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l Introduction and summary. Let (Ω, Sζμ) be a probability space
and / a random variable, an ^-measurable function from Ω into the
space R of real numbers. Let ^f be a sub-σ-algebra of £f. Let / be
integrable; that is, let its expectation E(f) exist. Then the Radon-
Nikodym Theorem yields an ^-measurable function g, the conditional
expectation of / given £fQ: g = E(f\ £%). The conditional expectation g
is, in a strong sense to be made precise below, the best fit to / by an .im-
measurable function. The purpose of the present note is to show that
there corresponds to / a function with the same minimizing properties
when an arbitrary sub-σ-lattice ^f takes the place of S%.

The conditional expectation g — E(f \ Sζ) has the property that

for ^-measurable h such that the integral exists. It is then immediate
that

\(f - hfdμ = j(/ - gfdμ + j(g - hfdμ .

More generally, the squared difference may be replaced by the W. H.
Young form Δφ(o9 o) determined by an arbitrary convex function Φ (see §2):

(/, h)dμ - J^(/, g)dμ + j J#(flr, h)dμ

for ^-measurable h, provided appropriate integrals exist. (The function
Δφ(o, o) is nonnegative and vanishes when the arguments are equal.)
Thus, for every Φ, g — E(f | £/ζ) is the solution of the minimizing prob-
lem: given /, to minimize \Δφ{f,h)dμ in the class of ^-measurable

functions. The conditional expectation therefore enjoys a powerful claim
to bef the "best" fit to / by an ^-measurable function. (Blackwell [3]
has remarked that for square-integrable functions, the conditional ex-
pectation may be regarded as a projection in Hubert space.)
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Let now i f be a sub-σ-lattice of &\ jSf is a class of sets in &>
containing the void set φ and the whole space 42, and closed under
countable intersections and countable unions. Let h be called immeasur-
able if for every real t {ωeΩ: h(ω) < t}e^f. It will be shown that
given an integrable function /, there exists an immeasurable g such
that

(1.1) ((/ - hfdμ 2> J(/ - gfdμ + \{g - Kfdμ ,

and, indeed, such that

(1.2) | Λ ( / , h)dμ ̂  JΛ(/, g)dμ + J J#(flr, h)dμ

for every Φ, provided appropriate integrals exist. Thus g is the "best"
fit to / in the class of ^-measurable functions. (When / is square-
integrable, g may be interpreted in U as the point in the cone of im-
measurable functions nearest to the given point /.) To determine g
requires the specification not only of / but also of the probability measure
μ. Thus it seems appropriate to regard / (and g) as random variables.
On the other hand, the "best fit" to a sum need not be sum of the
"best fits'', so a designation of g as a "conditional expectation given
Jδ^" does not seem completely appropriate.

Methods used in this paper require that μ be totally finite. It would
be of interest to relax this restriction.

The problem of maximum likelihood estimation of parameters sub-

ject to order restrictions led to a study of the problem of minimizing

\jφ(f,h)dμ in a special case ([5], §4). In that special case, Ω is n-

dimensional euclidean space, and Sf is the class of sets in £f such that
Le j5f, (v19 v2, , O eLyuλ^vl9u2 ^ v 2 , , u n ^v n=$(u 1 9u 2 f , u n ) e L .
Members of Sf were called "lower layers". Methods known from the
Radon-Nikodym theory were used, but the connection was not clearly
understood. It is the purpose of the present paper not only to replace
^-dimensional euclidean space by an arbitrary space Ω, and the class of
"lower layers" by an arbitrary σ-lattice, but also to formulate the
results so as to include conditional expectation given a sub-tf-field as the
special instance occurring when J5f is a tf-field.

Special cases occurring in maximum likelihood estimation of ordered
parameters are treated in [1], [4], [6], [7] and [8]. In the situation
treated in [5], inequality (1.1) was found independently by G. M. Ewing1

and by W. T. Reid1; special cases appear in [4] and [9].
Section 2 of the present paper is devoted to definitions. The problem

for square-integrable / is treated as a problem in Hubert space in § 3.

1 Private communication.
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Results on the minimum problem for arbitrary classes of functions are
obtained in § 4, and used in § 5 to yield the principal results, Theorem
5.1 and Theorem 5.2, for integrable / and measurable / . It is shown in
§ 6 that, given a partial ordering on, Ωy a o -lattice ^f can be introduced
such that the ^-measurable functions are precisely the order-preserving
functions. Application to certain problems of maximum likelihood estima-
tion of a multi-dimensional parameter is mentioned in § 7. It is also
remarked that (1.2) may be used in a modification of the proof of the
Rao-Blackwell Theorem on sufficient statistics2.

2 Definitions. Let Φ be a convex function of a real variable. Set
Gφ =D{u: Φ(u) < co}. (Symbols =D and <ζ=^D will be used in defining
the symbol or relation which appears on the right.) Define (cf. [10])

(2.1) Ψ(z) = D sup [uz - Φ(u)] .
u

Then (W. H. Young's inequality)

(2.2) 0 ^ Φ(u) + Ψ(z) -uz^ co , u,z r e a l .

The function Ψ is convex, and Φ and Ψ are conjugate in the sense of
W. H. Young.

For ueGφ, let ψ{u) denote the left derivative of Φ at u; φ is
continuous from the left.

Consider the graph of Φ{u) in the cartesian (u, w) plane: w = Φ(u).
For fixed z, the form zu — Φ(u) represents the vertical directed distance
from the graph of Φ to the line w — zu. If z = <p(uQ) for a number
u0 e Gφ then the directed distance uφ(u0) — Φ(u) is maximized for u = uQj

since the line w = uφ(u0) is parallel to a line of support at u0. Therefore

(2.3) Φ(u) + Ψ[φ(u)] - uφ(u) = 0 , ueGΦ .

For u, v e Gφ, define

Φ(U, V) =DΦ{U) + Ψ[φ(v)] - Uφ{v)
(2 4)

1 = Φ(U) - Φ(V) -{U- V)φ{v) .

(The subscript Φ will often be omitted.) This form has an obvious
geometric interpretation relative to the graph of Φ. It follows from
(2.2) and (2.3) that

(2.5) d(u, v) ^ 0 , Δ(u, u) = 0 , u,veGφ .

Also
2 That there is a connection between (1.2) and the Rao-Blackwell Theorem was suggested

to the writer by Cand. Mag. Br0ns of the Statistics Institute, University of Copenhagen.
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\Δ(u, v) = \ (u — t)dφ(t) if v ^ u ,
(2.6) ht:vύt<u}

\Δ(u, V ) = [ (t - u)dφ(t) if v ^ u .

For u,v,we GΦ, (2.4) yields

(2.7) J(w, w) — Δ(u, v) +, Δ(v, w) + {u — v)[φ{v) —

Let {Ω, Sζ μ) be a probability measure space. Let Φ denote the void
set. For A a Ω, let Ac denote its complement Ω — A. For ^-measur-
able, real functions /, h with ranges in Gφ, and for Ae£f, define

(2.8) JΦ(/, fc; A ) Ξ J ΔΦ(f, h)dμ .

(The subscribt Φ will often be omitted.) Define also

(2.9) J{f,h)^

From (2.5),

(2.10) 0 ^ J(/, λ; A) ^

3, Fitting a square^integrable function* Let Jif be a sub-tf-lattice
of £f\ that is, let φe £?, Ωe ^ ^ c 5 t and let ^ ^ be closed under
countable unions and intersections. Let <g*(J5f) denote the class of real-
valued functions h on Ω such that {ω: h(ω)<t} e _Sf for real t. "Fitting"
a given function / refers to the problem of minimizing JΦ(fι h) for
h e ^(^f). It will be shown that, broadly speaking, given / there is a
function g e <£*(£?), independent of Φ, which minimizes Jφ(f, o) in rtf(^f)
for every Φ. For this function g, indeed,

W, h) ^ JΦ(f, g) + JΦ(g, h)

for he^i^f). In the present approach to the problem, the square-
integrable function / is regarded as an element of the Hubert space of
square-integrable functions. (In [11] von Neumann approached the Radon-
Nikodym Theorem via Hubert space.)

Let £ίf be a real Hubert space, and ίT a closed convex cone in
3ίf\ ΐT is closed; x e ^ a ^ 0 ==> ax e ^ and x e ctf,ye i f ==>x + ye &ί
The following theorem and argument are familiar ([12], p. 120) when
^f is a linear subspace, and perhaps in the present more general situation
as well.

The inner product in ^ will be denoted by (o, o) and the norm
by | | o | | .

THEOREM 3.1. If feβ^ then there exists a ge<^ such that
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(/ — g, h) ^ 0 for all h e &. If there exists / 0 ^ 0 in §ίf such that
(/,/o)/o/ll/o II2 e ^ then (/ -g,g) = 0.
If ^ is a linear subspace of Sίf it follows that (f — g,h) = 0 for
he ^. It seems of interest to note, as Blackwell has remarked [3], that
in this special case Theorem 3.1 yields at once the conditional expect-
ation of a square-integrable random variable. Let ^ be a sub-tf-algebra
of £f, §ίf the class L2 of square-integrable functions, and & the sub-
class of square-integrable, ^-measurable functions. The function g

furnished by the theorem is then E(f\&%), for \fhdμ — \ghdμ for
he ^ and in particular when h is the indicator (characteristic) function
of a set in S%.

Proof of Theorem 3.1. Let N denote the set of all elements of
of the form / — h for h e ^ . Since ^ is closed, so is N. Since r<f is
convex, so is N, for λ(/ - hλ) + μ(f -h2)=f- (Xhλ + μh2) e N if O ^ λ ^ l ,
λ + μ = 1, Λx, Λ2€ <if. It follows ([12], Theorem 3, p. 120) that N has
an element k of smallest norm. Set g =Df — k; then ge <£*. Let he ^
then if a ^ 0, βr + ah = (α + l)b/(α + 1) + αfe/(α + 1)] e ^ . Therefore

= \ \ k \ \ 2 - 2 a ( k , h) + a2\\h\\2 .

Suppose there exists hec^ such that (fe, fe) > 0. Set α = (fc, fe)/|| h ||2,
and find || k ||2 ^ || A; ||2 - (k, h)2l\\ h\\2, a contradiction. Therefore (k,h) g 0
for h e c^, the first conclusion of the theorem.

The second conclusion, (/ — g, g) — 0, is obvious if g = 0. In ap-
proaching this conclusion for g ^ 0, it is first shown that g ^ 0 and (/, g) ^ 0
imply (/ - ff, ff) = 0. Set & = , , ( / - </, (/)/|| ff ||2 - [(/, g)-\\g | | 2 ]/ | | ^ ||2 ^
- 1 . Then g + bg = (1 + b)g e <£>. Hence || k ||2 ^ | | / - (g + bg) ||2 =
Hfc-6ί7lla=l|fc| |a-(fc,ff)Vllfflla, so that ( / - flf, ff) = (fc, flf) = 0. It
remains to verify that the hypotheses of the theorem imply (/, g) ^ 0.
Set a = (/,/o)/||/o II2. Since by hypothesis afQe if,

or

li/ll2 - 2(/, uf) + || g ||2 ^ | | / 1 | 2 - 2α(/,/0)

so that

This completes the proof of Theorem 3.1
Let L2 denote the class of square-integrable functions, and set
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= L2 Π <^(£f); ΐ^i(-S^) is the class of those ^-measurable
functions which are square-integrable.

LEMMA 3.1. If feL2, there exists ge <ĝ (jSf) such that

(3.1) J(/ - h)2dμ ̂  j(/ - g)2dμ + \(g - hfdμ

for all he ^(^f); g is unique a.e. (//).
Inequality (3.1) is of the form (1.2) for Φ{u) = u2β.

Proof of Lemma 3.1. Lemma 3.1 results from the application of

Theorem 3.1 to the Hubert space L2, in which the inner product is de-

fined by (/i,/2) =D \fif$fJ> for fuf2eL2. In this application the closed

convex cone ΐ ^ of Theorem 3.1 is identified with ^ ( J S ^ 7 ) . It is readily
verified that ^(Jίf) is a convex cone. Also ^(JZ?) is closed in L2, for
if || hn — h ||2 —* 0 as n —> oo, then {hn} converges to h in measure, and a
subsequence converges to h a.e. (μ); but the limit of a sequence of im-
measurable functions is also .^-measurable. Let g be the element of

guaranteed by Theorem 3.1. Then

(3.2) j(/ - g)hdμ ̂  0

for he ^(^f). Further, every constant function is in ^ ( ^ ) . Therefore
the second hypothesis of Theorem 3.1 is satisfied for fQ =D1. It follows
that

(3.3) \(f-9)gdμ = 0,

so that

(3.4)

Inequality (3.1) is now immediate. The uniqueness a.e. (μ) of g is
evident from (3.1).

For a real-valued function φ of a real variable, and a function h
from Ω into the real line R, let φh denote the composite function: for
ωeΩ, φh(ω) =Dφ[h(ω)]. Inequality (3.4) is the special instance of

(3.5)

in which <p(u) = u. From (2.7) it follows that (3.5) is equivalent to
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(1.2), given the existence of appropriate integrals. Conditions will now
be investigated under which, given /, the same function g satisfies (3.5)
for functions φ other than the identity well. Lemma 3.2, below, is
phrased more generally than is required for the present application.

Let W be a vector lattice ([2], Chapter XV), so that

(3.6) α , b e W^ a V b + a Λ b = a + b

(here a V b and a Λ b denote respectively the l.u.b. and g.l.b. of the
two elements a and & of W). (For (3.6) it is sufficient that If be a
commutative lattice-ordered group; ([2], p. 219).) Let ^ be a class of
order-preserving maps of W into itself, which is a lattice under the
induced partial ordering: <p± ^ φ2<^=^I)φ1(w) ̂  <p2(w) for all we W("-^"
denotes the ordering relation on the partially ordered set W). Let gf
be a subclass of &. An intersection of lattices is a lattice, and the
intersection of all lattices containing g7 is the smallest lattice, g7*,
containing g7. It may be constructed as follows. For an arbitrary sub-
class ^ of i^, define Tj^~ as the class of all elements of & of the
form φx V <P2 or φ1 A <p2 for φl9φ2e ^ 7 Then

gr* =l imΓ n g 7 = \JnT
n^.

n

LEMMA 3.2. Let L be a nonnegatίve {or non-positive) linear func-
tional on ϋ^. Then L — 0 on gf implies L = 0 on g7*.
(This may be regarded as a special instance of the proposition that in a

normed lattice the elements of zero norm form a lattice.)

Proof. It suffices to show that j^~ c & and L = 0 on ^ imply
L = 0 on T^C But this is immediate from (3.6) and the assumed line-
arity and constancy of sign of L.

Lemma 3.2 is applied in proving Theorem 3.2.

THEOREM 3.2. LetfeL2 and let g be given by Lemma 3.1. Let Φ
be convex, let ψg e L2, and let the range of f be in Gφ. Then the range
of g is in Gφ (i.e., there is a determination of g in the equivalence
class determined by Lemma 3.1 whose range is in Gφ),

(3.7) \(f-9)(<P9 -<ph)dμ^0,

and

(3.8) Jφ(f, h) ̂  JΦ(f, g) + Jφ(g, h)

for all h e c^{^f) such that the range of h is in GΦ and such that
ψh e ZΛ
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Proof. Setting h in (3.2) first equal to 1 then equal to —1 yields
the result that

(3.9) \(f-g)dμ =

From (3.3) and (3.9) it follows that

\(f-g)(ag

for real a and b. In applying Lemma 3.2, take for W the real line (a
vector lattice) R. For fixed / and hence fixed g, take for <%r the class
of non-decreasing functions ψ defined on R such that ψgeL2. One

r

verifies that & is a lattice. For ψ e ^ , set L(ψ) =Λ(f — g)ψgdμ. L
is clearly a linear functional on &\ from (3.2) it follows that L is non-
positive. Let if denote the subclass of £& consisting of functions ψ of
the form ψ(y) = ay + 6, a Ξ> 0. For arbitrary real c and d with c < d,
define ^ by ψ^y) = 0 for y ^ c, ^(j/) = (y — c)/(d — c) for c < y S d,
ψM = 1 for y > d. Then ψ ^ f g By Lemma 3.2, L(ψO = 0. Let
t be an arbitrary real number. For n=l, 2, •••, set cn = ί, dn=t+lln9

and define ^ w as ^ was defined above, with c and cί replaced by cn and
dw respectively. Let ψ0 denote the step-function: ψo(y) = 0 for y ^ t,.
ψo(y) = 1 for » > ί. Then L(ψ0) - l i m ^ ^ L ^ J = 0. That is,

\ [f(ω) - g(ω)]dμ(ω) - 0 .

It follows that for every Borel set B of real numbers,

(3.10) ( [f(ω) - g(ω)]dμ(ω) - 0 .
J{ω g(ω)€B}

(Equation (3.10) may be interpreted thus: g = E(f \ g).)
It can be seen as follows that the conclusion that the range of g

is in Gφ is a consequence of (3.10). Suppose, for example, that/(oo)<α
for ωeΩ. Then

aμ{g ^ a} ^ ί gdμ = ί fdμ < aμ{g ^ a} ,

unless μ{g ^ a} = 0.

It now follows from (3.10) that \(/ — g)ψgdμ — 0. Also, if the range

of h is in Gφ and if <p(h) e L2, it follows from (3.2) (with h there replaced

by ψh) that \(/ — g)φhdμ <£ 0. Equation (3.7) is then immediate. The

proof of Theorem 3.2 is completed by the observation that (3.8) is SL

consequence of (3.7) and (2.7).
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4. Minimizing J(f, o)φ Some theorems on minimzing J(/, o) in
arbitrary classes of ^-measurable functions are given in this section.
In § 5 the result of Theorem 3.2 is extended to arbitrary integrable /,
using the results of the present section.

LEMMA 4.1. Let Φ be convex. Let f, hly h2 be J^f-measurable func-
tions with ranges in Gφ. Set E =D{ω: hλ(ω) < h2(ω)}, and for real t
set E(t) =D{ω: hλ(ω) ^ t < h2(ω)}. Then

(4.1) - co ̂  Jφ(f, h2; E) - JΦ(f, h,; E)

= \dφ(t)\ [t - f(ω)]dμ(ω) ^ «> ,
J Jϊii)

provided either JΦ(f, hx; E) < c° or JΦ(f, h2; E) < co.

Proof. From (2.8) and (2.6),

J(f, h;A) = \ dμ(ω) \ [f(ω) - t]d<p(t)
jAf]{ω:h(ω)<f(ω)} J {t:h(ω) £t<f (ω)}

+ ί dμ(ω)\ [t - f(ω))dφ(t) .
jAΠ{ω:f(ω)<h(ω)} J {t: f{ω)£t<h(ω)}

Since Δ is nonnegative (inequality (2.5)), Fubini's Theorem ([12], Corollary,
p. 95) applies, to yield

(4.2) J(f, h; A) = \dφ(t) \ [f(ω) - t]dμ(ω)

+ \dφ(t)\ [t - f(ω)]dμ(ω) .

Set A — E and h first equal to h2, then equal to hλ. Lemma 4.1 then
follows, using the observation that

E n {K s t < /} = E n {h2 ̂  t < /} u E n {/ > «} n {h ^ t < h2}

and

E n {/ ^ t < h2} = E n {/ ^ t < hλ) u E n {/ ^ t} π {h ^ t < h2}.

THEOREM 4.1. Let ^ be a class of ^-measurable functions, and
f a given, fixed ^-measurable function. A sufficient condition that g
minimize JΦ{f, o) in c^ for all Φ such that the range of f is in Gφ is
that g be bounded by infω/(α>) and supω/(ω), and that

(4.3) ( [f(ω)-t]dμ(ω)^0 and \ [t-f(ω)]dμ(ω)£0
}{ω: g(ω)^t<h(ω)} J {ω: h{ω) ̂ t <g{ω)}

hold for all real t and every he ^. If ί f is a lattice under the
partial ordering hλ ̂  h2 φ^φΛί^) ^ h2(ω) for ω e Ω, then (4.3) is also
necessary.
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Proof of sufficiency. For h e ^ set

Bi =D{W 9(0)) < h(ω)}

B2 =D{ω:g(ω) > h(ω)}

Bs =D{ω:g(ω) = h(ω)}

Then

and

Clearly / ( / , g; J53) = J(/, h; ί?3). In Lemma 4.1 set hx = g, h2 — h, so
that E becomes Bί and E(t) becomes {ω: g(ω) ^t< h(ω)}. From (4.1)
and (4.3) follows

0 g ίd9>(ί) ( [t - /(α>)]^(α>) - J(f, h; Bx) - J(f, g; Bx) ^ oo .

Interchanging the roles of g and fc in the application of Lemma 4.1
yields

0 ^ \dφ(t) \ [t -f(ω)]dμ(ω) - J(f, g; B2) - J(f, h; B2) ̂  - oo .

Subtraction gives 0 ^ / ( / , h) — J(f, g) ^ &>, completing the proof of the
sufficiency of condition (4.3).

Proof of necessity. Let t0 be a real number, and define Φo(t) = D\t—to\l2,
so that <pQ(t) has a unit jump at tQ, with £>o(£o) — —1/2. Applying Lemma
4.1 first with Ifi^ — h, h1 = g, E = {g < h) and then with h2 — gy hλ = h,
E = {h < flf}, one has

(4.4) - oo ^ JφQ(f, h) - JφQ{f, g)

= ί [«o - /(o>)]dM«>) + ί
J{ω:fif(ω)^ίo</ι(ω)} J{ω: h(ω

If ^ minimizes JφQ(f9 o) in ^ , then the left member is nonnegative for
every he &. Given he <g*, define hx~Dg ί\ h, and replace /ι in (4.4) by
&!. One finds

0 g Λo(/, AO - J # 0 (/ f fir) -

verifying the second of inequalities (4.3). Similarly, setting hλ = g V h
yields the first, completing the proof of Theorem 4.1.

Let / be a given ^-measurable function, and <g* a class of £f-
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measurable functions. Consider the following two properties of a func-
tion g e i f which is bounded by infω/(α>) and supω/(ω), and for which
\\f-9\dμ< CXD .

For real t and he ^,

\ iΰ(ω) - f(ω)]dμ(ω) ^ 0 ,
/ Λ ex J{ω: g{ω)^t<h{ω)}
<4.5)

[f(ω) - g(ω)]dμ(ω) ̂  0 .
J{ω:h(ω)St<9(ω)}

For all Φ such that the range of f is in GΦ and all Λ e i f with
range in Gφ,

(4.6) Jφ(f, h) ^ JΦ(f, g) + Jφ(g, h) .

THEOREM 4.2. Let f be a given ^-measurable function. Suppose

that mΐωf(ω) <Ξ g(ω) ^ supω/(ω) for ω e Ω and that \ | / — g \ dμ < c«.

Then (4.5) <#==> (4.6).

Proof that (4.5) Φ (4.6). Let he if, let Φ be convex, and let /, h
have ranges in Gφ. Set Bλ =D{ω: g(ω) < h(ω)}, B2 =D{ω: h(ω) < g(ω)}.
Set

a =D \dφ(t) \ [t - g(ω)]dμ(ω) ̂  0
J J{ω: g(ω)^t<h(ω)}

and

b =D\dφ{t) \ [g(ω) - t]dμ(ω) ^ 0 .

In (4.2), replace / by g and A by β, to find

J(ΰ, h) = a + b .

Applying (4.5) and Lemma 4.1, one has

a ^ \dφ(t) \ [t - f(ω)]dμ(ω) = J(/, Λ; Bx) - J(f, g; B,)
J J{ω:g(ω)St<h(ω)}

and

6 ^ \dφ(t) \ [f(ω) - t μ ^ ω ) - J(/, fe; J52) -

provided either J(/, fc) < oo or J(/, ^) < oo. If both are infinite, (4.6)
is granted. If at least one is finite, then

J(g, h) = a + bS J(f, h) - J(f, g) .

Since J(g, h) ^ 0, J(f, g) must then be finite, and (4.6) follows.
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Proof that (4.6) =φ> (4.5). From (4.6) and (2.7) it follows that

- g)(<pg -

when he ^y and when the ranges of / and h are contained in GΦf

provided the integral exists. Let ί be a real number, and set Φ(u) =^
- (u -t) for u<Zt, Φ(u) ΞΞ̂ O for; u > t. Then

((/ ~ 9) iΨQ - <Ph)dμ = - [ (/ - g)dμ +\ (/ - g)dμ ,

the integrals existing by hypothesis. Given he ^ set hx =Dg Λ h. Then

0 ^ ((/ - g)(φg - φh,)dμ = ( (/ - g)dμ .

The proof of the first member of (4.5) is similar.

5. Fitting an integrable function in <^{^f). Let / be integrable.
For positive M, N, define

(5.1) fM.*=»[-MVf]ΛN,

and

(5.2) fM =D\\mfM<N ,

JV-*oo

so that

(5.3) f = limfM .

For fixed M, N, the function fM>N is square-integrable. Lemma 3.1 makes
correspond to fMtN a square-integrable, .Sf-measurable function gMN. It
will first be shown that

(5.4) gM=

and

(5.5) tfΞΞ

exist. The principal result of the paper will then be proved:

THEOREM 5.1. If f is integrable and if the range of f is in GΦ,
then

Mf, h) ^ Jφ(f, g) + JΦ(g, h)

for every h e ^(Sf) whose range is in GΦ.
The proof follows several preliminary lemmas.
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LEMMA 5.1. Let feL2 and let g be given by Lemma 3.1. Let t be
real, and let he ^(Jΐf). Then

\ [f(ω) — t]dμ(ω)

> \ lf(ω) - g(ω)]dμ(ω) £: 0 ,
J {ω: h{ω) ^t<g{ω)}

\ [f(ω) - t]dμ(ω)

(5.7) Jl":9ίω) η h i ω ) }

- J(.-9(»)<«MM)}[/(<W) ~ tiaWlW) ^ 0 -

provided, in (5.6), that the indicated set has positive measure.

Proof. Set Φ(u) =D - (u - t) for u ^ t, Φ{u) =D0 for u > t. Set
K =Dg A h. Then <phxe ^{Jίf). application of (3.2) with h replaced by
ψhx yields

5 ( ω 9 ( ω ) M ( ω ) < t ) [ / ( ω ) - g(o>)]dμ(ω) ^ 0 .

Also, by (3.10),

\ [f(ω) — g{oή]dμ{ω) — 0 .
J {ω: fif(ω) ̂ ί }

Since {g A h ^ t) = {g 5Ξ t} U {h ^ t < g}, it follows that

[f(ω) - g(ω)]dμ(ω) ̂  0 .(
J{ω: Λ

The first of inequalities (5.6) is clear. The proof of (5.7) is similar.

COROLLARY 5.1. Let fieL2 and let g{ be determined by f{ through
Lemma 3.1, i — 1, 2. If fλ{ω) ^/2(&>) for ωeΩ, then there are deter-
minations of gu g2 such that g^o)) ^ g2{ώ) for ωeΩ.

Proof. Suppose that for some real t, μ{ω: g2(ω) ^ t < g^ω)} > 0.
From (5.6) and (5.7) it follows that

[f2(ω) - t]dμ(ω) ^ 0
{ ω : g ( ) ^ ί < ( ) }

g \ [Mω) - t]dμ(ω) ,
J{ω: g2(ω)^t<g1(ω)}

a contradiction. Thus for every real t, μ{g2^t<g1} = Of so that gλ<g2

a.e. (μ). One may then suppose glf g2 so chosen that the inequality is
satisfied everywhere.
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Frow Corollary 5.1 it follows that for fixed M the sequence gMtN is
monotone, as is also the sequence gM. The existence of the limits gM and
g is then guaranteed.

THEOREM 5.2. // g is ^-measurable and if the range of f is in
GΦ, then

J*(f, h) ^ Jφ(f, g) + JΦ(g, h)

for all bounded h e c^{£f) with range in Gφ.

Proof. From the geometric interpretation (cf. (2.4)) of Δ and the
boundedness of h it is clear that for fixed M there exists No such that
Δ[fMN(ω)fh(ω)] is non-decreasing in N for N> No, ωeΩ. Also there
exists Mo such that Δ[fM(ω), h(ω)] is non-decreasing in M for M > MOf

ωeΩ. Therefore

(5.8) J #-+«>

U
By Theorem 3.2,

hence

lim inf J(fM,N, h) ^ lim inf J(fMtN, gM,N) + lim in

jy-»oo iv->oo iv->oo

By Fatou's lemma,

lim inf J(fM,N, gMtN) ^ J(fM, gM)

and

lim inf J(gMtNf h) ^ J(gM, fc) .

Therefore

lim inf J{fMtN, h) ^ /(/^, ̂ ) + J ( ^ , h) .
N-*oo

From (5.8) it now follows that

J(fn, h) έ J(fM, gM) + J(gM, h) .

A repetition of the argument yields

J(f, h) ^ J(f, g) + J(g, h) ,

completing the proof of Theorem 5.2.

LEMMA 5.3. If f is integrable, so is g.
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Proof. Let EMN =D{ω: gMN(ω) ^ 0}. The application of (3.10) to

fm.N, 9m,n gives \ gM,Ndμ = \ fM,Ndμ. Therefore

r r

= \ fi£,Ndμ ^ \ I fM,N I d μ ^ I \ f \ d μ .

Similarly

ί c I 9M,N \ d μ = \ - gM,Ndμ

Addition gives

a n d t h e i n t e g r a b i l i t y o f \ g \ = l i m l i m \gM N\ f o l l o w s .
M NN

Proof of Theorem 5.1. By hypothesis and Lemma 5.3, both / and
g are integrable. Passage to the limit yields (4.5). By Theorem 3.2,
9M,N is bounded by infω fM,N(ω) and supω fn,N{ω)\ therefore also
infω/(ω) ^ g(ω) g supω/(ω), ωeΩ. The conclusion of Theorem 5.1 now
follows from Theorem 4.2.

6 tf-lattices determined by partial orderings on Ω. The problem
of minimizing J(/, o) in &{£f) was discussed in § 4 of [5] for the special
case in which Ω is a euclidean space En, and in which a partial order-
ing on En is given by

In [5], classes jSf and <%/ of ^-measurable sets were introduced as follows:
Le jϊf<ζ=φΏξeL, ω ^ ξ=^>ωeL; Ue^<—>jUce^f. The approach in
[5] to the minimum problem was through an analoue of the Hahn-Jordan
decomposition theorem. The present investigation began with the realiza-
tion that the methods apply equally well when jSf is an arbitrary cr-
lattice of sets in S^. Indeed, such an approach forms an alternative to
that developed in the preceding sections. The present section is devoted
to the remark that, given a partial ordering on Ω, the class of .im-
measurable, order-preserving maps from Ω into R coincides with the class

for a suitably defined <7-lattice ££*.
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Given a tf-lattice ^ c ^ if(.2^) denotes the class of functions h
such that for every real t{ω: h(ω) <t}e ^f. For a partial ordering
^*(^0 of Ω, define ^ * as the class of ^-measurable, order-preserving
maps of Ω into R. Define also jgf ( ^ ) as the class of ^-measurable
sets A such that ξeA, ω ^ ξ^ωe A. The class jSf (^*) is a σ-lattice.

The following theorem may be proved by straightforward application
of the definitions.

THEOREM 6.1.

In should perhaps also be remarked that given a class ^ of ^ L

measurable functions, one can determine as follows a σ-lattice _Sf of
^-measurable sets such that ^ is embedded in the class ^(jSf) of
jgf-measurable sets. Define a partial ordering ^*(<^): ω ^ ξ <

h(ω) ̂  Λ(£) for all fee if. Then set £f =

7 Concluding remarks* Let Xo be a random vector, and τ =
(Ji, , rn) a point of euclidean w-space En. Define

Ψ{τ) =D\ogE(ex°-T) .

The function Ψ is convex, defined on a convex subset GΨ of En. For τ
in Gr, exp {α? τ — ?F(τ)} (xeEn) is the density function with respect to
the distribution of XQ of a member of the exponential family (Darmois-
Koopman class, Koopman-Pitman class, or Laplacian family) of distributions
generated by XQ.

For i = 1, 2, , fc, let r* e GΓ. Let independent random samples of
sizes iVi, , iVfc be taken from the distributions corresponding to τ1, , τk

respectively. Let xι denote the (vector) sample mean of the sample
from the ΐth population. Then the logarithm of the joint density func-
tion is

(7.1) ΣiV^.τ*)-^).

For n — 1, let Φ denote the convex function conjugate to Ψ in the
sense of W. H. Young (§ 2); and define θι by r* = φ{θι), i = 1, 2, , k.
A problem of maximum likelihood estimation of the parameters θ\ , θ*
is a problem of maximizing (7.1), or equivalently of minimizing, for
given x1, , xk,

(7.2) Σ NlΦ{xι) + Ψ(τι) - x'τ1] .

Let Ω be a space of fc distinct points ω1, , cyfc, and μ a measure as-
signing measure NJN to ωι, i = 1, 2, , k, where iSΓ = Σ?=i^t. Define
/(ft>«) = »*, Λ(ω*) = θ\ i == 1, 2, , fc. The sum (7.2) can then be written
NJφ(f, h). The problem of minimizing (7.2) subject to a partial ordering
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on θ\ θ2, , θh is thus a special instance of the problem treated in this
paper. (This special problem has been treated in [5], [6], [7], and [1],
and a special case in [4].)

Certain problems involving ^-dimensional parameters with n > 1
reduce to the one-dimensional case.

1°. Suppose the components Xlύf « ,Xw0 of Xo are independent.
Then Ψ{τ) is of the form S?=i^fo)- The form to be minimized can be
written

or Σi=Λ//j, h5). In effect, the components of the ^-dimensional para-
meter can be estimated separately.

The methods of the present paper appear to extend naturally to
situations involving convex functions of several real variables only for
functions Φ of the form Σ^iΦ/, and for such functions the one-dimen-
sional treatment suffices. Much of the material in § 3 is meaningful also
when Φ is an arbitrary convex function of several real variables; but
for such functions generalizations of Theorms 5.1 and 5.2 have escaped
the author.

2°. Suppose that order restrictions are applied only to the first com-
ponents τ\, β ,τf of τ1, •• ,τ fc, and that the other components are re-
quired to be independent of i:

\ί.o) τ2 — — τ 2 , τ 3 — — τ 3 , , τn — — τn .

The minimizing values of τ\, , τ\ must minimize also the function of
them obtained when the parameters τ) j = 2, 3, , n, i = 1, 2, , k,
are replaced by their minimizing values. But this function is of the
form (7.2) (one-dimensional problem) for a certain function Φ depending
on the minimizing values of the τ) (j = 2, 3, , n, ί = 1, 2, , k) sub-
ject to (7.3). Since the solution is independent of the particular func-
tion Φ, the τ\ are determined by the x\ as in the one-dimensional problem
(ΐ = l,2, ...,fe).

This remark is appropriate in particular when n = 2, X01 is normal
with mean 0 and standard deviation 1, and XQ2 = X0

2i (the superscript
here indicates the square). The distribution of the exponential fumily
generated by XQ, corresponding to the parameter point τ = (τlf τ2) is normal
with mean τx/(l — 2r2) and variance 1/(1 — 2r2). Thus if the parameters
rj, i = 1,2, , k, j = 1, 2 are to be estimated by the maximum likelihood
method subject to a partial ordering of the means μi ==Dτil(l — 2rj) and
subject to the condition that τ\ is independent of i, then the μt are
determined by the sample means as in the one-dimensional problem.
This result appears in [7] and in [1].
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A final remark is that the inequality (1.2) for the conditional ex-
pectation of a random variable can be used in a modification of the
proof of the Rao-Blackwell theorem on sufficient sub-αvfields. Let / be
a statistic. Let J7~ be a sufficient sub-σ-field, i.e., g — E{f\^Γ) is
independent of the measure μ in the the class of measures considered.
Let θ0 denote the expectation of / . By (1.2),

Mf, θo) ^ Mff 9) + JΦ(g, θ0) .

Hence

(7.4) Jφ(g, θ0) ^ JΦ(f, θ0) ,

For Φ(u) =Du2j2, (7.4) states that g has smaller variance than/. Further,
let L(u, v) represent the loss which occurs if the estimate of the para-
meter E{f) is u when the true value is v. Suppose L(u, v) is convex
in u for fixed v. Set Φ{u) =DL(u, θ0) for constant θ0—the true parameter
value. From (7.4) it is then immediate that the risk is smaller for g
than for /, whatever the true value θ0.
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