomplexes of K. For any cell k of K we define the
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type of k to be the least integer j , where 1 ^ j :g N, such that k lies
in Kj. If none exists, we say k has no type. For a chain g of K

where the k{ are cells, and the X± are arbitrary coefficients, we define

m

3.1 7U3(g) = I > ^
i=i

were X,̂  = X{ if fc< is of type j , and 0 otherwise. Clearly

3.2 if g c Kx U • • • U KN then g = 2 ^ ( 0 ) .

The main object of this section is as follows.

3.3 THEOREM. Suppose dg c Kx U • • • U KN. For 1 ^a ^ N let
da = ^«(9ff). ^ ^ 1 ^ «i < a2 < • • • <am^ N let

For any permutation t of (1,2, • • •, m)

3.32 9*m)*tn~'*«m) = S g

and if there are repetitions among the alf • • •, am, let gaia2---am — 0. Then

3.33 flro1-om WeS ̂  ^ Pi • • • Pi i^am

3.34 ^ar--am is alternating in its indices
N

3.35 dg == S 0«
iV

3.36 90Oi...a = S^aar-o •
1 m

 a = l X m

In the compact notation of § 2, 3.36 says that

3.36' dga - g8a

where 8 is the coboundary operator (cf. [10, p. 362]).
The proof of 3.3 will ensue from a number of propositions, in which

k,g,h, • • • are chains of K.

3.37 dk = 0 and & c K, U • • • U KN then

3.371 S 7ca(d7cbk) = 0 .

To show 3.371 we begin by calling the term in 3.371 by the name
kab. Since k = S f ^ ^ and dfc = 0, we have
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3.372 Ikab = 0

where the summation is over all a, b. It may be limited to pairs such
that a ^ b because all terms in dnhk have type at most b. Now let
1 <,c < N and consider

3.373 2 Kb .

The terms here are of type c at least. The sum S of the remaining
kab contains only terms of type less than c. But S + (3.373) is 0 by
3.372. It follows that (3.373) is 0. 3.371 follows at once. We have
the following corollary.

3.374 d%bk = J^7rad7Cbk — 2 7tbd7Cck .
a=l c=b+l

For any ft with dh c Kx U • • • U KN set ah = Kadh. For such h we
have, by 3.374

3.375 8»fc = S«>fc- S >Ji>,
a=l c=6+l

and by 3.371

3.376 S > = 0 ,

whence

3.377 ««fc = - S a&̂  .

Now we can prove, for ax < a2 < • • • < aw,

3.378 dav.-amg = Saar.flfflflf ~" S a^a^-aj + S a ^ a ^ - ^ - ' "

We let ft = a2..-aTOff in 3.375, and take b = ax. Thus

This second sum may be terminated with c = a2, since each term in the
boundary of H...g has type at most a2f so that car..g = 0 for c > a2. To
the summand in which c = a2 we apply 3.377, with a = a2,h = H...g, whence

2-1

This establishes 3.378.
If we use the definition 3.32 for 0&1...&TO with distinct indices not

arranged in order of magnitude, then 3.378 takes the desired form 3.36.
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The three other assertions of 3.3 are pretty obviously true. This com-
pletes our proof of 3.3.

Let g be as in 3.3 and suppose G = {ga} and H = {ha} are two systems
satisfying 3.33-3.36 (mutatis mutandis, for the case of h). Here a
represents an m-tuple axa2* • «am, m — 0, 1, • • •, and ga — g when m = 0.
We call G and H immediately equivalent if there is an e, 1 ^ e ^ N
such that

3.4 ga — ha c Ke for all a.

We call G and H equivalent if we can find systems G(0), G(1), • • •, G(i3>

each satisfying 3.33-3.36 where G(o) = G(2)), G(p) = H, and each system
is immediately equivalent to its successor in this sequence.

3.5 LEMMA. Let dg, dh and g — h c Kx{j • • • U -K^ and suppose
{9<»}t {ha} satisfy 3.33-3.36. Then these systems are equivalent.

Proof. Let us linearly order the indices a, placing the shorter ones
before the longer, and ordering lexicographically those of each given
length. Let us also order the elements of K. If G = {ga} =£ H — {ha}
then there is a first index a such that ga =£ ha. We treat first the case
where a has length 0, i.e., g ^ h. Then there must be a first cell k
(in the ordering of K) that occurs in g — h, with a non zero coefficient
X. Now fc must lie in some Ke. We make a new system G' as follows.
Let {ka} be formed by an application of 3.4. Let g* = g<* — Xka. This
system is immediately equivalent to G, and gf agrees with h as far as
k and its predecessors is concerned. By a repetition of this process we
reach a system G(p) in which g{p) = h, and which is equivalent to G.

Now consider the case in which a = aQa1^-am has positive length.
Let k be the first cell of K that occurs with non-zero coefficient X in
ga — ha. As before, we construct an auxiliary system to be added to G.
We shall call it {ly}. For 7 of length less than m + 1 we set ly = 0. For
7 of length m + 1 we set

3.51 ly = X7fc where Xy — (hy — gy)-k ;

that is, in the notation of [10, p. 361], Xy is the coefficient of k in
hy — gy. We remark that L V - c m = 0. Indeed, I\CCi...Cm = I(hCCi...Cm -
gCCl.:cJ-k = (dhei...em-dgei...eJ-k = 0 because #Cl...Cm = fcCl...Cm according
to minimal property of m. This says that the function (<v • * O —• \v--cTO>.
which is an (m + l)-chain of ^/<' vanishes on all coboundaries (cf. 3.36
and [10, p. 362]) and hence is an (m + l)-cycle. Because ^T is homolo-
gically trivial, X is the boundary of some (m + 2)-chain [Jt: X — dfi. For
0" = (&o- • -6J we obtain V-.&w = ^-<r = d/i-0 = f ^ = Lft&0-&ra- We
now define, for 7 = cc0* • -cm, of length m + 2,
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3.52 ly = fJLflk .

For 7 of length greater than m + 2, we set ly = 0. This system satisfies
3.33-3.36, which we shall now show. We may confine our discussion to
3.36. For 7 of the form <v# •£* with i < m we have ly = 0. For such
i we also have Ilay — 0 because ZaY = 0 for i < m — 1 while for i = m — 1,
Ilay = 0 follows from SXeei...Cm = 0. For 7 of the form cc- • *cm we have
d£7 - Xydk = \0...cJk = 2eiiee".eJk = Z\co...cm, by 3.52. For 7 longer
than m + 1, 9Z7 = 0 again, and so is lay. Thus 3.36 holds for {ly}. The
discussion of the index ba^ • «am is similar, while for those not a permuta-
tion of these, everything is 0.

Besides 3.33, we have ly c KttQ (and indeed, also Kb). This shows
that {ly} is immediately equivalent to 0, and that

{gy + ly} — Gr

is immediately equivalent to G. Moreover, it agrees with H for all
indices preceding a and in a as far as not only the predecessors of Jc,
but also Jc itself, is concerned.

The reader will surely appreciate that these combinatorial devices
can be installed in an inductive argument serving to establish 3.5.

The intent of our definition of 'equivalence' is to be shown in the
following theorem in which K is a finite complex, Kl9 • • •, KN9 subcom-
plexes of K, just as they always have been in this section, but for the
coefficients in the homology theory we presuppose some vector space A
over the rational numbers (e.g., a Banach algebra!).

3.6 THEOREM. Suppose that for each (3 = (bl9 • • •, bn), 1 ^ b{ g N,
there is an n-cocycle % in Kp — Kbl n • • • PI Kbn such that

3.61 (Op i s a l t e r n a t i n g i n (b19 • • • , 6 W ) ;

3.62 if 1 ^ b0, b19 • • •, bn ^ N then
n

where ftk — (&0&i"*&w) with 'b^' omitted.
Let g be a 2n-chain in K with dg c Kx U • • • U KN.
Let G = {ga} be a system of chains satisfying 3.33-3.36 (such systems

exist, by 3.3.)
Then the value of

3.63 J L . ^ 0 ) ^ ) - (o(g)
n\

depends only on g, and in fact only on g outside of Kx U • • • U KN.
That is, if g — gf c £ i U • • • U KN then a)(g) = (o(gr). Finally, a>(g + g") =
<i>(g) + a>(g") when dg, dg" c Kx U • • • U KN.
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(If K is 2w-dimensional, then this says that 3.63 defines a 2w-cocycle
of K mod (Kx U • • • U KN).)

Proof. In an obvious sense, the sum 3.63 depends additively on
the system G = {ga}. Any two such systems G and G' are equivalent
if g — g' c Kx U • • • U KN. Therefore it suffices to show that 3.63, or
a)(g) as we denote that sum, is 0 when G is immediately equivalent to
0. Then it will be clear that co(g) depends merely on g, etc.

Accordingly, we suppose that for some e, 1 g e ^ N, each ga for a
of length n — 1 lies in Ke.

We shall abbreviate 3.62 in the same spirit as 2.5.
Let 7 = eft where ft has length n. Then dy — ft — e0/3, and since

^>97 = 0 we obtain

3.64 % - co^ - ((w

where we have used the incidence numbers defined by

3.65 (n - l)ldft = Sa(a : ft)a ,

the factorial compensating for the fact that some a's are permutations
of others included in the summation. Inserting 3.64 into 3.63 yields

]NTow, from the

•so that

3.66

But by 3.36

(n

dual of 3.65

(n-

\)(o(g) = SftS,

[10, 362(5)]

l)!a»(flr) = 2t.

and ^a lies in Ke as well as in Ka. Thus ^^ lies in Ke f] Ka on which
<o)eol/ is a cocycle. Accordingly

(n - l)\Q)(g) = ft)^(9flf«) = 0 .

This establishes 3.6.

4. The operational calculus. Let A be a commutative topological
-algebra over C, with unit. Let wl9 • • •, wn be w elements of A.

Let if be a finite polyhedral-cell complex in Cn, and Ku • • •, iT^
subcomplexes. Let g be a sum of non-overlapping 2^-cells of K (each
oriented so as to agree with the natural orientation of Cn = R2n). Let
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{ga} be a system satisfying 3.33-3.36, thus related to g via 3.35. Now
let A c U be subsets of Cn such that g 'covers' A but is 'included' in
U. Then we call {ga} a contour system in U surrounding A. For n = 1,
<7i + • • • + gN would be a polygonal contour in U winding once around
A, suitable for the path of integration of Cauchy's integral.

Let {ga} be such a contour system. In terms of the same N and
n, let {qai: a = 1, • • •, N; i = 1, • • •, n} be some system of continuous
functions defined on various open subsets of Cn, but such that

4.01 qai is defined and continuous on ga, a = 1, • • •, N ;

Then we say that {ga} and {qai} are compatible. The point of this
is that if a system 2.3 is compatible with a contour system {ga}, then
the forms 2.4, for feE.o\(U, A) give rise to cocycles in Kay and in
particular

exists.
Now let A be a compact, and [7 an open, subset of Cw, with A a U

and

4.02 [ f - J c p(w; A)

(the Wj, •••, wn being the elements of A). Then

4.03 PROPOSITION. There is a contour system {ga} surrounding A:
in U, and a system 2.3 compatible with this contour system.

Proof. Select a neighborhood V of A in U whose frontier F is
compact and contained in U. Because of the definition of p(w; A) (but
readers interested in Banach algebras should remember 2.23) we can
find a system 2.3 such that Fa VX U • • • U VN. For convenience, we
display it here:

4.04 {qai, V « : a = l , - - -, N; i = 1, . . . , n } .

Now we dissect Cn into 2w-cubes each of side d, and make d so small
that if a cube touch F, then it lies in some Va. Let K be the complex
generated by the cubes that touch V~, and Kay by those that lie in Va.
Let g be the sum of the generators of K. Then dg c K]_ U • • • U KN

and 3.3 can be applied to give a contour sysem

4.05 {grj surrounding A in U>

compatible with 4.04 because g« c Va.
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We now introduce the main object (JA) of our study, in a lemma
whose proof involves combinatorial results of § 3.

4.1 LEMMA. Let A be a commutative topological algebra over C,
with unit, and let w19 • • •, Wn be n elements of A. Let Abe a compact
subset of Cn, and U a neighborhood of A for which

4.11 U- Adp(w;A) .

Then there exists a linear continuous mapping J(A, U, w, A) or
more briefly

4.12 J/. Hoi (17, A) — A

which may be evaluated as follows. Select a contour system 4.05 and
a family 4.04 of elementary resolvent systems compatible (4.01) with
it, with Va c U. Let f e Kol(U, A). Then

4.13 JA(f) = {2ni)-n{n\y £ , f Q0(f, qai) .

For the Qa, see 2.4, 2.31.

Proof. We have already shown that such compatible pairs 4.04,
4.05 exist, so at least one such integral can be formed. We shall now
show that all such integrals (with a given / ) have the same value in
A. Suppose we have on the one hand

4.14 {pai: a = 1, • • •, N; i = 1, • • •, n}

compatible with

4.15 {gj .

Suppose

4.16 {ha\ a - {au • • •, am), m = 1, 2, • • •, 1 ^ a3 ^ N'}

and

4.17 {qai: a - 1, . •., N'; i = 1, • • •, n}

is another compatible pair of systems, giving rise to an integral (we
denote the numerical factor by c)

4.18 cl \ GaiffQad

We don't need to suppose that the qai are constant. Suppose 4.16 are
chains in a cellular complex L, with Lu • • •, LN, playing the role analogous
to Kl9 • • •, KN. We construct a complex M of which certain refinements
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of K, L are subcomplexes. Since refinement of chains does not alter
4.13 nor 4.18, we may simply suppose that K, L are subcomplexes of M.

We now define ga for a = (alf • • •, am), 1 ^ as ^ N + N' — N".
When all a5 ^ N we use 4.15. When this does not apply, we set ga — CL

We define a system of ka for this set of indices. When a=(au • • •, aTO)
and each a5 > JV we let Kv--am = hai-N,--,am-N , and when some a* ^ AT,
we let &«!..•aTO = 0. We define*^ = 0 for^ZV^ a ^ iV" (see 4.14).

Let Ma (a = 1, • • •, N") be defined as Ka when a tOk N, and La-N when
N < a ^ JV". It is not hard to see that the systems {g*}, {pai} (enlarged
index family) are compatible, and give rise to an integral with the same
value as 4.13. Also, the systems {&»}, {pai} are compatible, and they
give rise to an integral with the same value as 4.18. Consider next
the cocyles (see 2.6) in M:

4.19 0)a

(formed with the enlarged index system). Notice thatg — kdM1 U • • • U MN,,.
Hence by 3.6, a)(g) = Q){k). Hence the integrals 4.13 and 4.18 are equal.
We may thus unambiguously define JA by 4.13. It clearly has all the
properties required.

In 4.4 we shall show that this JA preserves products as well.

We shall turn to a covariance property, whose setting we now describe.

Let A and B be two topological algebras, commutative and with
unit 1. Let

4.20 T: A->B

be a continuous linear-algebra homomorphism. Let L be a linear trans-
formation of Cn onto Cn. Let U and V be open sets such that L(V) c Uf

and let A, F be compact sets such that L(F) Z) A. Then the following
diagram of mappings is "commutative"

4.21

and sends / onto TofoL.
The linear transformation L can be lifted up to An, Bn, and T induces

a T{n) in such a way that there arises the commutative diagram

An—^ Bn

4.22 L\ \L
TO) ^

An • Bn ,
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where Tn(au • • •, an) = ( T « ) , • • •, T(an)).
Let a = («!, • • •, a j be an element of An and b — (bl9 •••,&„) an

element of 5 w of such a sort that (see 4.22)

4.23 T™(a) = (Tfa), • •., T(aw)) - L(b) .

On these hypotheses we have

4.3 LEMMA. If U — A lies in p(a; A) V — F lies in p(b; J3), and
for f e Hoi (U, A) we have

T[J(A, U, a, A)(f)] = J(r, V, 6, B){TofoL)

Proof. If ft e V— P then X = L(ft) e U — A so that pt holomorphic
near X can be found such that Spifa — ax) — 1 (z{ is the ith coordinate
function) near X. Applying T, and using 4.23, we obtain Iql(zi — L(6)^) = 1
near Xi9 or Iqfci - b3) = 1 near (x, where (gj, •. •, q'n) = L'(^i, • ••,£„),
L' being the transpose of L. These #< are holomorphic near ft, so that
ft e jO(6, J5). We now set up an integral for JA(f) = J (^ , ?7, a,

(the index 'a' on pai is not to be confused with the a e An\). We apply
T to this and then change the variable of integration by z = L(w).
This changes / to TfL, and pai to L'Tpai. The new chains L"xga do
not have density 1, but the factor needed to bring this about is exactly
provided by the jacobian dz/dw. The reader not acquainted with the
transformation of such integrals [10, 88] is invited to consider only the
case L = 1 which is really enough for our purposes. On the other hand,
a much more complex situation is also conceivable: the case of L being
a non-singular analytic mapping. But this would require more familiarity
with integration in complex manifolds than we wish to require. This
completes our sketch of the proof of 4.3.

Several corollaries are deducible from 4.3, all involving L = 1. We
always suppose A a non-void compact, and U a neighborhood of J, in C \

4.31 COROLLARY. Suppose U — Ad p(au • • •,an; A) and let r be that
part of r(a; A) which lies in A. Suppose r is not void, and let V be
a neighborhood of r in U. Then

J{Ay U, a, A)(f) - J(T, V, a, A)(f) .

4.32 COROLLARY. If A is a subalgebra of B, and au • • •, an e A
and U — A c p(a; A), then U — A c p(a; B) and
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J(A, U, alf • • •, an, A)(f) = J(A, U,alf--., an; B)(f)

for fe Hoi (U, A).

4.33 COROLLARY. Let gbea continuous linear functional of A, which
is multiplicative. Let X be the point (|(#i), •"» Han)), where U — A a
P(a>i, • • •, <V, A). Let f e Hoi (U, A). Then

F if
f "'

0 if X <£ A .

Proof. In the first plane, f(a) = X must fall into the joint spectrum
<j{a\ A), so if X 0 A then X e U. Select a point /u e A, taking /* = X if
X e J, and arbitrarity otherwise.

We have f: A—*.C, a situation to which 4.3 can be applied, with
the result that

4.34 £[J(A, U, a, A)(f)] = J(A, U, X,

where $ = | o / e Hol(J7, C). Using 4.31 twice, we obtain for the right
hand side R of 4.34

R = J(ft, U, X, €)(</>) .

Consider the system of elementary resolvent systems qai = Sai(̂ ^ — a^1

where 8ai is the Kronecker symbol. As # take an 2w-cube with [i as
center and so small that g lies in U, and let gn...n be the product of
their boundaries in the several coordinate planes. This obviously com-
patible pair gives rise to the classical representation

4.341 R = (27rt)-»j • •

dzj- • «dzw = <£(X) or 0 according to X = ^ or X ̂  // .

This establishes 4.33.
The Cauchy-Weil integral formula, in the weaker, but more intelligible

form, in which one integrates not over a subset of the boundary of a
polyedre [8] A, but over an ordinary polyhedron in a neighborhood U
of A, can be deduced from 4.1 and 4.33. We consider the matter.

A compact subset A of an open subset U of Cn is called Hoi (U, C)-
convex if for z e U — A there exists and p e Hoi (U, C) such that p(z) = 1,
but I p(X) I < 1 for X e J.

Suppose p 6 Hol(i7, C). Suppose that U is convex, or that p is a
polynomial, or that U is a domain of holomorphy [3]. Then

4.35 there exist pl9 • . . , pn e Hoi (C/ x C7, C) swcft £fca£ /o r X, fxe U9

p(X) - p{fi) = ^ ( X , /*)(X; - #)• (See [3].)
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Suppose U is a neighborhood of the compact subset A of Cn. Let
A(A, U) be the closure of Hoi (17, C) in C{A,C). Then A{A, U) is a
Banach algebra with the maximum modulus norm. Let z = (zlf • • •, zn)
be the coordinate functions in Cn.

We now relate these concepts.

4.36 / / U - Ad p(zlf • • •, z»; A(A, U)) then A is Hoi (U, C)-convex.

Proof. Let X e U — A. Then there are pl9 • • •, pn e A(4, [/) such
that Ip^fe — Xi) = 1. Because Hol(?7, C) is dense in A(z/, U) there are
/ l f -..,/weHol(C7, O such that | | / | | < 1 where f=l-Ifi(zi-Xi).
But /(V) = 1.

4.37 / / for each peHol(C7, C) one has 4.35, f̂eê  U — A c
, C7)).

Proo/. Let X e U- A. Select p e Hoi (C7, C) such that p(X) = 1,
| < 1. Using 4.35 we obtain

Since ||2>(2)|| < 1, the right side has an inverse in A(A, U), so that
X e p(z; A(A, [/)).

The Cauchy-Weil integral formula, in the restricted sense already
described, results from the following.

4.38 THEOREM. Let U be an open subset of Cn and let pu • • •, pN e
Hol(C7, C). Let Fl9 • •• , FN be closed sets in C such that

4.381 A = p^F,) n • • • n v*\FN)

is compact. Replace U by a smaller neighborhood V for which
Pa(X) - Paifi) = 2Vai(\ f*)(\ ~ j"i) ^ ^ Pat e Hoi (F x V, C). For each
X e A define

Qai(X)(V) = Pai(X, j")[Pa(j") " ^a(^)]"1

for all fi in the set Va(X) for which it makes sense. Then there exists
one contour system {g«} surrounding A in V which is compatible with
the {Qai(X)} for every X e A, and {for c, see 4.18)

4.382 c £ \ Q(f, qai(X)) = f(X) X 6 A ,
Jo*

for every f e Hoi ([/, C).

Proof. Choose neighborhoods Ua of Fa such V~p^( C/i) n • • • D PN\ UN)
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is a domain of holomorphy and lies in U. Then, by 4.35, the pai can
be found. For a given fJt not in A, an index a can be found such that
Qatfa)(v) makes sense for all A, € A, and all v in some neighborhood Va

of [Jt, namely some a such that pa(fi) & Fa. Thus Va c Va(X) for all X.
A contour system {ga} such that ga c Va can now be found by the
method of 4.03, which after all, uses only the fact that the Va cover
the frontier of some neighborhood of A. We now define

We have used zi as the it\i coordinate function in U, F, or even Cn.
It is important to use another name for its restriction to A. We call
that wi9

Now we ask ourselves, what is qai itself. It is a function on A
whose values are functions on Va, that is qai e Hol(Fa , A(A, F)) (where
the holomorphy is recognized.) Moreover, ityOiM(A00w — A*i) = — 1» X e A,
ft e Va. Thus 2qai([t)((ii — wj = 1, p e Va, whence {qaU Va} is an elemen-
tary resolvent system for the elements wl9 • • •, wn of A{A, V). Therefore

4.383 cl\ Q(4>, qai) - J(A, F, w, A(A,

where <£(X) = f(X)*E, where E is the unit of A{A, F), and both sides of
4.382 give some element of A(A, F), which we call ^ . We shall show
that tjr = f restricted to A. Let X e A. Define the linear multiplicative
functional £ on A(A, V) as evaluation at X. Then £(i/r) = ^(X). But
4.33 tells us that ?ty) = £(4>(X)). Now <I>(X) = f(X)E and £(E) = J5(A,) = 1.
Thus i|r(A,) = /(A,). But if we put X into the free place of the integral in
4.383, we find ourselves integrating something like qai(z)(X) • • • dz, which is
something like qai{X)(z)' • -dz, which is what is obviously intended in 4.382.

In this theorem, the qai(X) contain the parameter in an analytic way.
If we ask for an integral representation for / e Hoi (U, C) on A in terms
of values on U — A, without requiring that qai(X) depend analytically
on X, we can do without the special form of A (4.381).

4.39 THEOREM. Let Ac UaCn, A compact, U open. Then there
exists a contour system {ga} surrounding A in U and a system

{Qia{X): a = 1, • • •, N; i = 1, • •., n}

of holomorphic A-valued functions, depending continuously on a para-
meter X in a neighborhood of Ay compatible with {ga} for every such
X, such that 4.382 holds for every fe Hoi (£7, C).

Proof. Let A = <^(A, C). Then wu*-,wneA where wt is the
restriction of z% to A, and a(w; A) = A as is well known. Hence, when
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fi e A there exist pu • • •, pn e A such that

ZPi(Wi — y«) = 1 e A .

Therefore there is a neighborhood V(fi) such that

[2Pi(Wi — Vi)]"1 exists in A, v e V{p) .

Select filf • • •, [iN such that the Va = F(/*o) cover the frontier of some
neighborhood of A in U.

We define

which is to say

This is holomorphic on Fa indeed rational for each X. Thus the form
®*(f, Qatfa)) is holomorphic on Va. (On the other hand the qai depend
continuously on X). We now continue as in the proof of 4.38, beginning
with the words "a contour system {ga} can be found", and the result
is 4.382.

It is remarkable that although the parameter X does not appear
holomorphically in the forms Qa(f9 qaifa))9 the result of the integration
yields something which does depend holomorphically on X.

We digress at this point to deduce from our results those propositions
on which Waelbrock bases his symbolic calculus. This digression ends
with 4.395.

4.394. Let plf • • •, pn be polynomials in zlf • • •, zn where, in fact pl =
Zu '•-, Pn = zn {n ̂  N). Suppose A = p±\D) n • • • H PN\D) is compact
where D = {z: \ z \ ^ 1, z e C}. Then each f e Hoi (A, A) is of the form
<poP where <p e Hoi (DN, A) and P(X) = p4(X), • • •, pN(X)). Thus P: A-> DN.
A need not be an algebra here. But Hoi ( , A) is still a modul over
Hoi ( , C).

Proof. Examine the integral representation 4.382:

/(*)det( **VPaM - Pa(z)
a = a u - - - , a n ; j = 1 , • • • , n .

On ga we have | pa(z) | ^ t > 1. Thus, for | Xa | < t (a = 1, • • •, N) we
can define <p(Xu • • •, Xn+U • • • XN)

= c S ((/-»/(«) det
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This is clearly holomorphic on DN. (Moreover, by writing

(i + + +
K-pa(z) pa(z) V Pa(z) Pa(zy

we see that <p(X± • • • XN) can be uniformly approximated by polynomials
on DN.)

Obviously <poP = f.

4.395 The set P{A) is the intersection of DN with the algebraic variety

{X : X = p^X), X2 = p2(X), • • •, XN = pN(X)} ,

i.e.,

The homomorphism Hoi (DN, A) —* Hoi (z/, ̂ 4.) given by <p —+ <pof (shown
m^o in 4.394) has as its kernel precisely the ideal generated by the
polynomials pn+1(z) - zn+1, • • •, pn(z) - zn.

Let (p e Hoi (Dn, A). Then (looking at the Taylor series about 0 e Cn)
^(^,--%^,\>+i,--0-^i,--%^
where <p5 are holomorphic on D10 (k = 2iV — ̂ , to be exact).

Now let fin+k = Pn+tCXa, • • •, Xn). Then | fin+JC \ ̂  1. Thus <p(X- • •) -
^ ( \ , • • •, Pn+A), • • •) = S^>, [^ - P&)]p(M where ^ e Hoi (D«, A). If
cpoP — 0 then ^ = 2^>w[^j — VjWi- This suffices to show 4.395.

We now consider the homomorphism property of the operator JA.

4.4 LEMMA. Assume the hypothesis of A.l(which ends withA.ll). Then

4.41 Jd(fJ2) - UfdUf*)

for flfft e Hoi (U, A), and Jd = J(J, U, w, A).

Proof. We select an integral representation 4.15 for JA. Our
meaning should be clear if we write

4.42 W. ) = e z ( f1(z)Pa(z)dz .

We write also

4.43

Then, denoting the right side of 4.41 by R, we have

4.44 R =
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We adopt the notation (z, f) = (zl9 • • •, zn\ £\, •••,£„) for the natural
coordinate system in C2w.

The key to the situation is to recognize that the integral on the
right side of 4.44 is a representation for

4.45 J(A x A,U x U,a, A)(<f>)

where a — (wl9 w2, • • •, wn, wu w2, • • •, wn) e A2n

a n d for (X, fx) = (X1? . . -Xn, fxlf . • • , / < ) ,

4.46 <K\ f*) =

The contour-system in 4.45 is {g^} where ( ^ = ga x gp (3.34-3.36
have to be verified, and this can be done, starting with [10, 365, (1)]).

We now shrink the A x A in 4.45 to the smaller set A1 = {(X, X) : X e A}.
This change is justified by the fact that there is no point of the spectrum
cr(a; A) in A x A — Au as we shall now check. Let (X, fx) e A x A — Ax.
Then either X — p. $ A or X ̂ = //. In the first case there exist qlf • • •, qn e
Hoi (V, A) such that

Y.Qi^i ~ CLt) = 1

on the neighborhood V of X e C \ These gz can be extended in a trivial
way to be Holomorphic on V x Cn which is a neighborhood of (X, X).
Thus (X, X) e p{a\ A). In the latter case, there is an i such that X̂  ̂  ftt.
Then the relation

valid in a neighborhood of (X, fx)9 show that (X, [£) e p(a, A).
We now introduce the linear mapping L: C2n ^> C2n for which

L(X, //) = (X + fi, X — fi). Then L(r) = Jx where F = A x {OJ, Ow being
the origin in the second factor space Cn of C2n. Moreover a — L(b)
where b = (t^, • • •, wn, 0, • • •, 0) e A2n. We pick T: A-> A as the identity,
and are thus in a position to apply 4.3:

4.47 J ( 4 , ?7i, a, A)(4>) - J ( r , V,, 6,

The left side here is equal to R (4.44). The Ulf V± are some neighbor-
hoods of Alf F. To evaluate the right side of 4.47, we choose a contour-
system ga x ftp where ga are those we began with, and h? is a classical
box-like arrangement as in 4.341, the fx in which is be replaced by On.
This is a contour-system surrounding F = A x {OJ. The product of
Cauchy-kernels that goes with this classical integral representation we
may denote by Q^). Thus we obtain

= c2z\ \ A(*
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Here let us integrate first with respect to f. By Cauchy's integral
theorem, we obtain

\ f1(z + 0)f2(z-0)Pa(z)dz

which is c7j(/i/a), as we intended to show.
Two remarks are in order. First, JA(1) is an idempotent element

which is a relative unit for all elements J(A, U, w, A)(f), f e Hoi (U, A),
U — A c p(a; A). Second, the homomorphism property for algebras A
which are semi-simple in the sense that for a =£ 0 e A there is a con-
tinuous complex linear-algebra-homomorphism £ such that £(a) =£ 0, follows
already from 4.33.

The covariance result 4.3 can be generalized to include linear mappings

4.48 L: cn+m->Cn (onto)

where m > 0. We prefer to isolate just the one feature of L in 4.48,
namely the many-valuedness of L~\ and assume that

4.49 L(XU • •. , Xn, Xn+1, • • •, Xn+m) = (\, • • •, Xn) ,

while taking B — A, and T — I.

4.5 PROPOSITION. Let L be as in 4.49. Let (au • • •, m+n) e Am+n. Let
Ad U c Cn where U is open, A, compact, with U — A c p(au • • •, anjA).
Let r c Cn+m be compact with A c L{F) c U, such that U x Cm - F c
p(au -..,an+OT; A). Tftew

4.51 J(J , C7, alf • • •, an, A)(f) - J(r, U x Cm, al9 • • •, aw+m, A)

(/oL), / o r / e Hoi (U, A).
This can be provided by selecting a contour-system {ga} surrounding

L{F) in U with a compatible family {pai}; and then selecting a classical-
type contour-system for (1 — L){F) in C \ We combine these by the
product method sketched below equation 4.47. This provides a represen-
tation for the right side R of 4.51 wherein the integrand isf(zl9 • • •, zn).
The integral with respect to dzn+1* • -dzn+m can be carried out first, and
Cauchy's integral formula for constant functions on (1 — L)(F) in Cm

yields an integral representation for the left side of 4.51.
This proposition shows that the element 'a' constructed in 1, 3.3

is indeed J(SAy W,au • • •, an, A)(^~), in the notation of [1], because the
method there is to adjoin further elements an+l9 • • •, ap and apply Shilov's
adaptation of Weil's formula to fc^*oL, However, there is no logical
necessity for this observtion about the relation of [1, 3.3] to the present
work because the combination of 4.31 and 4.33 in the present paper
yields all that is promised by [1, 3.3], and more (e.g., 4.41, 4.32, etc.).
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For an important case including Banach algebras in which A contains
the entire topological joint spectrum z(w19 ••• ,wn ; A), we sum up the
major results obtainable from 4.1, 4.33 and 4.44. We denote the constant
functions whose value on U is a also by 'a', for each a e A.

4.6 THEOREM. Let Abe a commutative topological algebra with unit.
Let w19 • • •, wn be such elements of A for which (z — wt)~

x —* 0 uniformly
as I z I —> oo. Let J be a compact subset of Cn such that

z{wly • • •, wn; A) c A .

Let U be open, Uz) A. Then the mapping (see 4.12)

J/. Hoi (17, A) — A

4.61 is a continuous liner algebra homomorphism J such that

4.62 J(a) = a for each constant a e A

and

4.63 J(z{) = Wi ,

where z{ is the 'ith coordinate function:

Proof. Let us show 4.62. It is enough to treat the case a = 1.
We can, by 4.3, choose U arbitrarily, so we take U = Cn. For each
entire function / we have then

Jj(f) =
X - wJ'-'iZn - Wn)

provided z{ runs around a large square of center 0, and side 2R in C.
We take / = 1. Then

.7,(1) -

Let w be any one of the w{ and define b — \(z-~ w)~xdz — 2jzi\. Thus
b = we where c = \z~\z — w)" 1 ^. Let Fbe a linear continuous functional
•on the topological linear space A, and let <£(#) = F((z — w)"1). Then
|</>(z)|->0 uniformly for 2;->oo. Now F(c) = [z-tytydz, so F(c) = 0.
Thus c = 0, and 4.61 is proved. Now consider / where f(z) = zx. We
can write / / / ) as a product of integrals, each of which is a scalar,
except for one, which has form

\z(z — w^dz = \{z — ̂ ( z — w^)~ldz + Wil(z — wjdz = 0
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Inserting this into the product, we obtain JA{f) — w19 thus proving 4.62.
Remark: Waelbrock [7, 147] notices the relevance of the condition

(z — w)-1 —> 0 uniformly as z —> 0

to the operational calculus, and points out that it follows from
(z — wY1 is bouned for z in some neighborhood of infinity.
Still weaker growth conditions have the same effect.
It is natural to ask [8, 174] whether in 4.6 the mapping JA is

characterized by the properties 4.61-4.63. We do not know, but it seems
unlikely. Sufficient conditions may be obtained as follows. Let B be
the algebra Hoi (z/, A) and make some hypothesis about A and wlf • • •, wn

such that T(Z19 • • •, zn; B) c A. Then for f e B we have an integral
representation for J{A, z, B)(f), approximable by rational functions in z
(coefficients in A). By 4.33, the element thus represented (and approxi-
mated) is / itself. Hence JA{f) is determined by the conditions 4.61-
4.63.

For a compact subset A of Cn we define Hoi (A, A) as the direct limit
of the Hoi {U, A), for those open Uu A, and topologize Hoi (A, A) accord-
ingly [7,8]. Following the pattern of [8], we can, on the hypothesis
of 4.31, construct a linear continuous homomorphic mapping

4.7 J{A, a, A): Hoi (A, A) -> A .

In case A is precisely r(a1J •••,aniA), assumed to be non-void, the
A may be dropped and we have

4.8 J(a, A): Hoi (z(a; A), A) — A .

For / e Hoi (r(a; A), A), the element J(a, B){f) A is independent of
the superalgebra B ZD A. We may denote it by /(a). In order that/(a)
make sense, one needs to know that / is holomorphic on r(aly • • •, anjA0)
for some algebra Ao containing these elements.

We haven't made any search through the literature to see where
the idea of making holomorphic A-valued functions into operators may
have been used before, but an example has come to our attention, namely
G. Lumer and M. Rosenbloom, Linear operator equations^ Proc. Amer.
Math. Soc, 10, (1959), 32-41; see the top line of page 36.

5. Banach algebras, and their inverse limits. Let A be a commuta-
tive Banach algebra over C, with unit. A' denotes the dual linear space:
we consider it under the weak topology a(A\ A). The class of homo-
morphisms, 0 excepted, in A! we denote by A! n Horn. This is compact.
The kernels of the f e A! n Horn are the maximal ideals of A. The joint
spectrum a(aly • • •, anjA) of an ordered set a = (alt • • •, an) e An of ele-
ments of A may be defined either as
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a(a; A) = {ffo), • • •, f (an)): f e A! n Horn}

or as we have already done in 2.21 [6]. To remove any confusion about
the application of the previous section to Banach algebras, we state the
following.

5.1 THEOREM. Let Abe a commutative Banach algebra with unit
and alf • • •, an elements of A. Then the operator J(a19 • • •, an; A)(see 4.8)
is a continuous linear homomorphism of Hoi (a(alf • • •, a*; A), A) into A,
sending constants in A onto themselves, sending the coordinate function
zi onto aif and having the covariance properties 4.33, 4.32.

Our purpose here is to extend this theorem to a wider class of
algebras, those studied in [2, 5] and for which we shall use Michael's
term: commutative F-algebras, rather than our earlier terminology.
Each such algebra A can be obtained as follows. Let

5.2 B l t B 2 , • • •, B m , •••

be a sequence of commutative Banach algebras, related by continuous
homomorphisms (mapping 1 on 1)

5.21 Bl<^-B2<^-Bd...J^Bm^~...

where each n{Bm+1) is dense in BmJ m = 1, 2, • • •. Let A be the inverse
limit, that is the set of sequences

5.23 (bu 62, • • •) where 7t{b^) = (6J

with the topological algebra structure derive from the topological product
Bt x B2 x • • •. Then A is a commutative F-algebra. It is metrizable
and complete. It is topological in the sense of §2.

The reader may wonder for a moment that we say we want ta
extend 5.1 to F-algebras. Cannot the theory of § 4 be applied to F-Alge-
bras? Of course it can, but the results are not often interesting because
r(a1? • • •, an; A) is usually unbounded, as is the joint spectrum o(alf • • •, an; A).
However, because of the known relation of the joint spectrum (J(al7 • • •, an; A)
to the various o(njfldf • • •> ̂ ( a *) ; A), 5.1 can be extended to F-algebras
as it stands—but we have first to explain this relation, and the notation.
An element a e A is a sequence as in 5.23, and we shall use 7tm{a) to-
denote the element bm e Bm. Each 7cm is a continuous homomorphism of
A onto a dense subalgebra of J5m, and [2, 5.4]

5.24 a(alf • • •, an; A) = ( J <*{nj<id> "*> ^ ( O ; Bm) .
l 2J

m=l,2

We consider it impractical to make all the definitions which would
make 5.1 literally true for 'Banach algebra' replaced by 'F-algebra'-
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Consider Hoi {A, A) where A is a subset of Cn. We define it simply as
the class of equivalence-classes of functions each holomorphic on a neigh-
borhood of A9 " identifying" two functions which agree on a neighborhood
of A. We avoid the task of topologizing Hoi (A, A). Thus the continuity
of / (or rather, its analogue) will not be discussed here.

5.3 THEOREM. Let A be a commutative F-algebra with unit. Let
alf "',an be elements of A. Let A be the joint spectrum 5.24. Then
there is a linear algebra-homomorphism J(alf • • •, an; A) of Hoi (A, A)
into A which sends constants in A into themselves, and sends the co-
ordinate function z{ into a{.

Proof. Let / be a function representing an element of Hoi {A, A)*
For each m,f is holomorphic on a neighborhood V of the compact set
Am = o(njp,d, • • •, 7cm(an); Bm). We may thus apply J(Jm, V, rcm{a), Bm)
to 7rmo/, obtaining an element bm of Bm. With T = iz\ Bm+1 —» Bm,
L = the identity, A — F — Am+1, U — V, the w-tuple 'a' of 4.3 replaced
by '7rm+1(a)', and b = 7im(a) = T(nm+1(a)), we apply 4.3 and obtain 7r(bm+1) =
bm, m — 1, 2, • • •. Thus we obtain an element of A, which we call
J(alf • • •, an; A)(f). It is not hard to see that this J is a homomorphism.
For a constant function c, we take V = Cn, and we obtain bm = 7Cm(c),
so that J{au • • •, an; A)(c) = c. For f = zt (and in this case we may
take V= Cn again), nm°Zi = 2» where the second zi is the scalar-valued
function with values in Bm. Therefore J(Am, V, nm(a), Bm)(Zi) = nn(a^
for each m. Thus J(axi • • •, an; A) = a,.

This completes our proof of 5.3.
We conclude with a remark. This Theorem 5.3 was our original

objective in this research. Could we have derived it form [1], at least
for scalar-valued / which, candidly, from the most important case?
The difficulty in such an attempt lay precisely in trying to make sure
that bm = Tc(bm+1). If it were assumed that each Bm was semi-simple,
(̂&m+i) would have to be bm because of the behavior of bm on B'm n Horn

(the behavior in question is that £(6W) = /(|(^»(Oi)), • • •, £«(7TTO(a*)), which
follows from 4.33, and which was, in [1], the only hold one had of bm). We
should be perfectly willing to assume that A were semi-simple because
its radical could first be divided out. However, it can really happen
that the Bm are not semi-simple even if A is semi-simple. Thus a more
careful analysis leading to 4.3 was forced upon us.

Note. I wish to express my thanks to the referee for discovering
an error in my previous demonstration of 3.5.
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