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GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

SHU-TEH C. MOY

1«, Introduction, Let Xbe a non-empty set and ^ be a <7-algebra of
subsets of X. Consider the infinite product space Q — n»=-~ Xn where Xn — X
for n = 0, ± 1 , ±2, • • • and the infinite product tf-algebra J^~ = II~=-oo ^
where ^—S/1 for w = 0, ± 1 , ±2 , • • • . Elements of -0 are bilateral
infinite sequences {• • •, X-19 x09 x19 • • •} with xn £ X. Let us denote the
elements of Q by o). If <w = {•••, #_!, #0, #2, • • •} xw is called the nth
coordinate of co and shall be considered as a function on Q to X. Let
T be the shift transformation on Q to 42: the nth coordinate of Too is
equal to the n + l th coordinate of co. For any function g on Q, Tg is
the function defined by Tg(a)) = 0(Ta>) so that T&w = jcn+1. We shall
consider two probability measures ft, v defined on JC Let Qn = n*=i X*
where X4 = X, i = 1, 2, • • •, n and ^ = n?=i ^f where ^f=s^i =
1,2,---,n. Then 42X = Z and ^ f = ^ Let ^ , n , m ^ w , w = 0, ± 1 , ±2 , •••,
be the (7-algebra of subsets of Q consisting of sets of the form

[a) = {•••, #_!, o?o, o;3, • • • } : (xm, xm+1, •••, x j e E]

where E e ^ L w 4 1 . Let ^oolW be the a-algebra generated by Um=-i ^ . » -
Let j«m>w, vm<n be the contractions of p, v, respectively, to J^,n and P-^^,
v-co,n be the contractions of p, v, respectively, to J^i^^. Throughout
this paper vm>n is assumed to be absolutely continuous with respect to
Pm,n, vm,n < Pm,n, for m < n, n = 0, ± 1 , ±2, • • •. Let/m,« be the deriva-
tive of vm>n with respect to ftm,n9fm,n = dvmjdpm>n. fmM is ^ n measurable
and nonnegative. / m w is also positive with v probability one. Hence
Vfm.n is well defined with v probability one. A fundamental theorem
of Information Theory by Shannon and McMillan may be considered as
a theorem concerning the asymptotic properties of fm>n as n—* oo. The
theorem may be stated as follows: Let X be a finite set of K points
and Sf7 be the a-algebra of all subsets of X. Let v be any stationary
(T invariant) probability measure on j ^ ~ ~ and p. be the equally distributed
independent (product) measure. Then wUog/i,,, converges in L^v). In
particular, if v is ergodic, the limit function is equal to log K — H with
v probability one where iTis the entropy of v measure [3] [8]. Generali-
zations to arbitrary X, c/7 were first studied by A. Perez. He introduced
an A,,, condition on v as follows, v is said to satisfy A^ condition if
v_oo,» is absolutely continuous with respect to v_OOtQ,p1>n for n = 1, 2, • • •.
He proved the following theorem. If vf p are stationary and p is the
product (independent) measure on ^ and if
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(a) limn_>oo n"M log f1>ndv exists and is finite,
(b) v satisfies condition AM

then {n~l\ogf1>n} converges in L^v) [6]. Later Perez announced that
the theorem remains to be true for any stationary measures fi, v [8].
The present writer proved that for Markovian fi, v with v being stationary
and fi having stationary transition probabilities the v-integrability of
log/i,2 implies the Lx{v) convergence of {nr1 log fun}. The proof is based
on an iteration formula for f1>n [4]. In this paper we shall study the
case that v is stationary and fi is Markovian with stationary transition
probabilities. It shall be proved that the condition

(c) j (log/1)W - log f^-Jdv g M < co for n = 1, 2, 3, • • • implies the
L^v) convergence of {wMog/jJ. In fact the conditions (c) and (a) are
equivalent for this case, so that the theorem is a generalization of the
theorem of Perez given in [6]. The proof is conducted along similar
lines used by McMillan. The crucial step is proving the L^v) convergence
of {log/_w0 — log/-w,-i}. The condition (c) is shown to be necessary and
sufficient for this convegence.

2» Generalizations of Shannon-McMillan theorem* Let x, £? Q,
J^i2nf^nf^.n,t*m.nfVm.n?fm.n be as in /. Notations for conditional
probabilities and conditional expectations relative to one or several random
variables will be as in [2], Chapter 1, § 7. A probability measure on
^ is Markovian if, for any A e t 5 f m < w w = 0, ±1 , ±2, • • •

P[xn e A I xm, • • •, xn^] = P[xn 6 A I a?n_J

with probability one. A Markovian measure is said to have stationary
transition probabilities if for any A e y and any integer n

P[xn e A I Xn-J = TnP[x0 e A \ a.J

with probability one. In this paper, since we have two probability
measures /̂ , v, we need to use subscripts ft, v to indicate conditional proba-
bilities and conditional expectations taken under ft, v respectively. For
any E c Q,IE, the indicator of E, is the real valued function on Q
defined by

IE(o)) =z\ if a) e E

= 0 if co $ E .

The log in this paper is the logarithm with base 2.

LEMMA 1. Define v'm,n on J*£ffI by

( 1 ) »



GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM 707

then v'm>n is a probability measure on ^ > w with v'Wtn(E) — vmin(E) for
E e J ^ - x . Furthermore vm<n < v'm<n with

Proof.

I ^ . n - ! I Xm, • • • , X

= \ fm.n-idp .
JE

Hence v'mM is a probability measure on ^ , w . Furthermore, for E e ^ , ,

fm.ndfi - [ (fm.Jfn.n-l)fm.n-ldf*
JE

JE

Hence vm>n is absolutely continuous with respect to v'm>n and dvm>nldv'mtn —
Jm.nlJm.n—i*

THEOREM 1. If v is stationary and fx is Markovian with stationary
transition probabilities then

\ ** ) Jm,nlJm,n—i •*• \Jm—n,oUm—n,—i)

with v probability one for all m < n, n — 0, ± 1 , ±2 ,

Proof. If fi is Markovian and has stationary transition probabilities
then for any A e Sf

Py\.®n ̂  A I Xm, • • •, #w-iJ = r\\Xn 6 A %n-\\

- TnP»[x0 e A I aj.J

with ix probability one and, therefore, also with v probability one. Hence
for any Ae^fBe ^T_m

v'm,n[xn e A, (xm, . ••,&„_!) e 5 ]

= \ Pt&n 6 A I flJTO, •
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= [ TnP,Hx0 e A

J[(xm_1,---,a;_1)6£] xQ e A I x ^

It follows that

*4,»[(a«, • • •, o?n) e C]i= v'm-n>o[(xm-n, • •., a;0) e C]

for every C e ^ _ m + 1 . Since by Lemma 1

^^m.nl^^m.n ~ Jm,nlJm,n-l> ^^m-n.ol^^m-n.O == Jm—n,olJm-n,—l

(2) follows easily.

LEMMA 2. 7/ /̂  is Markovain and m1 < m2 < 0 t/ieti ^ l t 0 is an
extension of i42,0 ^

Proo/. For any A e £? /3 e ^Tm2

v'mv0[x0 e A , (ajTOa, • • •, tf-x) e B ]

*[%o e A \ x m , - - - t X ^

= \

= ^m2lo[^o e A,(a?TO2, • • -, a?_i) e B] .

It follows that

for every E e 2

THEOREM 2. If fi is Markovian and m1 < m2 < 0

( 3 )

Proof. By Lemma 2 i4li0 is an extension of v«it0 to ^ 1 § 0 . Since
^ . o < ^ . o , ^2 ( 0 < v;2,0 by Lemma 1, dvmjdv'm2>, is the conditional ex-
pectation of dvmitOldv'mvO relative to ^ 2 , 0 under the measure v'mim0. Jensen's
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inequality for conditional expectation implies that

0

Hence

( 4 ) 0 g J log (dvmjdv'mjdv ^ j log (dvmJdvmv0)dv

and (3) follows from (4) and Lemma 1.

THEOREM 3. / / [i is Markovian then {log/wl 0 — log/TO,-i} converges
with v probability one as m —> — oo. The limit function may take ± GO
as its values.

Proof. It is sufficient to prove that {/m,-i//wM} converges with v
probability one as m —> — oo. Since vmi0 is absolutely continuous with
respect to v'm>0 and dvmiQldv'm>0 = fmjfm,-i by Lemma 1, fm,-Jfm.o is the
derivative of vmi0 continuous par t of v'm>0 with respect to vm>Q. Since, by
Lemma 2, ^1>O is an extension of i4 lp0 if mx < m2, {—/-fc)-i//-fc>0, ^*.o>
fc ̂  1} is a v semimartingale ([2] pp. 632). Since

the semimartingale convergence theorem implies that {f-k-Jf-kiQ} converges
with v probability one as k —> oo.

The following lemma may be considered as an improvement of a
theorem by A. Perez ([6] Theorem 7; pp. 194).

LEMMA 3. Let /31 c j32 c • • • 6e a sequence of a-algebras of subsets
of Q and /3 be the a-algebra generated by \Jk /3k. Let </>, X be two prob-
ability measures defined on ft and 0ft, Xfc be the contractions of </>, X,
respectively, to ftk. If $k is absolutely continuous with respect to Xk

for k = 1, 2, • • • and if there is a finite number M such that

\ log {d$ ^ M

for k — 1, 2, • •
( i ) cj> is absolutely continuous with respect to X,
(ii) log (d<PldX) is <fi integrable and there exists

Km I log (d<t>kldxk)d4> = \ log {d<t>\dX)d<f> ,
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(iii) {log (d4>kld\k)} converges in Lx(4>) to log (d(f>ldX).

Proof.
( i ) Let hk — d</)JdXk. Then {hk, /?*., k ̂  1} is a martingale under

X measure. Now

M ^ j log (d<t>kldXk)d<t> = [ (log hk)hkdX .

and

( 5 ) M + i ^ [(/^ log ft* + J ) d \ ^ (log ^) ( ftfcdA, }

Hence

( KdX^ilognyW+i)
J(hk^n)

so that I hkdX —> 0 as % —• oo, uniformly in k. Hence {hk} converges

with X probability one and also in LX(X) ([2] Theorem 4.1, pp. 319). Let

the limit function be h. Then I hdX = 4>(A) for all A e \Jkftk and so

for all A e /3. This proves that <£ is absolutely continuous and that
h = (d^/dX).

(ii) The sequence {/̂  log Ẑ } converges with A, probability one to
h log /&. Since the functions hk log /^ are bounded below uniformly by
the number J,

\h log MX ^ lim lfcfc log /ifcd\ — lim^l log hkd<t> ^ M .

Hence hlogh is X, integrable. Since the real valued function | l o g | is
continuous and convex, h± log /^, h2 log /t2, • • •, h log ft constitute a semi-
martingale under the measure X([2], Theorem 1.1, pp. 295). Hence

\h± log hxdX ^ \ft2 log ft2dX ̂  • • • ^ ft log ftdA, ,

so that lim^oolftfclogftfcdX exists and is equal to \ftlogftdX. Now

I I log h\d<t> — \ft I log ft I dX — I I ft log ft I dX, ,

hence log ft is ̂  integrable and

( 6 ) (log ftd<£ = Ift log ftcfX, = lim \hk log ftfc dX = lim \ log ftfc d0 .
J J k->°o J fc-*oo J

1 Inequality (5) was pointed out by the referee. The proof of Lemma 3 was much
shortened by following his suggestions.
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(iii) Since hx log huh2\ogh2T • • •, h log h constitute a semimartingale
under the measure X, we have, for E e /3kf

Hence

l hjcloghjcdX g \ hk+1 loghk+1dX g \ hloghdX.
JE JE JE

\ loghkd(f)^ \ loghjc^dcj) ^ \ \oghdcj> ,
JE JE JE

so that log 7 ,̂ \ogh2, • • •, logh constitute a semimartingale under the
measure 0. Hence (ii) implies that log hk are uniformly <f> integrable and
{loghjc} converges to log h in L^) ([2], Theorem 4.1s, pp. 324).

THEOREM 4. If ft is Markvian and there is a finite number M
such that

^,-^dv rg M

for m— — 1, —2, ••• then {log/m>0 — \ogfm<_^\ converges in Lx(v) as
m —* — oo.

Proof. By Lemma 2 v'mv0 is an extension of vr
m^ if m1 < m2 < 0

and

If there is a probability measure i/ defined on the tf-algebra generated
by Um=-i^m,o which is an extension of v'm>0 for m = —1, —2, •••, then
the conclusion of the theorem follows easily from Lemma 3. If X is
the real line and if S^ is the tf-algebra of Borel sets then the existence
of i/ follows from the Consistency Theorem of Kolmogorov. For the
general case we shall proceed by using the usual representation by space
Qf of sequences of real numbers as follows:
Let

9lC — / ~JC,0lJ -16,-1 *

L e t G be t h e m a p of Q in to t h e space Qf of r ea l s equences {£, |2 , • • • }
defined by

G((o) =

Considering £k as functions on Qr we have

- gk(co) .

Let /3k be the collection of Borel subsets of Q' which are determined
by conditions on £lf |2 , • • •, gfc and ft be the collection of all Borel subsets
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of Q'. Let 0 be the probability measure on /3 and </>fc, Xk be the proba-
bility measures on j3k defined by

Xk(E) = v'-UG'lE) .

{gk} converges in L^v) if and only if {£&} converges in L^). Now Xk

are consistent; Kolmogorov's Consistency Theorem implies the existence
of a probability measure X on ft which is an extension of every Xk and
d(f>kldXk — ffc. Hence Lemma 3 is applicable and the Z/i(</>) convergence
of {£,.} is obtained.

THEOREM 5. If v is stationary and pt is Markovian with station-
ary transition probabilities and if

and if there is a finite number M such that

for n — 1,2, ••• then n~l\ogfQ%n converges in Lx(v) as n-+oo. In
particular, if v is ergodic, the limit is equal to a nonnegative constant
with v probability one.

Proof. By Theorem 4 {log/m0 — log/^.-J converges in Lx(v) as
m _ > _ o o . Let h be the Lx{v) limit of the sequence. Let h be the
Lx{v) limit of the sequence {n'1 £?=i T'h}. By Theorem 1 /0>B//0,n-i =
rn(/-B .0//-w ,-i), hence

-1 logr/o.. = n-1 log/0,0 + w1 £ 2" log (f-Jf-t.-i)

^ W-1 t j I T* log (f-i.Jf-i.-r) ~ T'h I dv

^~x S r*^ - h I dv -> 0 as n -> oo .

Thus the Lx(v) convergence of {^"Mog/o.J is proved. The limit is h



GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM 713

which is the Lr{v) limit of {n'1 2?=i T*h}. If v is ergodic

h — \hdv

with v probability one and

\hdv - lim [[log/w,o - log fn.-Jdv ^ 0 .

COROLLARY 1. Under the hypothesis of Theorem 5 if v is stationary
and ergodic but not Markovian then v is singular to pt.

Proof. If [X is Markovian but v is not Markovian then there is a
positive integer n0 such that

i"[/o.»o-1=3fc/o.no]>O.

For, if for every positive integer n

fAAn-i * An] = 0

then

jry\Xn 6 J± XQ, • • •, #w_ij — ±y\Xn 6 A. \ ̂ w-iJ

w i t h v p robab i l i t y one for e v e r y A e y a n d v is M a r k o v i a n i n s t e a d .
N o w s ince

Jo,no-i
 = -^^L/o.Wo I ̂ o> * * * 9 %no-i\

and the function I;log! is strictly convex, hence

5/o.»0los/o,«0d/i - JZo.no-! log/o,»o-idj" > 0

so that

5[logZo,,0 - logZo.»0-i]d^ > 0 .

Since \[logZo,» — logZo,w-i]^^ is non-decreasing in n,

lim l[logZo,» - logZo>w-i]^^ = a> 0 .

Now v is ergodic; the Lx(v) limit h of {^"MogZo.J is equal to a with y
probability one. Let nlf n2, • • • be a sequence of positive integers for
which {wjb"1 log Zen*.} converges with v probability one to a so that {1/Zo.nJ
converges to 0 as nk—> oo. Let ^ ' be the ^-algebra generated by
\Jn^o,n and let fi^,, [i^, be the contractions of [i, v, respectively, to _^ r ' .
Since 1/Zo,n is the derivative of v-continuous part of fJt0i7l with respect
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to vOin, {l//o.»} converges with v probability one to the derivative of v-con-
tinuous part of fi' with respect to 1/ by a theorem of Anderson and
Jessen [1], Now we have

lim l//1>n - 0

with v probability one and fi is singular to i/. Hence fi, v are singular
to each other.

Extensions of Theorem 5 and Corollary 1 to if-Markovian fi are
immediate.

3. Discussion* As was mentioned in the introduction the crucial
step in establishing Theorem 5 is to prove the L2(v) convergence of
{log/_W(0 — log/-w,-i}. If fi is the product (independent) measure on ^
the measure vf in the proof of Theorem 4 is actually v_oo-i x fiQ>Q. Thus
condition (c) or, equivalently, condition (a) implies condition (b) in the
introduction. In [7] it is stated that the condition (b) is necessary for
the LXv) convergence of {log/_„,„ —log/_„,_!} ([7] Theorem 2(b)). A
simple is as follows. Let X be the real line and £f be the collection
of all Borel sets. Let v — fi and distribution of x0 be Gaussian. Let
v(x0 = xx) = fi(x0 = xx) = 1. Then v_li0 is singular to v_1(_! x v0>0, how-
ever the Lx(v) convergence of {log/_wo — logZ-^.J is trivially true since
f = 1
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