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LEBESGUE DENSITY AS A SET FUNCTION

N. F. G. MARTIN

Lebesgue (or metric) density is usually considered as a point function
in the sense that a fixed subset of a space X is given and then the
value of the density of this set is obtained at various points of the space.
Suppose the density is considered in another sense. That is, let a point
x of the space be fixed and consider the class 3f{x) of all sets whose
density exists at this point. Then to each set E in Sf{x) we assign
the value of its density at x, and denote this number by DX(E). Thus
from this point of view the density is a finite set function. It was
shown in [2] that if the space X is the real line then the image of
&f(x) under Dx is the closed unit interval.

It is evident from the definition of density of sets of real numbers,
which we give below, that Dx is a finitely additive, subtractive, monotone,
nonnegative set function and the class 3f(x) is closed under the forma-
tion of complements, proper differences, and disjoint unions. Therefore,
if £&(x) were closed under the formation of intersections, Dx would be
a finitely additive measure. This however is not the case for if

< x < —
n

Ln = \x: -±
n 2\n n + 1

and

1(1 + _ ! _ ) < x < __
2\n n + 1/ n

the sets \Jn{Rn U Ln) = E and U»(#» U Li) - F are members of Z>(0)
but E n F is not. In fact D0(E) = D0(F) = i and the upper density of
E n F at zero is not less than J while the lower density of E p[ F at
zero is zero.

In part 1 of this note we prove a theorem which is somewhat of
an analogue of the Lebesgue density theorem [3] in the following respect.
As noted above Dx is not a finitely additive measure, but we show that
the upper density at x, Dx, is a finitely subadditive outer measure de-
fined on the class of all Lebesgue measurable subsets of X and the class of
Immeasurable sets is the class of all sets whose density exists at x and
has the value zero or one. In part 2 a Lebesgue density of a measurable
set E on a fixed Fv set of measure zero is defined and a similar result
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proven for this function.

1# If E is a measurable subset of the real line X and 7 is any
interval we shall denote the relative Lebesgue measure of E in 7,
m(EnI)lm(I), by p(E:I).

The upper Lebesgue density of a measurable subset E of X at a
point x e X, DX(E), is defined by

DX{E) = lim supj^ ^(i?: 7) = sup {Km supfc />(i?: 7fc): 7fc —> #} and the
lower Lebesgue density of a measurable set S c l a t a point x e X,
DX(E), is defined by

DX(E) = lim inf />(#: 7) = inf {lim* />(#: 7*): Ik -> #} ,

where 7fc —> x means the sequence {7J of intervals converges to x in the
sense that xelk for all k and m(7fc) —> 0 as & —> oo. In the case DX(E) =
^(J? ) the common value is the Lebesgue density of Z? at a? and will be
denoted by DX(E).

LEMMA 1. A necessary and sufficient condition that a set E be a
member of &(x) is that

DX(E) + DX(X - E) = 1 .

Proof. The necessity is immediate. To obtain the sufficiency we
note that for any interval 7 containing x, p(E: 7) + p(X — E: 7) = 1 so
that DX(E) + DX(X - E) ^ 1. Therefore

DX(X - E ) ^ l - DX(E) - DX(X ~E) + DX(E) - DX{E)

and it follows that DX(E) ^ DX(E).

LEMMA 2. The set function Dx is a finitely subadditive outer
measure defined on the class ^ of all Lebesgue measurable subsets of
the real line.

Proof. It is clear that Dx(<f>) = 0 and Dx ̂ 0 . Let E c F be two
sets from M. Then since p(E: I) ^ p(F: I) for all intervals containing
x, Dx is monotone. Let E19 E2, •••,£/„ be any finite collection of sets
from ^ . Since p(\J?=i Et: I) ^ £?=i /0(JEi: 7) for all intervals 7 contain-
ing x, we have

5 i u Et) S t lim sup p{Et: I) = ± D,{Et) .
\i=l / i=l I-*x i=l

Thus Dx is a finitely subadditive outer measure.
Let ^{x) denote the class of all sets E such that for every A e
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DX(A) = DX(A n E) + DX(A - E). Since ^£(x) contains X and
is an algebra (in the sense of Halmos [1]) and the restriction of Dx to

is a finitely additive measure.

LEMMA 3. ^/P(x) is a subset of

Proof. Let E e ^f(x). Since the real line X is a member of ^
and DX(X) — 1, we have

1 = DX(X) =DX(X f]E) + DX(X -E) = DX(E) + DX(X - E)

which by Lemma 1 gives E e

LEMMA 4. If E e ££?(x) and J is any interval with x as one end
point then DX(E n J) = DX(E).

Proof. Let DX(E) = d. Since Dx is monotone, d ^ DX(E n J) and
if {/J is any sequence of intervals converging to x, limsupfcp((jETl J): I^)Sd.

Suppose first that J is a bounded interval. If x is the left end
point of J", denote the right end point by y and let

i: - U: x ^ z S x + ±-{y - x)\ ;
I n J

if x is the right end point of J", denote the left end point of J by y
.and let

J* = iz: x - —{x - y) ^ z S x\ .
I n )

In either case I* -+ x and p(E: 7W*) = p((E_[) J): I*) for all n. There-
fore, limB p((E n J): !»*) = d and we have 5 , ^ f] J) = DX(E).

Suppose next that J is unbounded. If x is the left end point of J
let In = {z: x ^ z ^ z + (1/w)} and if a? is the right end point of / let
I* = {z: x — (1/w) ̂  z ^ ic}. Again we have Iw* —> a? and p(E: Iw*) =

n J): I*) for all n so that 5X(^ n J) = DX(E).

LEMMA 5. Let E e £&{x) and let J be an interval open on the
right with right end point at x and K be an interval closed on the
left with left end point at x. Define the set A by A — (E n K)[j (J— E).
Then DX(A) = max {DX(E), DX(X - E)}.

Proof. Suppose DX(X - E) ^ DX(E) = d. By Lemma 4, DX(J - E) =
1 — d ^ d and since Dx is monotone, DX(A) ^ DX(E n K) = d.

Let e > 0 be given. Then there exists a sequence {I/} converging
to x such that
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DX(A) < Km supfc p(A : If) + ± .

For each fc, let Jk = # n (J U if). Since J4* -> a?, J,* — x and ̂ (A : Ifc*) =
p(A: Jfc) for all but a finite number of k. Therefore

( 1 ) DS(A) < lim sup, p(A : Jh) + e/2 .

For each interval Jfc we have

p(A :Jk)~-d = p(K: Jk)[p(E: (K n J»» - d]

J : J*)[p(X- E: ( Jn J,)) - d] .

Since i? e &(x) and iT n «/* —>», lim,. ̂ (E': (K n «/»)) = d. Since
linijfc /o(X — E: (J n /&)) = 1 — cZ ̂  d. Therefore there exist integers N%

and iV2 such that for all k > Nlf p(E: (K n Jt)) - d < e/2 and for all
Jk > iV2, />(X - J57: (J n J*)) - d < e/2. Thus for all k > max {iS ,̂ iV2}

p(A :Jk)-d< -^p(K:Jk) + 1-^J: Jh) = \ .
u u £*

Therefore lim sup& p(A : Jk) < d + e/2 and we have by way of equa-
tion (1) that DX(A) < d + e. Since e was arbitrary, DX(A) ^ d which
completes the proof of the lemma.

THEOREM 1. The class ^£{x) of Dx-measurable sets is the class of
all sets whose density exists at x and has the value 0 or 1.

Proof. First suppose E e ̂ £ (x) and DZ(E)=d. Let J— {z: x — 1 ̂  z < x}f

K= {z: x ^ z ^ x + 1}. Define the set A by A = (EnK)\J(J- E).
By Lemma 5, DX(A) = max {1 — d, d} and by Lemma 4, ^ ( A n 51) =
DX(E nK) = d and 5,(A - E) = SX(J - JE) = 1 - d. Since E e

1 - d + l - d - 5,(A n # ) + S,(A — JE7) = DX(A) - max {1 -dfd} .

Therefore d = 0 or 1.
Next let £ b e a set whose density at x is zero or one. Let A be

any Lebesgue measurable set and suppose DX(E) = 0. Since Dx is mono-
tone, DX(A n E) ^ AX.E') = 0 and hence Dx{A n ^ ) = 0. Since 5X is an
outer measure

5X(A -E)> DX(A) - DX(E) = DX(A) ,

and since Dx is monotone DX(A) ^ ^ ( A — E). Therefore DX(A) =
5X(A n J^) + 5a(A - JS) and E is in ^ ( s ) . In case DX(E) = 1 the above
argument with 1? replaced by X — E gives the desired result.

2* Suppose that Z represents an Fv set of measure zero. Define
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the upper Lebesgue density of a measurable set E or Z by

D Z ( E ) = s u p 0 X ( E ) : x e Z }

and the lower Lebesgue density of E or Z by

DZ(E) = inf {Z?(J57): a? e Z} .

If BZ(E) = DZ{E) we will say that the Lebesgue density of i? on ^,
denoted by DZ(E), exists and has the common value of DZ(E) and DZ(E).
It is clear that if the density of E exists on Z then the density exists
at every point of Z and has the same value at each point. In [2] it
was shown that for any number d such that 0 < d < 1, there exists a
.set E such that JD,(2?) = d. Thus if <gr(Z) denotes the class of all sets
whose density on Z exists, Dz is a set function which maps 3?{Z) onto
the closed unit interval. It is clear that Dz will have the same prop-
erties as Dx where x is any point in Z.

LEMMA 7. Dz is a finitely subadditive outer measure defined on
the class ^//.

Proof. The lemma follows immediately from the monotoniety and
subadditivity of Dx and the definition of Dz.

Let ^f(Z) denote the class of all sets E such that E e ^// and for
every A e ^ DZ(A) = D£(A Q E) + DZ(A - E). Then ^£{Z) is an
algebra and the restriction of Dz to ^f{Z) is a finitely additive measure.

LEMMA 8. ^/f(Z) is a subset of

Proof. Let E e ^/?(Z). The real line X is in ^f so we have

1 - DZ(X) = D Z ( E ) + DZ(X - E ) ^ s u p {DX(E) + DX(X - E ) : x e Z )

a n d

for all x e Z. But for any x e Z, Dx is subadditive so that DX((E) +
DX(X -E)^l. Therefore DX(E) + DX(X - E) - 1 for all a? e Z and
fay Lemma 1, the density of E exists at every point of Z. Hence
DX{E) + DX(X - E) = 1 for all a? in Z and

DZ(X - E ) ^ i n f { ! ) ( £ ) + DX{E) : x e Z }

Since 5^ if finite, DZ(E) ̂  ^(.E) and it follows that E e <2f(Z).

THEOREM 2. The class of all Dz-measurable sets is the class of
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all sets from £gr(Z) which are mapped onto 0 or 1 by Dz.

Proof. Let J T - {E: E e D(Z) and DZ{E) = 0 or 1}. If E e ST
we may show that E e ̂ f/(Z) exactly as was done in Theorem 1.

Suppose E 6 ̂ {Z). By Lemma 8, E e 3?(Z) and hence DZ{E) =
DX(E) = d for all x e Z. Let xx be any point in Z and let J = {z : z < %^,
K={z:z^ Xj\. Define the set A by A = (J - E) [j (E f] K). Then
by Lemmas 4 and 5, DXi(A) = max {d, 1 — d}, DXi(A f) E) = d, and
5̂ 04 - E) = 1 - d. Since i e ^ a n d f i e

sup {5X(A): x e £} = sup {DX(A HE) + DX(A - E): x e Z} .

Let s > 0 be given. Then there exists an x2 e Z such that

DX2(A) + e > sup {5,(A n E) + 5X(A - # ) : a? e Z}
^ ^ ( A n £?) + DXi(A -E) = l .

Suppose x2<x,. Then DX2(A) = DX2(X - E) and 1 - d + e > 1.
Since e was arbitrary and 1 — d ̂  1 we have 1 — d — 1 and d = 0.

Suppose x2 > a?!. Then ^ ( A ) = DX2(E) and d + e > 1. Since e was
arbitrary and d ̂  1 we have d — 1.

Suppose fl?a = a?i. Then A.2(A) = max {d, 1 — d}, and max {d, 1 — d) +
e > 1. Since £ was arbitrary max {d, 1 — d} ^ 1. But both d and 1 — cf
do not exceed 1 so that d — 0 or 1.

Therefore E is in 5tT and we have
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