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ON PLANE CURVES WITH CURVATURE

LESTER E. DUBINS

As a temporary abbreviation we say that a (planar) curve is an R-
curve provided that its curvature is continuous and does not exceed 1/R.
A well-known theorem of Schwartz [1 page 63, 2, 6, 7] states that if two
points on a circle C of radius R are joined by any E-curve, X, then the
arc length of X does not exceed the length of the smaller arc of C
unless indeed the length of X is at least as great as that of the larger
arc of C determined by the two points.

In this paper we call attention to an area of largely unexplored
mathematics, of which the above theorem of Schwartz can be taken as
a takeoff point. Here, we only begin the exploration, raise some ques-
tions that we hope will prove stimulating, and invite others to discover
the proofs of the definitive theorems, proofs that have eluded us. Roughly,
the principal question is: given two points (in the Euclidean plane) what
kind of incurve can connect them? One approach towards making this
question precise is as follows: Focus attention on two J?-curves that
connect the two given points and ask under what circumstances is it
possible to gradually deform the first curve into the second, where at
each stage of the deformation the curve is an incurve connecting the
two given points. Actually, our investigation is primarily concerned
with a related problem in which the two given curves, and every inter-
mediary curve, have the same tangent direction at the first of the two
points, as well as at the second. In this way we become interested in
the arc components of a space of curves. This leads to similarities and
connections with the work of Graustein-Whitney and Smale [8,9].
However the curvature restriction leads to new problems.

The idea for a curvature constraint arises naturally from considera-
tions of a particle that moves at constant speed and subject to a maximum
possible force. If that particle leaves a certain point heading in a cer-
tain direction and desires to arrive at another point from a certain direc-
tion what are the paths available to the particle? If it tries to take a
certain available path but through errors does not quite traverse this
path what is the nature of the possible neighboring paths? (Homotopy
classes.) These questions represent the background for this paper.

Received May 9, 1960. The investigation herein reported was undertaken while the
author had the financial support of a Regular Postdoctoral National Science Foundation
Fellowship. Much of the research was completed while the author was enjoying the hospi-
tality of the Institute for Advanced Study. The author had the pleasure and benefit of
listening to a course of lectures by S. S. Chern in 1955 that dealt with ideas of Schur,
Schmidt, Schwartz, Graustein and Whitney.
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1. Introduction and summary. Let X be a continuously differenti-
able planar curve defined for 0 ^ t ^ 1 with constant speed, i.e. X\t) =
Lemt) where L = L(X) > 0 is the length of X, and 6 is continuous.
Let ^ ° be the set of such X that begin at some fixed point in some
fixed direction, say at the origin heading east. That is, X(0) = 0 and
X'(0) = (L, 0). With each such X is associated its terminal position X(l)
and winding angle 0(1). Of course 0(0) = 0. Let p: ^ ° —> E be defined
by p(X) — (X(l), 0(1)), where E is the cartesian product of the plane
with the real line. The fibre Fe

Q over a point e e E is the set of all
curves X e < °̂ that terminate at a fixed point and that have a fixed
winding angle. Each fibre inherits a topology from <^°, where conver-
gence in ^° means uniform convergence of the curves and their deriva-
tives. Say that a curve l e ^ ° is closed provided that X(l) = 0. A
fibre F°e is a fibre of closed curves provided that e is of the form (0, a)
for some real number a. A theorem of Graustein and Whitney [9], or
rather a slight modification of its proof, implies that a fibre of closed
curves is arc wise connected. It is a consequence of the work of Smale
[8] that every fibre of ^° is arc wise connected for arbitrary e. In this
connection, and as a side remark only, we mention that if e = {u, a) and
ef = (v/, a!) with u and u' non zero, then the corresponding fibres are
homeomorphic. To see this, notice that there is undoubtedly a diffeomor-
phism h of the plane onto itself that maps u—>uf and a curve of winding
angle a terminating at u into one of winding angle a', and that also
preserves the origin and tangent directions at the origin. It is not hard
to see that such an h induces a homeomorphism of the fibre over e with
the fibre over ef (a diffeomorphism is a continuously differentiable home-
omorphism whose inverse is also differentiable).

Suppose now that there is a bound on curvature. That is, let R be
a fixed positive constant, and c^?t the set of X e ^ ° that have curvature
everywhere, and nowhere greater than ljR.

The facts about the connectivity of the fibres j?7 of <£>' are not as
simple as for the fibres JP6° of ^ ' . On the one hand, it is possible to
modify the proof of Graustein and Whitney to show that if Fe is a fibre
of closed curves in <&', that is, if e is of the form (0, a) for some a, then
F^ is arcwise connected just as F? is. However, in contrast to Smale's
results implying the connectivity of all Fl, there exist e such that Ff

e is
not arcwise connected. Let Br be the set of e such that Fe is not
arcwise connected. We shall see that for some e 6 5 ' , an arc component
of Fe contains but a single element, and that for other e e B', each
of two arc components of Fe

r contains two, and hence infinitely many,
elements.

2. Average curvature. It is of value to introduce some curves that
do not necessarily possess a curvature everywhere. This convenience
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arises from the fact that the collection of curves with continuous curva-
ture bounded by 1/R is not closed under uniform limits. In particular
a smooth curve that consists of two pieces, the first an arc of a circle,
and the second, a line segment, does not have a curvature at the point
of tangency. The average curvature of a curve X e <g"° in the interval
[tu t2] is, of course,

L 112 — tx I s2 — sx

where L is the length of X, and s is the arc length parameter for X.
Let c^ — C^{R) be the set of X e ^ ° such that for all tu t2, the

absolute value of (2.1) does not exceed 1JR. Then <g*' c <£* c ^ ° . The
j£&re JP6 is the set of l e ^ 7 such that p(X) = e.

It was shown in [3] that for each terminal position and direction
there is an element of c^ of minimal length. Such a path is called
an R-geodesic. Of more significance, it was also established that an
JS-geodesic is a smooth curve that consists of at most three pieces, each
of which is either an arc of a circle of radius R, or a straight line
segment, (but not all such curves are of minimal length). We observe
that for not every terminal position and direction is the minimal path
unique. Interest in obtaining insight into this matter of non-uniqueness
led us to explore homotopies between these curves, and thereby to this
note.

3. If curves are close so are their derivatives* The following is a
simple consequence of Theorem 1 in [4].

THEOREM 3.1. Let Xn be a sequence of continuously differentiate
•curves defined for 0 ^ t ^ 1. Suppose that for some positive constant
k>0,

for all t± and t2. Then the convergence of the sequence Xn(t) for all t
(or just for a dense set of t) implies the uniform convergence of both
the sequences Xn9 and of the derivatives X'n.

COROLLARY 3.1. Suppose that the speeds || Xh(t) \\ satisfy a uniform
Lipschitz condition of order 1, and the average curvatures are uniformly
bounded away from infinity. Then the convergen w of the sequence Xn

implies the uniform convergence of the sequence Xi
In the event the speeds are independent of t they certainly satisfy

the first part of the hypothesis of Corollary 3.1, and this is the case if
t is arc length or a multiple of arc length for all the curves, where
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the multiple may vary with n, as is the case for Xn e ^ .
Of course Theorem 3.1 and its corollary are not restricted to planar

curves.

COROLLARY 3.2. A homotopy Xu through a family of regular curves
whose first derivative satisfies a uniform Lipschitz condition of order
1, (or whose second derivative is uniformly bounded) is a regular
homotopy. (See [8] for a definition of regular.)

4. Each fibre of closed curves is connected* This section is con-
cerned with indicating the modifications in the proof of the Graustein
Whitney Theorem [9] that are necessary in order that it be applicable to
curves with a curvature constraint.

LEMMA 1. Let Yo e <^°, and e = p(Y0). Suppose that the average
curvature of Yo does not exceed ijR. Then there exists a continuous
mapping u —> Yu of [0,1] into F° and an e > 0 such that (i) the average
curvature of the Yu is bounded away from infinity, and (ii), letting
Y&t) = || Yi{t) || ei(plit) with <px continuous, one has <px(t) > 0 for 0 < t < e.

Proof. Choose an initial part Zo of Yo on which the angle mapping
varies but little, say by less than TT/4. Then choose any curve Zx with
the following 6 properties:

( i ) Zx has constant speed
(ii) Zx has bounded average curvature
(iii) Zx begins at the origin and is initially heading east
(iv) Zx terminates at the terminal point of ZQ and terminates in the

same direction as does Zo

(v) the winding angle of Z1 varies by less than TT/2
(vi) If one lets Z&t) = \\Z[ \\emt) with 6 continuous, then for some

S > 0 and all «, 0 < t < S, 0(t) > 0.
Now let Zu — uZx + (1 — u)Z0. It is easy to see that Z'u is never

zero, and that the average curvature of the Zu is uniformly bounded.
Next let W be the curve consisting of all of ZQ except the initial part,
YQ. Finally, let Yu be Zu followed by W. It is easy to see that Yu is
the homotopy sought. This completes the proof.

LEMMA 2 For any fibre Fe of <£*, and any Xo and Xx that are
elements of Fe, there exists Xu, 0 ^ u ^ 1, such that

( i ) XueFl
(ii) the map u-^Xu is a continuous mapping of [0,1] into

and
(iii) the average curvatures of the Xu are uniformly bounded.
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Proof. Since we will use this lemma only when Fe is a fibre of
closed curves we indicate the proof only for this case. For this case
use the homotopy defined in the proof of the Whitney Graustein Theorem
[9], utilizing Lemma 1 above and obtain an arc Zu whose average curva-
tures are uniformly bounded, and such that Zt = Xi9 i = 0 and 1. Here
Zu and Z'u vary continuously with u. Let Z'u{t) = || Zf

u{t) \\ eicp{u-t] with g>
continuous in u and t, and 9(0, 0) = 0. Let pu be the rotation through
the negative of the angle <p(u, 0). Finally, let XJt) = pu(Zu(t) - Zu(0)).
It is simple to verify that Xu has the desired properties.

It is essential to the truth of the following lemma that the fibre be
a fibre of closed curves.

LEMMA 3. Let Fe be a fibre of closed curves, and suppose that X&
and X1 are elements of Fe. Suppose that Xu exists, 0 ^ u S 1, and
satisfies (i), (ii) and (iii) of Lemma 2. Then Xo and Xx are in the same
arc component of Fe.

Proof. Since the average curvatures of Xu are uniformly bounded
there is a positive constant k sufficiently large so that Yu = kXu has its
average curvatures uniformly bounded by 1/R. It is easy to verify that
Yu is an arc in Fe. Therefore Yo and Y1 are in the same arc component
of Fe. Moreover there is an obvious arc in Fe connecting Yo with XOf

namely Zv = vX0, 1 ̂  v S k; and one connecting Yx with X±. This com-
pletes the proof of Lemma 3.

Lemmas 2 and 3 immediately yield:

THEOREM 4.1. Every fibre of closed curves in ^ is arcwise con-
nected.

5. Winding angle equality does not always imply the existence of
a homotopy• Theorem 4.1 implies that some fibres are arcwise connected.
The point of the next theorem is to show that not all fibres are con-
nected. In fact some fibres have isolated points. Namely an arc, X,
of length less than TTJB/2, of a circle of radius R, cannot be deformed
at all via a homotopy that keeps the initial and terminal positions and
directions fixed, and such that, at each stage of the homotopy, the
curvature or average curvature, does not exceed IJR.

THEOREM 5.1. Let X e ^ be an arc of a circle of radius R, and
suppose that I = l(X), the length of X, is less than 7vR/2. Let p(X) = e.
Then X is an isolated point in Fe.

LEMMA 5.1. The mapping I: ^ —> reals defined by l(Y) = length
of Y is continuous.
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Proof. Obvious.

LEMMA 5.2. The only curve in Fe whose length is less than or
equal to the length of X is X itself.

Proof. Immediate from Proposition 6, page 504 in [3].

LEMMA 5.3. No curve in Fe has a length strictly between l(X) and
TZR.

Proof. Suppose that Y e Fe and that Y has continuous curvature.
Then Schwartz's theorem implies that either l( Y) ^ l(X) or else l( Y) ^ TTR.
To establish the lemma for arbitrary Y e Fe, it obviously suffices to
generalize Schwartz's theorem so as to apply to curves whose average
curvature does not exceed 1/R. It is easy to verify that Schwartz's
theorem thus generalized is indeed valid. The essential point is to verify
that the corresponding extension of Schur's theorem [1, page 61, 2; 6; 7]
on which Schwartz's theorem is based, is also valid.

We merely observe that the usual technique for proving Schur's
theorem can be used to establish the following generalization in which
the existence of curvature, and, a fortiori, its continuity, is not assumed.

SUBLEMMA 5.4. Schur's theorem for plane curves that are not
necessarily twice differentiate. Let D and D* be continuously differ-
entiable planar arcs with the same arc lengthy L, each parametrized
by arc length s. Suppose that D, together with the chord joining its
end points, forms a convex curve. Let D'(s) = eieis), D*'(s) — ei9Hs) with
6 and 6* continuous functions defined on I — [0, L], and suppose that
I #(s2) — #(Si) I ̂  I 0*(s2) — ^*(Si) I for all s± and s2. Let d and d* denote
the lengths of the chords joining the end points of D and D * respectively.
Then d ^ d*, and equality holds only if D and Z>* are congruent.

Proof of Theorem 5.1. Let 0 < e < TTR — l(X). By Lemma 5.1,
the set of Y e Fe such that l(X) — e < l(Y)< l(X) + s is an open sub-
set of Fe. But Lemmas 5.2 and 5.3 imply that X is the unique element
of this set. This completes the proof.

COROLLARY 5.1. Let e be as in Theorem 5.1. Then Fe is not arc-
wise connected.

The question arises whether the only Fe that are not arcwise con-
nected are as above. The next theorem implies, among other things,
that such is not the case. The three curves Xlf X2, and X3 of Figure 1
are in the same fibre Fe. Let 0 < I ^ 4JB, and let X2 be the unique
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Figure 1.

Figure 2.

straight line of length I, such that X2 e ^T Let p(X2) — e. Xx e Fef is
determined by the condition that it consists of three pieces, each an arc
of a circle of radius R, the first counterclockwise oriented. X3 is the
mirror image of Xx where the #-axis acts as a mirror. Of course
all Xi are in the same fibre Fe. It is at first not obvious whether any
two of these three curves are in the same arc component of Fe, and it
is at first surprising that Xx and X3 are in the same component, whereas
Xx and X2 are in the same component if and only if I — AR. To see
that Xx and X3 are in the same component observe first that Xx can be
deformed into Xx where X19 depicted in Figure 2, consists in traversing
first the upper circle completely, then the lower circle and finally X2,
the straight line segment of length I. And similary, X3 can be deformed
into X3 where X3 is the same as X± except that the lower circle is
traversed first.

Let Xt be the upper circle of Figure 2 followed by the lower one,
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and let Xz be the lower one followed by the upper. Of course Xx and
Xz consist of closed curves Xx and Xz respectively followed by X2. That

Xx and X3 can be deformed into one another keeping their end points
and directions fixed can be proven in an elementary fashion, and is
also a consequence of Theorem 4.1. This easily implies that Xx can be
deformed into XB, and hence that they are in the same arc component.
Therefore we have:

THEOREM 5.2. Xx and X3 are in the same component of Fe.
However Xx and X2 are not necessarily in the same component i.e.:

THEOREM 5.3. Xx and X2 are in the same component of Fe if and
only if I — AR.

Proof. If I — AR it is trivial to see that Xx and X2 are in the same
component. Assume now that Xx and X2 are in the same arc component,
and let XUf 1 ̂  u rg 2 be an arc in Fe connecting Xx with X2. Then
Xu(t) is continuous in u and t. Let Yu(t) be the unit vector in the
direction X'u{t). Then Y2 has a single point as its range, whereas Yx

has more than a half circle as its range. There is some u = uOr

1 < u0 < 2 such that Y — Yu— YUQ has precisely a half circle for its.
range. Then each point in the interior of this half circle is covered
twice by Y. This is so because F(0) = 3 (̂1), and therefore Y is topolo-
gically like a mapping of a circle into a half circle. A simple connectivity
argument shows that a mapping of a circle into a half circle (or the
real line) covers the interior of the range at least twice. Let v be the
midpoint of the range of Y, and let X = XUo. Then

\\X(l)-X(0)\\^(X(l)-X(0),v)

= ([x'(t)dt, v) = \\x'(t), v)dt

= \\Y\\ \\Y(t), v)dt = || F| | I1 cos(0(t))eft ,
Jo Jo

S TT/2

cos (a)du(a}
-(it J2)

where u is the measure induced on [—(TT/2), TC\2\ = I by 0. That is, u(B)
is the Lebesgue measure of 0~\B) for all Borel sets B. Of course
cos (a) ^ 0 for a e I. We now need a lemma to guarantee that u is a
large measure, namely, not less than 2i2/|| F | | times ^f where J>f is
Lebesgue measure. (A measure u is said to be not less than a measure
v, provided that for all measurable sets B, u(B) ^ v(B)). Such a lemma-
will permit the inequalities to continue:

cos (a)da — AR ,
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and the theorem will be proven.
Since the average curvature of X does not exceed 1/i?, 6 satisfies

theLipschitz condition | 6(a2) — 6{a^) \-£(\\Y\\\R)\a2 — a1\, and, as already-
observed, 6 covers the interior of its range at least twice. Therefore
to prove that u ^ (2JB/|| Y\\)J*f, and thereby complete the proof of the
theorem, it suffices to establish the following general lemma:

LEMMA 5.5. Let 6 be any real valued function defined on some
closed interval and satisfying the Lipschitz condition

<5.6) \0(a,)-6(^)1 ^k\a%-ax\.

Let u be the distribution of 6, that is u(B) = ^(O'\B)) is the Lebesgue
measure of 6-\B) for all Borel subsets B of the range I of 6. Suppose
that every point in the interior of I is covered at least j times by 0.
Then, u ^

Proof. Let B be any open subinterval of the interior of / . Then

u{B) = £f(e-\B)) = ( 1 ̂  ( -i-1 e\a) \da

U I 0(a) I <ta f S ( \0\a)\da
k JO-^B) k K JK

where K runs through the components of Q~l{B). The equalities con-
tinue: = (llk)YjK (total variation of 8K)9 where 9K is 6 restricted to K.
Now apply a theorem of Banach [5, p. 280] which states that the total
variation of any continuous function / of bounded variation defined on

an interval equals \n(y)dy where n(y) is the number of x such that

f(x)=y, and continue the sequence of inequalities, thus, =(l/A02* \nK(v)dy,

where nK(y) is the number of a such that O^a) = y;

= -T- \ *LnK(y)dy = — \n(y)dy
k J K k J

where n(y) is the number of a such that 6{a) ~ y. But n(y) ^ j for
y e 6~\B). Therefore the inequalities continue

^ {Ijk) [ ^ jdy = {Jlk)£fO-\B). This completes the proof of the

lemma.

Proof of Theorem continued. The average curvature being less
than 1/jR means that 0 satisfies (5.6) with k = (|| Y\\jR), and, taking
j = 2, the lemma gives % ^ (2i2/|| F||)-£f This completes the proof of
the theorem.

6. Suggestions, Conjectures, and open problems* The principal open
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problem of this paper is to discover necessary and sufficient conditions that
two elements of Fe be in the same arc component. Let B be the set of
e such that Fe is not arc wise connected. It seems likely that B is a
bounded open set. In particular, if e = (u, a), then, as e ranges over
B, we guess that u ranges over a bounded subset of the plane and, what
is less intuitive, that a ranges over a bounded set of angles. Moreover,
there is a reasonable chance that if e e B, then Fe consists of precisely
two components, F(l, e) and F(2, e). We conjecture that every fibre is
locally arc wise connected. This would imply that these components are
open, and, therefore, closed. Moreover one of them, say F(l, e) is
probably compact, and possesses an (unique) element Xo of minimal length
mo(e), and an (unique) element X± of maximal length mx(e). Moreover
the other component F(2, e) would not be compact, but would contain
elements that wander all over the plane. Nevertheless it would contain
an element X2 of minimal length m2(e) where m2(e) is meaningful even
if e is not an element of B. Examples suggest that for ee B, m^e) < m2(e).
This phenomenon is undoubtedly related to Schwartz's theorem [1, 2, 6, 7]
and suggests further developments for that theorem. In this connection
if X e F(l,e), it seems likely that the concatenation of a closed curve
of winding angle zero with X is an element of F(2, e), where the closed
curve is traversed first, and, may of course be chosen to be a clockwise
circle of radius R, followed by a counterclockwise circle of the same
radius. Next let mQ and m1 be the supremum of mo(e) and m^e) re-
spectively for e e B and let m2 be the infimum of m2(e) for e e B, and
m3 the infimum of m2(e) for e e' B. Of course each m; depends upon R~
Though it would be of interest to determine the mi9 we have not ex-
plored sufficiently many examples to have a firm conjecture about the
values of the m<.

As suggested earlier, a closely related problem is to find necessary
and sufficient conditions that two curves with the same end points be
deformable into one another by an arc of curves, each of which has its
(average) curvature everywhere bounded by 1/JR, with fixed end points,
throughout the homotopy, but not necessarily fixed directions. Such an
investigation would undoubtedly also be interrelated with Schwartz's,
theorem. For instance let two points be a distance d < 2R apart, and
let d and C2 be the two circles of radius R that pass through these
two points, and let X be in the same homotopy class as the straight
line joining the two points. It is a simple consequence of Schwartz's
theorem that X lies in the region of intersection of the discs determined
by d and C2. A particularly simple but open question is to show that
the larger circular arcs of Cx and C2 joining the two given points are
homotopic. (Added in Proof : N. H. Kuiper has kindly communicated
to me his interesting discovery of a construction that shows that these
circular arcs are homotopic).
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