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1. Introduction. Consider a sequence of functions un(x) belonging
to the real Hilbert Space L2(0,1). Suppose the range of every un(x) is
contained in the bounded interval [a,b]. Then the un(x) are uniformly
bounded in the norm. The same is of course true for the functions
[un(x)Y, for any fixed positive integral exponent i. Since the unit sphere
in L2(0,1) is weakly compact we can find (by repeatedly constructing
convergent subsequences and using the diagonal process) a new sequence
of functions1 vl(x) such that for an appropriate subsequence un]c(x) of
our original set,

weakly for all i — 1, 2, • • •.
Now consider the converse problem. Given a closed subset of the

line F, and a sequence of functions vl(x) e L2(0,1); when does there exist
an associated sequence of functions un(x) e L2(0,1) such that

(1) the range of un(x) is included in F for all n and
(2) [un(x)Y - ^ v*(x) weakly for all ii

We shall show that a necessary and sufficient condition is that the v\x)
satisfy a positiveness Condition P:

Condition P. For every polynomial p(t) = ]£j=0 aft nonnegative on
the closed set F, the function 2?=o^*^*(̂ ) ^ 0 p.p. on (0,1). (We define
v\x) = 1).

Note that the interval [a, b] has been replaced by the arbitrary
closed set F. The result will be seen to be valid in L2(—oo, oo) provided
that v2i(x) 6 L(— oo, oo) for all i > 0. Finally we shall prove an analo-
gous theorem for w-tuple sequences vij'"IC(x).

One trivial consequence of Condition P, of which we shall make use,
is that v2i(x) 2> 0 p.p. for all i.

2. Construction of weakly convergent sequences* The following
result is fundamental to what follows.

Received May 9, 1960. Presented to the American Mathemical Society October 31,
1959. This paper is based on the author's doctoral dissertation written at New York Uni-
versity. The author wishes to express his thanks to Professor P. D. Lax for suggesting
the problem, and his aid, as well as the referee's, in simplifying some of the proofs.

1 The index i for vl(x) is a superscript, not an exponent.
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THEOREM 1. For each positive integer n, let there be given n
functions fni, O ^ i g w - 1, e L2(0,1) such that for every i and n

( 1 ) \1fni(x)dx = O.
Jo

Define fn(x) by

fn(x) = /minx — i) for i\n ^ x < (i + l)jn .

Suppose that for some constant M, \\fn\\ < M for all n. Then fn{x)-^* 0
weakly.

^

Proof. Let 4>rs be the characteristic function of the interval (r, s).
Since the <£rs, for all r and s with 0 < r < s < 1, span L2(0,1) it suffices
to prove that linv^C/i,, <j>TS) = 0 for all c/>rs. Fix r and s. If n is an
integer greater than l/(s — r), there exist integers fci and fc2 with
s ^ A?x/w- ̂  fcaM ^ ?% a n ( i such that (s — kjri) < 1/n and (kjn—r) < \\n.
Then

k2ln

Each of the last two integrals is less in absolute value than M(n)~ll\ and
the first integral vanishes by hypothesis. Hence, | (fn, cf>rs) | < 2M(n)~112

or limw_oo(/w, <t>rs) = 0. This completes the proof.

COROLLARY. For each positive integer n, let there be given the
functions fni(x) e L2(0,1) with i = 0, ± 1 , ±2 , ± 3 , • • •, such that for
every i and n

[fU^dx = 0 .
Jo

Define fn(x) by

= fm(nx - i) for ijn^x < (i + l)jn .

Suppose that for all n, fn e L\— oo, oo); and that there exists a number
M such that \\fn \\ < M for all n. Then fn{x) -^^> 0 weakly.

Suppose that ^(x) is a (not necessarily strictly) monotonically in-
creasing bounded function, defined for — oo < x < oo. Let infxty{x) = A
and sup^Caj) = B. Then we define the inverse function ^{t) on the
interval (A, B) as follows:

(a) If there exists an x such that ^(x) = t, define ^"X*) — suP</> (*)=«#•
(b) If there exists no x with r̂(cc) = t, ty has a jump "past" t,

i.e., there exists an xQ such that ^(^o~) ^ ^ and /^(^o
f) ^ t. Define ty~\t) —

x0 in this case.
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Evidently ^^(t) is monotonically nondecreasing, is constant where ty
has a jump, and has a jump where ty is constant.

It is well known (and easily verified) that for such functions ty(x),
and for f(x) continuous, that

< 2 )

in the sense that if the former integral exists, and converges absolutely,
the latter exists, and the two are equal.

We shall also say that x is a point of increase of the nondecreasing
function ty(x), if for every neighborhood (a, b) of x, ^(6) > ^(a).

In order to prove our main theorem we need a lemma.

LEMMA 1. Let vl(x)(i }>1) be a sequence of functions in L(0,1)
satisfying Condition P. Then there exists a function p(x) such that

(a) The range of p(x) is included in F.
(b) [p{x)Y e L2(0, 1) for every i = 0,1, 2, • • •.

(c) [{[p(x)Y - v\x)}dx = 0 , i = 0,1, 2, • • • .
Jo

S I

vl(x)dx. Since the v\x) satisfy Condition P, the
0

numbers b{ also do. Therefore, the b{ form a moment sequence on ^[2],
i.e., there exists a nondecreasing function ty(x) whose points of increase
are included in F, such that

S i

v\x)dx for i — 0,1, 2, • • • .
0

In particular

» = 6o = 1

so that we may assume that infi/r(#) = 0 and sup^(cc) = l. Define
p(x) = ^(x) so that p(x) is defined on (0,1) and takes on values in F.
Now making use of relation (2), we have

ft. = (" xld^(x) = [\p(x)Ydx = [v\x)dx .
J-oo Jo Jo

Q.E.D.

COROLLARY. By an obvious change in variable the result of the
lemma remains valid with (0,1) replaced by an arbitrary finite inter-
val (r, s).

3. The principal existence theorem* The main result is given in



718 LUCIEN W. NEUSTADT

THEOREM 2. Let vl{x) be a sequence of functions belonging to
L2(0,1), and satisfying Condition P. Then there exists a sequence of
functions un{x) such that

(a) The range of un(x) is contained in F for every n.
(b) [un{x)Y e L2(0,1) for all i and n.
(c) [ww(#)]4 "^^ v\^) weakly for all i.

Proof. Consider the restriction of the v*(x) to the interval
G/M, U + l)ln), O g i S w - 1 . Momentarily fix j and n. By appealing"
to the corollary of Lemma 1 we can construct functions pnj(x) defined
on (jlnf (j + l)/n) such that

(1) The range of pnj(x) is contained in F,

(2) [PnS(£±L}J e L2(0,1) for all i,

S {j+l)ln
{[pnj(x)Y - v\x)}dx = 0 for all i = 1, 2, • • -.

i/»

This may be done for every j , 0 ^ j ^ n — I, and every n. Fix i
for the remainder of the argument. We now appeal to Theorem 1.
Namely we define the functions fnj(x) on (0,1) by

and the function fn(x) on (0,1) by

/»(») = \Pn,(x)Y ~ v\x) for j In S x < (j +

We must show that | | / J | < M for some Af < oo. But

£ [{»-l f (i +

i=0 Jj/n

^ ib* i r + 11**11.
Thus, by Theorem 1, fn(x) - ^ 0 weakly. If we define %»(#) by

^ x < (j

then, the range of un(x) is contained in F; [un(x)Y = /n(a?) + v'(aj) belongs
to L2(0,1), and

[u»(flc)]* — v\x) - ^ 0 weakly .

Since i was arbitrary we have proved our theorem.

COROLLARY. The conclusion of Theorem 2 remains valid in
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L\— oo, oo) if an additional hypothesis is made, namely that
vu{x) 6 L ( - c o , oo) for all i > 0.

Proof. Consider the restriction of the vl(x) to the interval
O'M, (i + l)/w) where i is any integer, positive, negative, or zero. We
can construct functions pnj(x) as above, and for fixed i, define the
function fn(x) by

fn(x) = [#.,(&)]' - o'O*) > iM ^ a? < 0" + l)ln , i = 0, ± 1 , ±2 , . . . .

Once we have shown that \\fn\\< M for all n and some M < oo, we
•can appeal to the corollary of Theorem 1, define un(x) as above, and
obtain the desired result. But

{.3——00J

(J+l) In ^ 1/2
" ••"""" +\\vl\

Since v24(as) 6 L(— oo, oo) by hypothesis, the proof is complete.
We shall now summarize Theorem 2 and its corollary, together with

a, converse, in one result:

THEOREM 3. Given a sequence of functions vl(x)(i = 1,2, •••) in
L2(c, d), — oo <L c < d ^ co. Necessary and sufficient conditions that
there exist a sequence of functions un(x) such that

(1) [un(x)f e L2(c, d) for all i > 0 and n;
(2) [ww(#)]* - ^ vl{x) weakly for all i > 0; and
(3) the range of un(x) is contained in F for every n,

<are that the vl(x) satisfy Condition P, and that vn(x) e L(c, d)for all i > 0.

Proof. The sufficiency has already been shown. To prove the
necessity note that the weak limit of nonnegative functions is nonnegative
p.p. Also, if c and d are finite, v2i e L2(c, d) implies that v2i 6 L(c, d). If
c = 0 and d — oo we must prove that vn e L(0, oo). Now [un(x)]2i - ^ v2i

weakly by hypothesis (2). [ww(#)]2i e L(Q, oo) by hypothesis (1), so that
-v2i is the weak limit of functions in L(0, oo). By hypothesis (2)

0 ^ \Nv2i{x)dx = l im \N[un(x)]"dx g l im s u p || [un(x)Y II2 •
JO n^oo J o w->°o

Again by hypothesis (2), the ||[wn(o0]*|| a r e bounded for fixed i, so
that

v2i(x)dx < oo
)

or v2i(x) 6 L(0, oo). A similar proof exists if c = — oo. This completes
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the proof.

4. Generalizations to multiple sequences. We now proceed to multi-
ple sequences of functions vi3"'k(x) e L2(0,T) defined for i,j, • • •, k =
0 ,1 , •••. In order to simplify the notation we shall restrict ourselves
to double sequence vij(x), but the generalization to higher order sequences
will be self evident.

We have a two-dimensional analog of Condition P:

Condition Q. For every polynomial p(t, r) = ^^^diftz3 nonnegative
in the closed set F, the function ^t,5=^ai$v

i5{x) ^ 0 p.p. in (0,1) where
voo(x) = 1.

Before proving an analog of Theorem 3 we shall prove a lemma,
based on a result of Halmos and von Neumann [1, § 2], This is a two-
dimensional version of Lemma 1.

LEMMA 2. Let vij(t) be a double sequence of functions in L(0,1)
satisfying Condition Q. Then there exist two functions p(t) and X(t)
such that

(a) The curve given by x — p(t), y — X(t) is contained in the subset
F of the plane.

(b) The functions {[p(t)Y-[X(t)]3} belong to L2(0,1) for all i and j \

(c) WlpWlXit)]3 - vi3(t)}dt = 0 for all i and j .
J

Proof. Let btJ = ^[vi3{t)dt. Since the vi3(t) satisfy Condition Q, the
Jo

numbers b{j also do. Hence the bij form a moment sequence on F[2],
i.e., there exists a measure i|r, defined for all Borel sets of the plane
E2, such that

(1) ( x'y'dylr = bi3 for all i and j ^ 0.

(2) If (x, y) $ F, there exists a neighborhood N of (x, y), with
f(N) = 0.

If the measure space {F, &, ^ } , where & is the class of all BoreL
subsets of F, has atoms (see [1] for definition of an atom), every atom
may be shown to consist of a point, plus a set of ^ measure zero.
These "atomic points" are either finite or denumerably infinite in num-
ber. Denote them by Pif and let P = \Ji{Pi}. Clearly P a F. If we
define the measure ^ by ^(A) = ty(A) — ty(A n P)> ir is non-atomic. Say

'HP) - Ti&iPi) = P-
From relation (1) with i = j = 0, we have ^r(F) = ty{E2) = 6OO = lr

so that f(F) = 1 — p. There is a one-to-one mapping 4> from almost
all of the interval (0,1 — p) onto almost all of F, such that Bx is a Borel
subset of (0,1 — p) if and only if ^(I^) is in &, and then ^
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m(BL) where m is the ordinary Lebesgue measure [1, Theorem 2]. We
can easily construct a map <f> from (1 — p, 1) onto P, such that m ^ " 1 ^ ) ) =
^(Pi). If we define 4> — 0 U 4>, Then <£ has the following properties: </>
maps almost all of (0,1) onto almost all of F, such that if A c F and
A e ^ , tfr^A) is a Borel set, and m(4r\A)) = ^(A). Let p(£) be the
projection of </>(£) on the cc-axis, and \(t) the projection on the 7/-axis.
Then it follows that p(t) and A,(i) satisfy conditions (a), (b), and (c).

COROLLARY. The result of the lemma is valid if (0,1) is replaced
by an arbitrary finite interval (r, s).

THEOREM 4. Given a double sequence of functions vi3(t) if j =
0 ,1 , 2, • • • (except i and j both zero) in L\c9 d); — oo <^ c < d ^ oo.
Necessary and sufficient conditions that there exist two sequences of
functions un(t), wjt) belonging to U(c, d) such that (a) the curve in the
plane defined by x = ujt), y = wjt) for c ^ t ^ d, is contained in the
closed set F; and (b) for every i and j (except i and j both zero) (1)
[un(t)f[wn(t)]

j e L\c, d) for all n and (2) [un(t)f[wn(t)]
J - ^ vij weakly;

are that (1) the vij(t) satisfy Condition Q, and (2) v2i>2j e L{c, d) for all
i and j (not both zero).

Proof. The proof is very similar to that of Theorems 2 and 3, and
is therefore omitted.
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