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CHAPTER I

Introduction. This paper gives explicit upper and lower bounds for
the eigenvalues of both the free and fixed membrane problems in terms
of the eigenvalues of analogous finite difference problems. For the
fixed membrane we seek eigenvalues of the Laplace operator on a bounded
region R of the Euclidean plane under the added condition that the solu-
tion must vanish on the boundary C In the case of the free membrane
it is the normal derivative which vanishes on C. If C is sufficiently smooth
the difference between the upper and lower bounds is of the order of
the grid width h.

Generally upper and lower bounds for the membrane eigenvalues,
Xj ^ X,2 5g • • •, have been obtained separately and by distinctly different
methods. Upper bounds for Xk can always be obtained by the Rayleigh-
Ritz process [53]. This depends on the minimum-maximum property of
Xjc which was first discovered by Poincare [46]. Following a suggestion
of R. Courant [13] (also appearing implicitly in a paper of L. Collatz
[8]) we can express this upper bound in terms of the eigenvalues of a
related finite difference problem. Such upper bounds have been obtained
loj G. Polya [47] and H. Weinberger [67] for particular finite difference
analogues of the fixed membrane.

Lower bounds, in general, present a more formidable problem. In
this case the maximum-minimum property [12] of Xfc is usually exploited.
Perhaps the best known method is that of A. Weinstein [71] which gives
arbitrarily close lower bounds for a symmetric linear elliptic differential
operator A defined on a subspace V of a Hilbert space H. This method
presupposes a knowledge of the eigenvalues and eigenvectors of an ex-
tension A' of A to a space V which contains V. The method of A.
Weinstein has been extended by N. Aronszajn [1, 2] and N. Bazley [3,
4,5].

Certain methods for obtaining lower bounds have been pointed out
"by E. Trefftz [58], G. Temple [57], T. Kato [28], and others. Many of
these and other methods are summarized in an excellent survey by J.
B. Diaz [15]. Many of these have been unified into a single theory in
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560 BERT HUBBARD

a recent paper of H. Weinberger [69]. In order to apply any of the
methods mentioned it is necessary to have already an exact lower bound
for at least one of the higher eigenvalues of A. The finite difference
methods presented here require no such additional knowledge.

The Poincare inequality can also be used to obtain upper bounds for
the eigenvalues, ^(h) ^ fi2(h) <s • • •, of a suitably defined finite difference
problem. If the vectors in this inequality are appropriately defined
in terms of the first k eigenfunctions of the membrane problem it is
possible to relate this upper bound for faQi) to Xk. The resulting
inequality is then solved to give a lower bound for Xk in terms of fjtk(h).
This technique has been applied by L. Collatz [8], G. Forsythe [19, 20],
J. Hersch [24], and H. Weinberger [67]. The present paper relies heavily
on the results of the latter author.

In Chapter II a finite difference eigenvalue problem is posed for the
fixed membrane. Both upper and lower bounds for Xfc are obtained
terms of fik{h) and quantities involving the geometry of the boundary
C. Most of the effort is expended in bounding a certain integral defined
over a thin strip of R in the neighborhood of the boundary. Once this
is accomplished the difference between the upper and lower bound is
explicitly bounded by a term of the order of the mesh size, h. In the
papers alluded to above, distinct finite difference problems were formulated
to give upper and lower bounds. In most cases the difference between
the upper and lower bounds was not explicitly bounded. It is known
however, that the eigenvalues of such finite difference problems converge
to the membrane eigenvalues as h —> 0. Clearly, by posing only one
matrix eigenvalue problem we cut the actual computation involved in
obtaining bounds in half.

In Chapter III bounds for the eigenvalues of the free membrane
problem are obtained in a similar manner. Again the difference between
the upper and lower bounds is bounded by a term of order h. Lower
bounds for the free membrane eigenvalues by finite difference methods
appear to have been left relatively unexplored. In this problem the
eigenvalues do not have a monotone dependence on the region as is the
case with fixed membrane eigenvalues. Hence it is difficult to obtain a
lower bound for some higher eigenvalue; a requirement for most methods
of finding lower bounds. Therefore, this result appears to mark a much
greater advance than that obtained in the case of the fixed membrane.

The error bounds depend upon the choice of a vector field defined
on R + C subject to weak conditions with one possible method of choos-
ing such a field illustrated in Appendix A. In Appendix B certain para-
meters depending on the geometry of C are bounded. Finally, the bounds
of this paper are computed in two cases for which the solution is known
explicitly; (a) the unit square, and (b) the unit circle. They are then
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compared with the actual quantities being bounded.
I wish to express my gratitude to Professor H. F. Weinberger for

his valuable assistance in directing my researches into this subject.

CHAPTER II

THE FIXED MEMBRANE PROBLEM

!• The problem and its finite difference analogue. Let R be a
bounded, simply connected region in the x — y plane with boundary C.
The boundary itself is assumed to be composed of piecewise smooth arcs
with interior angles at corners of C which are less than 180°.

Denote the eigenvalues of the fixed membrane problem

(2.1) An + Xu =0 in R,
u = 0 on C,

by Xx ^ X2 ^ • • • . The eigenfunctions uu u2, • • • are normalized by

(2.2) \[ u\dxdy=l.

Divide the x — y plane into squares of width h by the two families
of lines x — mh and y = nh; m,n = 1,2,3, ••• . The dependent variables
of the finite difference problem are defined at certain of the intersections
of these lines, called "mesh points". Superposing a third family of lines
of slope 1 through the mesh points divides the plane into isosceles right
triangles so that each mesh point has six "associated" triangles of which

R

Fig. 1. Symbol Set to which point belongs
x Ch
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it is a vertex. Chf is defined to be the set of those mesh points which
have at least one associated triangle intersecting C. Rh is the collection
of mesh points of Ch. The set Rh — Ch is composed of those points of
Rh which do not belong to Chf i.e., interior points whose triangles do
not cut C, (see Fig. 1). In what follows the "mesh functions" are
assumed to be defined only at points of Rh.

The eigenvalues of 2.1 are to be approximated by the eigenvalues
••• of the finite difference problem

(2.3) AhV + fi(h)V=0 on Rh - Ch,

V=0 on Ch,

where F(m, n) is a mesh function evaluated at the point (mh,nh) of
the plane. Here, Ah is the centered second order difference operator

(2.4) AhV(m, n) = h-2[V(m + 1, n) + V(m, n + 1) + V(m - 1, n)

+ V{m,n- 1) - 47 (m,w) ] .

Let Vlf V2, • • • be the eigenvectors of 2.3 with the normalization

(2.5) h2 E V\ = 1 .
BlT°h

The eigenvalue ptk(h) can be obtained as a solution of the minimum-
maximum problem

(2.6) Mh) = min max fcl + . . . + .

The vectors Wi, •••, TFfc are linearly independent mesh functions which
vanish at points of Ch and ax, •••,«» are real numbers. The numerator
of the above Rayleigh quotient is given as

(2.7) D%(W) = S{[W(m + 1, n) - TF(m,^i)]2

+ [ l^(m, n + 1) - W(m, n)f} ,

where the sum is over all differences of neighboring points of Rh.
The eigenvalues of the fixed membrane are defined by

(2.8) X, = min max DJWi + • • ' + a^) ?

\\0iVt + ••• +alcvlcfdxdy

where vlf • • • , vM are also linearly independent, piecewise continuously
differentiate functions in R which vanish on C and D(v) is the Dirichlet
integral
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(2.9) D(v) = (( (vl + vl) dxdy .

The procedure for obtaining upper bounds for Xk in terms of fik is
to define k admissible functions for the inequality obtained from 2.8 in
terms of the first k eigenvectors of the discrete problem. Inequalities
are further developed for the numerator and denominator of 2.8 in terms
of like quantities of 2.6. The indicated maximization with respect to the
real numbers alf • • •, ak is then effected to achieve the bound. An upper
bound for fik(h) is found in a similar manner. This in turn can be
solved by using the upper bound for Xk to yield a lower bound for Xk.

2. The upper bound* Starting with the mesh eigenfunctions Vlf

• • • , Vk of the finite difference problem, we define functions v19 • • • , vk

admissible in the continuous problem 2.8 as suggested by L. Collatz [8]
and R. Courant [13], (see also G. Polya [47]). Let vt(x, y) be the piecewise
continuously differentiable function which is linear in each triangle and
coincides with the eigenvector V% at the vertices. Clearly the linear in-
dependence of vlf ••• ,vk assures the linear independence of v19 ••• ,
VK and the vanishing of each F4 at points of Ch causes each v% to be
zero on C. Therefore these functions are admissible in the inequality

(2.10) xk ^ max D(v)

Or"a* \\R
v2dxdy

obtained from 2.8 where

(2.11) v = a1v1 + • • • + akvk ,

We next obtain inequalities for the numerator and denominator of
2.10 in terms of D%]

h{V) and h2^V2 . It is easily shown (see [67], page
361) that

(2.12) D(v) ^ Dfh{V) ,

and further that

/niox [[ v2dxdy ^ h? £ F(m, nf - ^- S {[F(m + 1, n) - F(m, ̂ )]2

J J/e Eh~°h 12 Rh

+ [F(m, n + 1) - F(m, ^)]2 + [(F(m + 1, n + 1) - F(m, n)]2} ,

Applying these inequalities to 2.10 yields the known upper bound (c.f.
Weinberger [67])
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We have chosen a finite difference problem which yields a particu-
larly simple expression for the upper bound. This increases the labor
involved in finding the lower bound as we shall see.

3, The lower bound* The following technique was used by Wein-
berger [67] to find lower bounds for Xk in terms of the eigenvalues of
a slightly different finite difference problem. The bound obtained in [67]
is that of 2.27 with the integral 2.28 omitted.

Extend ut as 0 outside B and let the mesh functions Wlf • • • , Wk

be defined in terms of the eigenfunctions uu • • • ,uk as follows:

hr2 \ \ utdxdy, (m, n)e Rh — Ch

(2.15) TT4(m, n) - 8{l}n)
0 (m, n)eCh ,

where S{m, n) is the square with center (m, n) and sides of length h
oriented in the directions of the x — y axes. Let

(2.16) W = a1W1+ ••• +aICWky

u = axux + • • • + akuk .

Deferring for the moment the question of linear independence we see that
in other respects the functions Wlf • • • , Wh are admissible in the ine-
quality

(2.17) fik(h) < max

which arises from 2.6.

We now seek inequalities relating the numerator and denominator of

2.17 to D(u) and I \u*dxdy. It is easily seen that if both (m, n) and

(m + l,n) e Rh then

d£ d7f(£)—(mh+ f, nh + y) ,
o Jo dX

with a similar formula for ^/-differences. Here we have put
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L4IU (^, IV -£= (3 -£=: LjIV

In the mixed case, e.g. when (m — 1, n)e ChJ (m, n)e Rh — Ch, an applica-
tion of Schwarz's inequality yields

(2.19) [W(m, n) - W(m - 1, n)]2 = W(m, rif g hA\ u2dxdy .
J J S(m, n)

We see that (m, n) might have points of Ch on as many as three
sides with the result that W{m, nf could appear with a factor of three
in the Dirichlet sum, D{^l(W). If Bh is defined to be the set of those
points of Rh — Ch adjacent to points of Ch (see Fig. 1), then

(2.20) D

y)

A computation using the representation 2.18 shows that
2h ChS 2

0

- h-\W(m + l , n ) -

dx

, n + ) 1 - W(m, ^ 0 .

Using 2.19 and 2.21 we rewrite 2.20 as

(2.22)
S{m, n)

u'dxdy + D(u) ,
)

which is the desired inequality for the numerator of the Rayleigh quotient.
By definition 2.15 it is seen that for (m,n)s Rh — Ch

(2.23) (\ [u(x, y) - W(m, n)] dxdy = 0 ,
J JS(m. n)

so that the integrand is admissible in the variational problem for the
second eigenvalue of the free membrane for the square S(m, n). Con-
sequently

(2.24)
7T2 \ \ I grad u 12dx dy

J JS(m, n)

S(m, n)
- W(m, n)]2dxdy

This can be written as

(2.25) h2W{m,n)2 ^

Then

u2dxdy - $-[[ \ grad u \ 2dxdy .
S(m,n) 71 JJS(m.n)
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(2.26) h2 £ W2 ^ S tt t^2 - —I grad u |2] dxdy ,

^ (f tt'dadj/ - (f uHxdy - —D(u) ,
JJi2 JJS if

where S is a strip of depth a& inside R with outer boundary C which
completely covers the sets S(m, n) n #, for (m, %)eCft + 2?̂ .

The parameter a which appears in the strip width, ah, depends to
some extent on the region R and the manner in which the mesh is placed
on R. In Appendix B it is shown that

under the hypotheses of the next section. Substituting 2.22 and 2.26
into 2.17 we have the desired inequality

D(u) + Sh-2[[ u2dxdy
(2.27) fik(h) ^ m a x ^

l i x a , ^ 9
a r " ° * ^dajdy - —D(u) - u2dxdy

}}R n2 JJ^
u2dxdy

<
— —X .̂ — max I \ u2dxdy

7l2 av--akjj8

Inequality 2.27 gives an explicit bound for Xk in terms of faQi) if one
has a bound for

<2.28) [\u2dxdy.

The above lower bound without the strip integrals was obtained by
Weinberger [67] for a finite difference problem on a set of mesh points
which includes Rh. The admissible functions in his problem vanish at
points outside of this set. The bound for Xfc — ftk, given by 2.27, is O(h)
as we shall show in the next paragraph through an explicit bound of
order h? for the strip integral 2.28.

4. The strip integral* For simplicity of presentation we assume C
to be a smooth arc whose curvature, K, is differentiate. Restrict h to
be so small that the center of curvature corresponding to any point p
on C does not lie in S near p; i.e., choose h so that ah < min̂ -K""1. Let
the parametric representation of C be

C: xt = 9i(s) i = 1,2,
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where xx = x, %% = y and s is the arc length along C. Inside the strip
iS we make the transformation to geodesic normal coordinates (s, n) in
the following manner:

(2.29) xt = flr«(«) + nt(s)n, i = 1, 2 • •. .

Here (^, n2) is taken to be the unit inward normal on C. The Jacobian
of the transformation is

and the components of the metric tensor are

(2.31) a11 = (1 - K{s)n)-\ a12 = a21 - 0, a22 = 1 .

The normal derivative of a function u on C has the property that

du 4 1 / \ 9%

(2.32) — = «"u,t( -» , ) = - ^ ,
and hence we shall interpret du/dn in both senses. In terms of the new
coordinates we have

(2.33) | grad u |« = {(1 - K(s)n)-^) + (|^-)} ,

and the membrane equation 2.1 takes the form

(2.34) (1 - Kri)-^ + ^ + Kfn{l - Kn)
ds2 dn2 ds

1^- + xu = 0 .
dn

Rewriting our strip integral in terms of the new coordinates and
noting that 2.16 implies u = 0 on C leads to

(2.35) \\ u2dxdy = \Lds\*hu2(s, n)(l - K(s)n)dn
JJS J o JO

ds\ \u(s, 0) + ^L (s, 0)n + \(n - |) | ^ ( s , £)#} (1 - K(s)n)dn ,.
0 Jo i dn JO dgz )

^ 2\Lds[*'ln2\^(s, 0)T(l - K(s)n)dn
Jo Jo L dn J

ds\ \\(n ~ ^ d ^ Q- ~ K(s)n)dn ,
0 Jo LJo d% J
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where we have used the notation

(2.36) K( — ) = absolute value of maximum negative curvature
K( + ) = absolute value of maximum positive curvature.

The last lines of 2.35 display the desired 0(A3) character of the strip
integral.

We now seek explicit bounds for the integrals appearing on the right
side of 2.35. It is true that

+2\H) + W) '
where the right side is recognized to be the second order differential
invariant. An application of the divergence theorem to this invariant,
pointed out by Payne [41], is very useful here. Integrating 2.37 over
S gives

( 2 . 3 8 ) \\ (*»y<lxdv [\ | 7 Y + 2 (
v ; JJ«W/ JJijLW/ \dxdy

= D(ux) + D(Uy) = -\\ \ujux + uvJuy~\dxdy + uy
di> dv

In view of 2.16 and the fact that dujdx, dujdy each satisfy the membrane
equation, 2.38 can be continued to

(2.39)

<^ i r£ at\?£]}dxdy +
dy JL i dy -I) 2

~ i 2io\n-,o dnV ' V ds J \ dn

The latter inequality follows from 2.33 and the orthogonality of the eigen-
functions is Dirichlet norm, i.e.,

(2.40) D(uif Uj) - 8t3\{i) ,

Continuing the inequality we have

(2.41) \\()dxdv*M\()(
))s\dn2/ )o\dn/\dn

If we now assume that the differential equation 2.34 is satisfied on the
boundary in the limiting sense 2.41 becomes
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<2-42)
Estimates of the contour integral above can be made from an integral

identity due to Payne and Weinberger [45]. This formula which was
obtained for hyperbolic operators by L. Hormander [27] is a generaliza-
tion of an integral identity of Rellich [52], Using the summation con-
vention the identity in two dimensions becomes

(S)' - © 1 -

In this formula (t1912) is the unit tangent vector to the curve C while
{/S/2) is &n arbitrary piece wise continuously differentiate vector field
defined on the closure of R. Since u — 0 on C, 2.43 reduces to

(2.44) \\y%v^ (f)ds = 2

Let us further assume that fivi > 0 on C so that by Schwarz's inequality

<2.45) \ (^Xds
jo\dn/

1 ( r ~ircc -j l

~" min /^ i I L * -̂  -̂  JLJjis J J "

Here we have used the notation

<2.46) r - max I (f\ - /2
2)2 + (f]2 + f\f ^

R

\ f j p , i f , j f , j ( ,
R

which arises from the largest eigenvalue of the matrix

<2.47) (/!, + fU - SJ/%) .

From the definition 2.16 of ^the inequality 2.45 gives rise to the result

(2.48)
mm/*i

c

The vector field (f)f2) can be defined in many ways depending upon
the region R. One possible method is described in detail in Appendix A.
If R is star-shaped with respect to the origin, i.e., if every ray from
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the origin cuts C in one point, we can define / ' = x*. In this case 2.48
takes the form

(2.49) (™)ds^
m m

0

Finally, upon substituting 2.42 and 2.48 into 2.35, our original in-
equality 2.27 takes the form

(2.50) fiM(h)
(1 — rh Ak)

Here Ak and Bk are given by

(2.51) A, = *2

2 VI -

and Xfc is an upper bound for Xk. In particular we can use the upper
bound 2.14 as Xk. Solving 2.50 yields the lower bound

It is seen that the difference between the upper and lower bounds is the
expression

(2.53) fjtk()

which is indeed O(h) in terms of easily computed quantities. These are
ftk(h), K(-), K( + ) , and the vector field ( / \ /*) which in most instances
will strongly reflect the geometry of C.

We note that by our choosing the mesh width h to be sufficiently
small the inequality 2.26 will yield

(2.54) h2 £ W2 > 0 .

We assume h to be so chosen. This in turn assures the linear inde-
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pendence of W19 • • • , W^ which was assumed earlier.
At the beginning of this section we had restricted C to be a smooth

arc for reasons of simplicity. However, discontinuities in the derivatives
of the boundary C offer no essential difficulty in carrying through the
previous development. As before we assume that the interior angles at
corners are less than 180°. Difficulties arise at corners because of possible
bad behavior of various derivatives of u. This could invalidate the ineq-
ualities 2.38, 2.39 and 2.41.

We construct the sequence of regions R19 R2, • • • with the properties:

(1) R1 £ R2 s • • • £ R

(2) xe R=^>x6 Rt for some i

(3) the boundary Ct of Rt is continuously differentiate
(4) at a corner of C the locus of centers of curvature of C«

lying with the strip St of depth ah has the property that
the normal to Ct intersects the bisector of the angle before
reaching its center of curvature.

(5 ) the curvature of each Ct is positive in the vicinity of a corner.

The bounds of this section apply in the case of each Rt using the various
parameters h,a,{fl,f2), which previously have been selected for R. At
corners of R the locus of centers of curvature of Rt may enter the strip
S. Condition (4) above, assures that we can change the upper limit of
integration in 2.35 from ah to K'1^) where such penetration occurs
and still cover the domain of integration. Let S] be the sector of St

at the corner rj such that the locus of centers of curvature of C? lies
in the strip St. At this corner 2.35 takes the form

(2.56) (( u\ dxdy g [^ds^uXs, n)(l - K^s^dn
JJ-s-J Jo Jo

d^)\l--Ki{s)n)dsdn.
dn2/6 ))s}\dn2/

Here b^s) g Ki\s)y where (s, b^s)) is on the bisector of the angle at rj.
The bound 2.35 is then seen to be valid for Rt where Ki(+) is the
maximum value of the curvature of Ct at other than points of Cv

im The
inequalities following 2.35 are also seen to be valid under this interpreta-
tion of Kt( + ) , and with Xk replaced by Xk(Ri).

We assume the mesh to be placed on R so that no mesh points lie
on C in the vicinity of a corner. Then for some N and all i > N, we
have

(2.57) fih(h) = fik(h, Rt) .

Hence 2.50 becomes
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(9 KR\(2.58)

The hypotheses of 2.55 are sufficient conditions for

(2.59)

and also for

(2.60)

as was stated by D. M. Eidus [16,17]. Therefore the bound 2.50 also
holds in the case of corners whose interior angles are less than 180°.
There seems to be little hope of applying the procedures of this paper
toward bounds in the case of angles greater than 180° since the factor
(1 + K(—)ah) is present, and !£,(—)—• oo .

CHAPTER III

THE FREE MEMBRANE PROBLEM

1. The finite difference problem. The free membrane problem is
given by the equations

(3.1) An + Xu = 0 in R

— = 0 on G
dv

with eigenvalues 0 = Xx rg X2 S • • • . The eigenfunctions are u19u29

with the normalization

(3.2) (( u\dxdy = 1 .

The approximating finite difference problem is chosen to be

(3.3) AhV(m, n) + [iV{m9 n) = 0, (m, n)e Rh - Ch

V(v) V(m, n) = 0, (m, n) e Ch

where V(v)V(m, n) — 0 is the condition that V(m,ri) be the average of
the values of V at adjacent (vertical and horizontal) points of Rh only.
For example in Fig. 2 the point (m, n) belongs to Ch so that

0 = V(v)V(m, n) = V(m, n + 1) + V(m + 1, n)

+ V{m, n - 1) - 3F(m, n) .
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Now define Cn to be the set of grid points which have an associated
triangle intersecting the boundary C. Rh is the set of mesh points in-
terior to R augmented by points of Ch. The set Bh is defined to be
those points in Rh — Ch which have an associated triangle with a vertex
in Ch. See Fig. 1.

R

1 Ĵ  I

X

X

\

\

o

X

Fig. 2. Symbol Set to which point belongs

x Cl

Rh - c;

Let the eigenvalues of 3.3 be ptx{h) ̂  faQi) 5£ • • • with corresponding
mesh eigenfunctions V19 V2, • • • which have the normalization

(3.4) h2 V\ = l.

The minimum-maximum principle 2.8 yields the eigenvalues of the
freemembrane problem 3.1 where in this case the functions involved
need not vanish on the boundary C to be admissible. In like manner
the variational principle 2.6 gives the eigenvalues of our finite difference
analogue 3.3 where any set of k linearly independent mesh functions is
allowed. The procedure followed to obtain bounds for Xfc in terms of ftk{h)
is very similar to that of Chapter II for the fixed membrane problem.

To obtain an upper bound for Xfc we define a set of functions vlf • • • ,
vk which are admissible in the variational problem 2.8 in terms of the
mesh eigenf unctions Vlf • • •, Vk. Let vs(x, y) be the piecewise continuously
differentiate function which is linear in each triangle and which coincides
at the vertices with Vj(m9 n). By considerations identical to those of
Chapter II, § 2, we arrive at the upper bound



574 BERT HUBBARD

(3.5) K ^

A lower bound for Xk is achieved by finding an appropriate upper
bound for ptk(h) in terms of Xk. As before S(m, n) is defined to be the
' 'associated" square with (mh, nh) as center and sides of length h having
the same orientation as the grid lines. We can achieve somewhat better
bounds by altering the set Ch slightly. Define C* to be those points of
Ch whose associated squares intersect the boundary. Let Bt be the set
of interior mesh points of R whose squares share a common vertex with
at least one of the squares of C*, e.g. see Fig. 2. We define a linearly
independent set of k mesh functions Wlf • • • , Wk in terms of the eigen-
functions u19 • • • , uk as follows:

(3.6) TT4(m, n) = h~2 \ [ ut(x, y)dxdy , (m, n) e Rh - Ct ,
J JS(m, n)

Vi)*)W%{m, n) = 0 , (m, n)e Ct .

Note that V(v) Wt — 0 represents as many linear equations as unknowns.
We further define

(3.7) W = a1W1+ ••• +akW1c,

u ~ axux + • • • + akuk .

By the same considerations used in proving 2.21 we see that

^ D(u) .

The above sum is taken over all differences of neighboring points of
Rh — C*. It follows immediately that

(3.8) D

where

(3 9)

The quantity /3(W) is minimized with respect to possible choices of W
at points of C* by the manner in which the functions Wlt • • • , Wk were
defined at these points. In fact if (m, n)e Ct as in Fig. 2 we see that

(3.10) - — ^ /3(W) = 2{3T7(m, n) - W(m, n + 1) - W(m + 1, n)
dW(m, n)

= 2 V(v)W(m, n)D&h(W)'1 = 0
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-which is the desired result. The bound for /3(W) depends to some extent
on the geometry of C and consequently must be determined anew for
^ach region R. Assume that h is chosen small enough so that the points
of C* constitute at most a double "fence" around B*. In such a case
we can choose the values of Wt on C* in terms of nearby points of Bt
,so that

{3.11) /3(W) ̂ 4 .

For a further discussion of /3 see Appendix B.
Finally we can write 3.8 in the form

{3.12) Dfh{W) g D(u) + /5(TF)jJj grad u \2dxdy ,

where again S is a strip of suitable depth, ah, so that the squares as-
sociated with points of Bt lie in S. In Appendix B the parameter a
is discussed and it is shown that, under the hypotheses of this section,
we can take

a £

We observe, in addition, that 2.26 is valid for this same strip S so that
we can write the lower bound in the form

Xk + £ max j f i g r a d u \*dxdy
{3.13) Mh) g i""JJg f

1 Xk — max u2dxdy
7T2 av..ak})s

where /3 is a numerical bound for j8(W), i.e., I3(W) S & -

2. Bounds for the strip integrals* We are faced with the task of
bounding each of two integrals in the free membrane problem over a
.strip of depth ah adjacent to the boundary C. We desire the bounds
themselves to be of order h. As in Chapter II, § 4, we assume C to be
a smooth arc whose curvature K is differentiate. Restrict h to be so
small that the center of curvature corresponding to any point p on C
does not lie in S near p; i.e., choose h so that ah < min^if"1. The
geodesic normal coordinates ($, n) are introduced as before so that equa-
tions 2.29 through 2.34 remain valid. We see from 2.30 that this
guarantees the single-valuedness of our transformation. An additional
identity involving the second order differential invariant will be useful
in the estimates which follow, and is included at this time. If u |4J denotes
covariant differentiation then



576 BERT HUBBARD

(3.14) uj + 2ulv + uly = alJapmu, lpu, }m = (anu, X1)
2 + 2aua'\u, 12)

= {a - jr»K£ + -r^r^
I Lds2 (1 — Kn) ds

+ 2(1 - { +
Idsdn (1 - Kn) ds

\ 9 V

The strip integral appearing in the numerator of 3.13 can be bounded
using 2.33 and 3.14 as follows:

(3.15) (( \gradu\2dxdy = (V*((l - Kn)-*(— Y + f— YWl - Kn)dnds-

(s, t)d*T|(l - Kn)dnds
o dt J J

- Kn)dnds

2(ah)(l + afc^r(-))[ f^

+ (
2 \1 — ahK( + )

The integral over the strip S of the second order differential invariant
can be bounded as follows:

(3.16) [[ aijapmu | ipu \ jmdxdy - D(ux) + D(uy)

= ~ \ \ \ux/lux + UyAuAdxdy + —1 —| grad u \2ds

^ SaJXJ - i-i limi-fd -
l 2 J0 w-o9^L

^Xl + K(-)\ (^)2ds .

Using this bound, the inequality 3.15 can be expressed in the form
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(3.17) \ \ I grad
JJs

u 2 \ l - a

v "L v 2 / 1 - 5

Given a piecewise continuously differentiable vector field ( / \ / 2 ) defined
in R and on C we can apply the integral identity 2.43 due to Payne
and Weinberger to our function u defined by 3.7 to yield

If we impose the further condition that /*P4 > 0 on C, equation 3.18
yields the inequality

(3.19) ( (pXds S > {2 i/^max Vjrp + A ,

where z is given by 2.44. If R is star shaped with respect to the origin
we can let /* = xl and 3.19 takes the form

(3.20) \
max Vxixi

R

Methods for prescribing the vector field (/*, /2) for more general regions
are discussed in Appendix A.

We now return to the estimation of the strip integral appearing in
the denominator of 3.13.

(3.21) (( u2dxdy = (TTi*(8, 0) + T—(s, t)dt\\l - Kn)dnds
J js Jo Jo L Jo dt Jdt

ahK(-))\ u*ds + W ( i + S5/"iMi ' grad
J \ 1 afeii( + ) /Jj

An application of the divergence theorem, used in a similar manner by
Payne and Weinberger (45), gives

(3.22) [g'vjvfds = [\ u2gj
fjdxdy + 2 ^ uutjg

jdxdy ,

where (g\ g2) is again a piecewise continuously differentiable vector field.
Assuming further that gjv3 > 0 on C we have
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(3.23) ( u2ds ̂  ——!-— j m a x ^ t t u2dxdy
JO mmgjv5 I R JJR

0

2mnx1/g
Jg3 -]/[[ u2dxdy J D(u)\

R f f J ) R ' >

0

For star shaped regions we let gj = xj and this inequality becomes

(3.24) ( v?ds ^ 2

0

Substituting 3.23 into 3.21 yields the inequality

(3.25) (( v?dxdy £ 2afe(l + ahK(-) ["maxgi + 2
m a x

R

which has the desired 0(h) property.
By using 3.17, 3.19 and 3.25 in the inequality 3.13 we arrive at the

result

yo.AK)) "TAJ^) = 9

(1 — hAk)

where

max #j(3.27) AM - 2a(l + ahK(-) f
mm gjv 3 L R

<7

l-ahK(+) J it2

B _ 25/8(1 + gfeg(-)) ["T , (ah V g ( - )
* rainfv, L V 2 / (1 - ahK(+))

and XB is an upper bound for \ 8 . In particular we can use the upper
bound 3.5 for Xk. Solving 3.26 yields the lower bound

h Ah)
} k ~ (1 + h

As is the case with the fixed membrane the presence of corners on
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C causes difficulties in applying the previous development directly. This
is because the function u(x, y) may have singular behavior at the corner.

Following the approach of Chapter II we define a sequence of regions
E1 £ R2 £ • • • £ R with the properties of 2.55. The bounds given by
3.17 and 3.25 can be shown to hold for each Rt where the parameters
a, /3, h, (f\f2), (g1, g2) are those chosen for R. Of course the locus of
centers of curvature for Rt may now enter the strip S near a corner.
Where this happens we obtain the bounds for the strip integrals at the
corner by special considerations.

Condition (4) of 2.55 assures that we can change the upper limit of
integration at the corners in the strip integrals appearing in 3.15 to 3.22
from ah to K^(s). If Cv and Sv pertain to a typical corner, r], then
at that corner 3.15 becomes

(3.29) jf \gra,du\2dxdy

M S ) 1 + ( £ ) K *•*•*•
S 2(a) L; (£)

This is the same as 3.15 with the factor (1 + ahK{—)) missing. By the
same reasoning 3.21 becomes

(3.30) [\ u2dxdy g 2(ah)\ u2ds + (ahf\ \ \ grad u \2dx dy .
Jjsi Jo} jjs}

The inequalities 3.15-3.24 are true for Rt if we interpret K(s) as K(s, Rt),
Xk as Xk(Rt) and

(3.31) K(+, Rd -maxiT(s, Q .

We assume the mesh to be placed on R so that no mesh points lie
on C in the vicinity of a corner. Then for some N and i > N we have

(3.32) fik(h) = frih, I® .

Then 3.26 becomes

(3.33) ttk(h) ^
1 - hAk(Rt))

By a result of D. M. Eidus [16,17] the hypotheses of 2.55 imply that

Also
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) = Ak ,

since Bk and Bk(Rt) differ only in the value of the argument Xfc. Hence
the bound 3.28 holds in the case of corners with interior angle less than
180°.

APPENDIX A

THE VECTOR FIELD (f\ f2)

One manner of choosing the vector field ( / \ / 2 ) for regions star-shaped
with respect to the origin which generalizes readily to more arbitrary
domains is the following:

Introduce polar coordinates (r, 0) given by

(4.1) x1 = T cos 0 ,

x2 — r sin 0 .

Let the boundary C be a smooth curve with the polar representation

(4.2)

The vector field ( / \ /2) is defined as

(4.3) / v . ^ ^

In 4.3, (t1, t2), the unit tangent vector, is given by

t\9) = H-l-^

with

(4.5)

A computation shows that

(4.6) min/«vs = 1 ,
0

= 1 ,
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T = -J— [p2p2(p2 + 3f>2) + p*'p(pp -

It is easily verified that (Z1,/2) is piecewise continuously differentiable
since, by our assumption, vl(s) is continuously differentiable on C. Indeed,
a discontinuity in the derivative of {v\0), v\6)) at 0O will be propagated
as a discontinuity in the derivative of (f1, f2) along the radius vector
joining (0, 0) to (p(0o), 0O). If (v\0), v\0) is itself discontinuous at a point
0O, i.e., if the boundary C has a corner, then the quantity r in 4.6 does
not exist. In this case we replace (vl{9), v2(0)) in 4.3 by a continuously
differentiable vector field (g\0), g\0)) which has the property

(4.7) gl(9)vi(0) > 0 .

The values of the quantities

(4.8) f%, VTT~ > * >

are then computed as functions of (g1, g2).
If R is not itself star-like we subdivide R into star shaped regions

R\J R-L, - • • 9 RN whose bounding curves are given by C19 C2, • • • , CN. Let

(4.9) c, = c; i - 1, 2, • • • , N ,

where C[ is that portion of Ct which coincides with C, (see Fig. 3) We
define the vector field {g\, g]) on Ct in terms of polar coordinates (Ri7 0t)

Fig. 3.

introduced in Rt. The functions (g\(di), g\{0i)) are assumed continuous on
Ct with the property

(4.10) g\(0t)vj > 0

on C\. We further assume that the functions (g\ g2) given by
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(4.11) gj(x\ x*) = gWt) , (x\ x*)e Ct ,

form a piecewise continuously differentiable vector field defined on Q
• • • UCN. We define the vector field

(4.12) p{x\ x") = -Jj—gtuet) , i = 1, 2, (x\ x")e
pAPd

in R. The quantities 4.8 are then found to be

(4.13) min/ jv, = min min/jv< ,
C i=l,-..,N cl

max V"TJTr = max max 1/ fjfJ

T = max max [(/\ - /?2)
2 + {f\ + f\yT .

i = l,.--,N Rt L J

APPENDIX B

THE PARAMETERS a, a AND 0

1. A bound for a. For the parameter a we have the bound

(5.1) " ^ 1

as will now be shown under the assumptions of Chapter II, § 4. We
recall that the strip S is the region swept out by a segment of the in-
ward normal length ah as that normal moves along the curve C. The
parameter a must be chosen large enough so that S will cover the squares
associated with the points of Bh.

In Fig. 4 we have pictured a typical case. Here the points A, E, G,
and H belong to Ch and B belongs to the set Bh. The point F belong-
ing to the square associated with B is the center of the two circular
arcs shown in the figure. Let J be a point on C with inward normal
n and tangent t such that n passes through F. For inequality 5.1 to
hold we must show that J cannot lie outside the circle through G about
F whose radius is /fc/2i/"34" •

Assume that J does lie outside the arc through G, as shown in the
figure, with the center of curvature of C at F. This assumption gives
our boundary curve the maximum curvature at J allowable under the
hypotheses. As the curve C continues onward it must intersect one of
the triangles associated with the point A. At the same time the family of
normals of C cannot intersect within the strip S, i.e., the locus of centers
of curvature cannot move toward J. The curve C can most rapidly turn
toward the triangle associated with A if the center of curvature remains
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R

Fig. 4.

Fig. 5.
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at F. Clearly such a circle with center at F will never intersect any
traingle associated with A and we have arrived at a contradiction.

2. A bound for a. For the parameter a we have the bound

(5.2) a £

which is smaller than 5.1 since the strip S as defined in Chapter III
§ 1, is somewhat narrower. In fact S must cover only those squares
which intersect C and their neighbors in R with whom they share a
common side.

In Fig. 5 we have a typical situation where the square FBAE shares
a common vertex with AHGM through which C is assumed to pass. The
point F is taken as center of the two circles in the figure. Again we
assume J to be a point on C whose inward normal n passes through F.
For inequality 5.2 to hold we must show that J cannot lie outside the
circle through G about F whose radius is 2h\Z~2 .

As before we assume that J does lie outside the arc through G, as
shown in the figure, with the center of curvature of C at F. This
assumption gives our boundary curve the maximum curvature at J allowed
by the hypotheses. As the curve C continues onward, it must intersect
the square AHGM. The curve C can most rapidly turn toward AHGM
under the constraints imposed if it is the circle with center at F. Hence
the contradiction.

3, A bound for /S. We shall first show that, under the assump-
tion the points of C* form a double fence of the type shown in Fig. 6,
an upper bound /2 for /3 is

(5.3) 0^/3 = 4.

The actual selection of W\ minimizes /3(W) over Ct and hence any other
assignment of values to Wt will provide an upper bound for /3. First,
we shall see how to assign values to the points of Fence 2 in terms of
the values at points of Fence 1 so that

(5.4) D(h)(V) - D{h)(V) ^ 2 D{h)(V) .
Fence 1 + Fence 2 Fence 1 Fence 1

In fact assume that the capital letters represent the values of V on
Fence 1 in the figure, and consider the assignment made there at points
of Fence 2. It is readily verified that property 5.4 holds for this scheme
of assigning values to Fence 2. Therefore see that one can step inward
from Fence n one fence at a time in assigning values with the result
that

(5.5) D{h)(V) - D{h)(V) ^ 2N-1D(h)(V) .
N Fence 1 Fence 1
2 Fence n

n—l
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o -
H

- O -
H
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G
X -
H

O -
B

O
B

O
A

- O
C

TENCE

Fig. 6.

Applying 5.5 to 3.9 with N = 3 gives the result 5.3. The requirement
on h that (1 — ahK) > 0 isn't sufficient to allow us to take N = 3. In
addition to a local condition of this nature a restiction "in the large'' is
also called for. In particular we must assure that the squares of Rh — C*
form approximately the same geometrical figure as R. For example, if
R is hour-glass shaped, the squares of Rh — C* might form doubly-con-
nected regions. If R is snake-like the set Rh — C* might even be empty.
Such an additional condition is as follows: No adjoining squares of C*
may represent remote sections of the boundary C.

APPENDIX C

SOME EXAMPLES

In this section we seek to gain some knowledge of the relative size
of the quantities involved in the bounds for the fixed membrane. Com-
putations have been made here for the first eigenvalue of two geometric
configurations; (a) the square, and (b) the unit circle. In each case \
.and ux are known so the strip integral 2.28 can be evaluated explicitly
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and compared with the bound obtained from § 2 of Chapter II.

1* The unit square* Let R be the unit square with vertices (0, 0),
(0,1), (1,1), and (1,0). The first eigenvalue and eigenfuction are

(6.1) \ = 2TT2 ,

ux = 2 sin 7zx sin izy .

If we assume h —— , AT an integer, then we can take
N

(6.2)

Let the

(6.3)

vector field (f1
J J J

a

\ be

r

r

__ 3
2

chosen

= x-

ni

as

1
2 '

1

T'
so that

(6.4) r = 0

m a x V f i t i = •
J J 2

A direct computation shows that in 2.51

(6.5) B1

The quantity Bx involves bounds on the strip integral. Define B± to be
the analogue of B± with the strip integral substituted for the bound.
Then

<6-6> B- =

We see that in this case

(6.7) Bx = ZL

The difference between the upper and lower bounds given by 2.53 be-
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comes

(6.8) fJt1(h)2l7zh + O(h2).

For this difference to have the same magnitude as faQi) would require
our putting

(6.9) h- 7

27TT

4, The unit circle. Let R be the the unit circle. Its first eigen-
value and eigenfunction are

(6.10) \ ~ 2.42 ,

Let the vector field ( / \ /2) be given by

(6.11) f1 = x ,

so that

(6.12)

Again a direct computation yields

(6.13) Bx ~ 38.4 a3 + O(h) ,
Bx M 1.7 a3

It is clear from these two examples that bounds of this paper are
not sufficiently sharp to be used in the actual computation of eigenvalues.
In fact, the finite difference problem posed appears far from optimal.
It is hopedf however, that the techniques employed here may be useful
in obtaining bounds by other finite difference approximations.
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