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1. Introduction. A number of results in the theory of graphs,
including Menger’s Theorem [2] and Whitney’s Theorem ([1], Chapter
20, [3]), have been shown to follow from the max flow-min cut theorem,
which was discovered in the course of study of the flow of goods in a
transportation network [4]. Gale [6] has used the max flow-min cut
theorem to prove a generalization of a well known combinatorial lemma
of Philip Hall [7], and has used his ‘‘feasibility theorem’’ to obtain
interesting combinatorial results'. The object of this note is to give a
slightly more general form of Gale’s theorem, and to use this to prove
a theorem about directed graphs, which is of interest in connection with
communication networks.

Let the network [N, ¢, ¢*] be a set N of nodes with a non-negative
capacity c(x,y) restricting flow along the directed edge xy, for any
2,y e N, and a positive capacity c*(x) restricting the total flows into,
or out of, any node x € N. Let S and S’ be complementary subsets of
N. The upper bound on flow from S to S’ imposed by the capacities
¢ and ¢* will be denoted by k(S, S’) (and is more precisely defined below).
Following Gale, we define a demand d on the network to be a real-
valued function on the nodes, and [d(x)| is to be thought of as the
demand for or the supply of some good at x, according as d(x) is posi-
tive or negative. The demands d(x) are said to be feasible if there exists a
flow in the network, satisfying the capacity restrictions, such that the net
flow into (out of) each note is at least (at most) equal to the demand (supply)
at that node. Gale’s theorem states that a necessary and sufficient
condition for the demands d(x) to be feasible is:

For every collection S of nodes, the sum of the demands at the
nodes of S’ must not exceed the capacity k(S, S’).

Gale proves this for the case when there are no capacity restrictions
on the nodes, and k(S, S’) is thus the sum of the capacities of edges
leading from S into S’. We show how Gale’s argument may be modified
to cover the case when there are capacities on the nodes as well as on
the edges.

Let A and B be disjoint subsets of the nodes of the directed graph
G, containing » and m elements respectively. In §3 we establish a
necessary and sufficient condition that from any » nodes of A there are
r disjoint paths to any r nodes of B, for all » < min {n, m}.

Received May 12, 1960. The results reported in this paper were obtained in the course
of research sponsored by Bell Telephone Laboratories Inc.
1. These results were also obtained independently, without using flows, by Ryser [8].
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2. The feasibility theorem. A route from the node x to the node
y in the network [N, ¢, ¢*] is a sequence z,,%,, ---, %, of nodes of N,
with », =2, 2, =y, and c¢(x;,, ;.;) >0, t=1,-.-,n — 1. The edges
X, %=1,+-+,mn — 1, are the stages of the route. If A and B are
disjoint subsets of N, and route from a node in A to a node in B is
called a route from A to B. A cut o with respect to A and B is a
collection of nodes and edges of positive capacity of the network, such
that every route from A to B has either a node or a stage belonging
to 0. For any set 7 of nodes and edges of the network, the capacity
k(t) of the set T is the sum of the capacities of its constituent elements.
If S and S’ are complementary subsets of N, and 25 is the set of all
cuts with respect to S and S’, then the capacity k(S, S') of the parti-
tion (S, S’) is defined

k(S, S') = min k(o) .
L2s

A flow on the network [N,c,c*] is defined to be a real valued
function f(z,¥y), z,y € N, such that

(1) f(@,y)+ fly,x) =0

(2) f(x,y) = c(z,y)
;f*(w, Y) = c*()

(3) ;f*(y, r) < c*(x),

for all #,y € N, where the summations are over all elements of N, and
(@, y) = f(z,y) if f(x,y) > 0, and is zero otherwise. For any subsets
A and B of N and any flow f we define the net flow f(A, B) from A
to B by

FA4B = 3 f@).

It is intuitively evident that if S and S’ are complementary subsets
of N, then the net flow from S to S’ cannot exceed k(S,S’). To state
this formally, omitting the proof, we have:

LEMMA 1. For any partition (S,S’) of the nodes of the metwork
[N, ¢, ¢*], and any flow f on [N, ¢, ¢*], we have:

f(S,S") = Kk(S,S") .

If f is a flow such that f(INV,2) = 0 unless © = s or © = s’, we say
that f is a flow from s to s’ whose value is f(s, N). (We denote a
one-element set by its unique element.) The max flow-min cut theorem
([21, [4], [5], [6]) may be stated:
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THEOREM 1. Let F be the set of flows from s to s’ and let @ be
the set of cuts with respect to s and s’ of the network [N, c,c*]. Then

mgxf(s, N) = n%in k(o) .

A demand d on [N, ¢, c¢*] is a real-valued function on N. If A is
a subset of N we write d(4) = D.e.d(x). A demand d is said to be
JSeasible if there is a flow f such that

4) f(N,z) =d(x), for all ze N,

THEOREM 2. The demand d on the network [N, ¢, c*] is feasible if,
and only if for every subset S of N,

(5) S’y = k(S, S') .

Proof. The necessity is obvious. For if d is feasible, then there
is a flow f such that, for all S,

d(S") = f(N,S8") = f(S,8") + £(S", S") = f(S,S"),
and

f(S,S") = kS, S’), by Lemma 1.

To prove sufficiency we follow Gale [6] in defining a new network
[N, €, ¢*] by adding two new nodes s and s’ to [N, ¢, ¢*] and putting

¢(x,y) = c(x,y), ¢*(x) =c*(x), for all x,ye N,
c*s) =c¢*s)= oo
c(s,xz) = —d(x), if d(z) <0
¢(x,s') = d(x), if d(x) >0
¢(x,y) = 0, otherwise .

Let U and U~ denote the sets of nodes x of N for which d(z) >0
and d(x) < 0, respectively. We shall show that (5) implies that d(U™)
is a lower bound for capacities of cuts of [N, ¢, ¢*] with respect to s
and s’. The edges xs’, x € U*, form a cut of capacity d(U*), which is
thus a minimum cut. Hence, by the max flow-min cut theorem, there
is a flow f from s to s’ of value d(U*). Let f be f restricted to [N, ¢, ¢*].
Then f satisfies (4), as Gale shows, and the demand d is feasible. Thus
we need only prove:

LEMMA 2. If (5) holds in [N, ¢, c¢*], then d(U*) is a lower bound
for capacities of cuts with respect to s and s’ in [N, €, ¢*].

Proof of the lemma. Let é be any cut of finite capacity of [N, ¢, ¢ *]
with respect to s and s’, and let
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¢ =o0Uo,Uqg, ,

where o consists of nodes and edges of [N,c,c*], g, consists of edges
of the form sx, where x € U~, and o, consists of edges of the form
xs’, where © € U*. Let S, consist of s and all nodes y € N such that
there is a route 2,, %, -+, 2,, with 2, =8, 2, =y, x,€7,¢t =1, -+, n,
and 2., €6G,9=1,.--,m—1. It is easy to verify that s’ e S!, the
complement of S, in N, and that & is a cut with respect to S, and S!.
Let

S=8u@nU).

Then ¢ is also a cut with respect to S and S’. Now S=SUs and
S’ = 8S"Us’, where S and S’ are complementary subsets of N. It follows
that ¢ is a cut of [N,e¢, ¢*] with respect to S and S’* Hence, if (5)
holds,

(6) k(o) = k(o) = k(S,8") = d(S)=d(S'NnU*)+d(S'n U").

Now if #eS'NU-, then ®¢ 0. But se S, xeS’, and (s, x)
= —d(x) 0. Hence either se 7 or sx € 6. But k(G) was assumed finite,
and c*(s) = «; so sx € 6. More precisely, sx € g,. Hence

(7) k(o) = —d(S'n U") .

If xe SN U*, then there is a route x,, x,, -+, 2z, from s =z, to
x = x,, with no node or stage belonging to . But ¢&(x, s’) = d(x) > 0,
and s"¢ 6. Hence xs’ € g, for otherwise x,, %,, +++, x,, s’ would be a
route from s to s’, avoiding the cut . Hence

(8) k(oy) = d(SN U™).
Adding (6), (7) and (8), we get
k(o) + k(o)) + k(o) = d(S' N U +dSNTU"),
that is
k(@) =z d(U™) .
This proves the lemma, and hence the theorem.

3. An application. The max flow-min cut theorem and the feasi-
bility theorem hold when the functions d, ¢, ¢* and f, instead of being
real-valued, have values from an arbitrary ordered Abelian group. It
is the case of integer-valued flows, capacities, and demands, that is
useful in proving combinatorial and graph theoretic results ([2], [6]),

and which we shall use in this section.
A path from a to b in a directed graph G is a sequence of nodes
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Qi dyy v+, a,, With @, = a and a, = b, such that there is an arc of G
directed from a, to a@;.,, 1 =1, ---,7 — 1. The ordered pair of nodes
a,a;., is called the ith step of the path. If A is a subset of the nodes
of G, then |A| denotes the number of elements in A. If A and B are
two disjoint subsets of nodes of G, then a path from a node in A to a
node in B is called a path from A to B. In particular, the arc xzy is
an arc from A to Bif x ¢ A and y € B. Two paths, or two arcs, will
be termed disjoint if they have no common node.

THEOREM 3. Let A and B be two disjoint sets of modes of a
directed graph G. The following properties are equivalent.

I.  There is a set of r disjoint paths from any subset of r elements
of A to any subset of r elements of B, for all r < min {| A}, | B|}.

II.  For every pair of complementary subsets S and S’ of the nodes
of G there is a set of r disjoint arcs from S to S', where
r=min{{SNA4|, |S'n BJ}.

Proof?
I 1II.

Let (S,S’) be any partition of the set N of nodes of G, let
r=min{|SN A|, |S’'N B|}, and let I, and O, be arbitrarily chose subsets
of 7 elements of SN A4 and S’ N B respectively. By I, there are r dis-
joint paths from I, to O,. Each of these paths contains at least one
arc from S to S’. Taking one such arc from each path we get a set
of r disjoint ares from S to S’.

Ir—1.

Let [N, c,¢*] be the network on the nodes of G obtained by
defining

oo, if there is an arc of G from x to ¥y
c(x, y) = .
(9) 0, otherwise
c*(x) =1, for all x e N .
Let I. and O, be given subsets of 7 elements of A and B respec-

tively, and define

1, for xe O,
(10) d(x) =4{-1, for xzel,

0, for all other nodes of G .
For any partition (S, S’) of N,

2 Thanks to a suggestion of the referee, this proof is significantly shorter than my
original version.
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ISNLI+1S'NL|I=[SNO0,]+ 18" NO,|.
Thus
A8 =18"n0,|—-|S'nL|=ISNL|—-1SNO,].
Hence
d(S") =min{S'Nn B, |ISNA}.

By 11, there is a set of min {|{S' N B[, |SN Al|} disjoint arcs from S to
S’. Hence, if 7 is a set of nodes of G such that every arc from S to
S’ is on some node in 7, then 7 has at least min {{S' N B, |SN A} ele-
ments. But with ¢ and ¢* defined by (9), %(S,S’) is the minimum
number of elements in any such set z. Consequently

kE(S,S') zmin {{S" N B|, ISN A} = d(S’) .

Hence, by the feasibility theorem, there is a flow which satisfies the
demand d defined by (10). It is easily verified that with ¢ and ¢* defined
by (9), this means that there are r disjoint paths from I, to O,.

REMARKS. (a) A similar argument shows that properties I’ and II’
are equivalent, where I’ is obtained from I by relaxing the condition
on the r paths, so that it is only required that no two of them have
an arc in common, and II’ is obtained from II by removing the condi-
tion that the 7 arcs be disjoint.

(b) The corresponding theorem for unoriented graphs follows imme-
diatly from Theorem 3.
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