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WIRTINGER-TYPE INTEGRAL INEQUALITIES

W. J. COLES

l Introduction* The following inequalities (and other similar ones)
are known:

(i ) if u'(x) ε L2 and u(0) = 0, then

S τr/2 fτr/2

u2dx ^ undx [41;
o Jo

(ii) if u"(x)eL2 and u(0) — u(π) = 0, then

[*u2dx ^ f V 2 ί t o [3];
Jo Jo

in each case, equality occurs if and only if u(x) = A sin cc. P. R. Beesack
[1] has generalized these two types of inequalities by considering the
underlying differential equations y" + py = 0 and y{iv) — py = 0 respec-
tively, together with the equations satisfied by 2/'/2/ In [2], a relation
was obtained between the equation y{2n) — py = 0 and the inequality

( - l ) n f
Ja

In this paper we let Ly be the general self-adjoint linear operator of
even order

and extend the methods of [2] to relate the equation

and the inequalities

(2) 0 ^ Σ ( - l ) n

and

(3) 0 ^ j δ — u*dx + ( - l) n (* — .

2. Notation and lemmas. Let ^ =/<l/(*), ^ = ΣJc=oVn~k\

ui5 = Vn-i/i/w, and ^ , = ?/(ί)/?/(j) (i = 0,
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Then

( 4 ) Vi = v\-x + yn-i (i = 1, , n) .

Let (k0 kn) be an (n + l)-tuple consisting of O's and l's, such that
Σ?=ifc< is even. Let

, c , (α, ki = 0 (α, fc<+1 = 1

(δ, &< = 0 (6, ftί+1 = 1

l = α T ί " ^ ; Λ = ( - i y - o ϊ ' ; Λ = ( - D 4 f t ; <ί = o f . . . f n ) .
df — a + b — d{

We now and henceforth assume that (1) has a solution on [a, b] such
that

(6 ) p^-'Kx) > 0 on (a, b) and at cf

) ^ 0 ( i = 2 , . . ,M);

0 (i = 0, , n - 1)

S δ

fQ(x)dx Φ 0, and
α

( 7 ) (-l)n + </<(«) ^ 0 on[α,6] (i = 0, •••, w - 1)

/»(«) ^ 0 on [α, 6] .

LEMMA 1. We have

(8 ) Pd/'*1-*^) > 0 on (α, 6) and aί c? (i = 1, , n) .

Proof. By hypothesis the lemma is true for i — 1. Suppose that,
for some i such that l g i ^ ^ - 1 , the statement holds. Integrating
and multiplying by (— l)fcί+1 we have

ViV{) 0
i+l

on (α, 6) and at c*+1. This completes Lemma 1.

LEMMA 2. We feα^e

( 9 ) QiVi(x) ̂  0 on [α, 6], > 0 αί d* (i = 0, , n — 1) .

Proof. We proceed by induction on i (i = w — 1, , 1, 0). Now

Vl-^X) = Vn(ί») - ϊ/o = - l/o, SO

Γ - lTfoPnVdt ^ 0
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i υ

since \y \ > 0 and \ fQ(x)dx Φ 0, the inequality is strict at d*^.
Ja

Now suppose that, for some i (n — 1 ^ i >̂ 1), the statement holds.
Then, integrating (4) and multiplying by q^u

= q^v^di-ύ + (

so q^Vi-^x) ^ 0 on (α, δ) and >0 at d*_lβ This completes Lemma 2.

3 The formal identity • Since (at least formally)

we have

(10) w« = u +i,ί + uί+lιi+1yΊ+1>i + fi .

Now we use (10) and induction to derive the formal identity

o = Σ (-1

then we will justify the formal steps.
First,

ur

i+lιiu
{i)2dx =

, ( i ) 2

SO

(12)
Jα

a Ja

Since t;Λ(a?) ΞΞ Ly = 0, um(x) = 0; using (10) and (12) with ΐ = 0,

0 =
Γb Γb Cb

\ un(uf — y1Quydx + I fQu2dx —- 1 unu'2dx .
Jα Jα Jα
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Suppose that, for some k such that 1 ^ k ^ n — 1,

(13) 0 =

Using (10) and (12) with i — k, and substituting for the last term in
(13), we obtain (13) with k replaced by k + 1. Hence (13) holds for
k — 1, , n\ with k = n, using the fact that unn = / n , and multiplying
by ( - If, we have (11).

LEMMA 3. Let u(x) be a function such that

(14) u{n) e L2[a, b]; uw(cn^) = 0 (ί - 0, , n - 1) .

(Note that (14) implies that the zero of u{i) at cn-{ is of order ^ 1
(i = 0, , n — 2) α^ώ > \ (i — n — 1).) Then (11) is vαϋώ.

Proof. Our concern is with possible zeros of y{i) (i = 0, , w — 1)
on [α, 6]; by Lemma 1, the only possible zero of 2/(i) is at cn_iβ Let i
be such that O g i ^ % - 1 , and suppose that y(ί) has a zero of order
r at cn-i. Then r ^ n — i. For if r > n ~ i then y{i+Ίc){cn.i) = 0
(fc = 1, , w — ΐ), and so c ^ = cn_,_! = cλ\ thus y{n){c^ = 0. But, by
Lemma 2, ^0(^i)^0 (since c^cίo*), and vQ(x)=fn(x)y{n)(x). Thus r ^ n — i .
Now, since cn-{— =c x , ̂ U ) has a zero of order ^ r at cw_{ (i = 0, 9n—2),
and of order > J (i = w — 1). The lemma now follows, as does the
fact (to be used in the proof of Lemma 5) that ui+lιi(cn-τ)u{i)2(cn_%) — 0

LEMMA 4. Ow [α, 6], ( - l) n + <

Proof. By Lemmas 1 and 2,

^ 0 (ΐ = 1, , w).

LEMMA 5. ( - l)n+<wi+

Proof. Since Cj = d/_!,

^— L) Ui+ltiU \a — {—

Evaluation at cn.{ gives zero, and

0 .

^ 0 (i = 0, , n - 1)



WIRTINGER-TYPE INTEGRAL INEQUALITIES 875

on [α, 6] and so at cίri-.ΐ-1.

4. The inequality* We now state

S b

fo(x)dx Φ 0.
a

Let fi(x) (i = 0, « ,w) satisfy (7), a n d Ze£ 2/(a?) 6e a solution of (1)

which satisfies (6). Lei w(#) satisfy (14). ~

(2 ) 0 ^ Σ ( - 1 )n

i=o

Further, equality obtains if and only if u(x) = cy(x) and (6) is modified
to make q^^d^) — 0 (i — 0, , n — 1).

Proof. The Theorem follows immediately from the lemmas, except
for the last statement, which follows from the fact that equality obtains
if and only if u{t+1)(x) = yi+lιi(x)u{ί)(x) (i = 0, , n - 1) and v^) = 0
(ΐ = 1, •••, w).

5 The reciprocal inequality. We now derive a set of inequalities
which includes (3); we prove

THEOREM 2. Let the f^x) (i = 0, -,n) and y(x) satisfy the hypo-
thesis of Theorem 1; in addition, let fi(x) Ξ 0 or fi(x) Φ 0 on [a, b]
(ΐ = o, ,ri). Let u(x) satisfy

(15) u{n) e L2[a, b]; u{i)(d%) = 0 (i = 0, , n - 1) .

Then, for each k (1 ̂  k g w) ŝ c/̂  ίfeαί fn~jc{^) Φ 0,

(16) 0 ^ ( δ ^ l - ^ ( χ ) d χ + ( - If \b—k—u™*dx .

Proof. The proof is similar to that of Theorem 1, so we present it

here in less detail. Let ri5 — y{n~%)\v5\ then, formally,

(17) ru = r'i+lιi + Ti+nVi+JVi - rf+lii/;_ί_1 .

Thus

(18) ( ί + l l i +

a Ja \ V ι

Jα Jα
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and

(19)

W. J. COLES

J*/n-t-i

r00u
2dx gives

α

S 6 1 fc-2 Γ 16 f &

- ^ 2 < t a = Σ ( - DM ri+1.4w
li>1 + r m . ι +

- jyn.ί_1r!+1.<it«'t<2aj} + ( - if'

application of (19) to the last term gives

(20) Γ-L u>dχ = Σ (- D
Jo / „ <=o

+ Σ (- i)1

= 0,

(k = 1,

We now show that, if fn-k(x) Φ 0, (20) is valid. Let a ^̂  have a
zero of order r; such a zero must be at d{. Now, r ^ n — i. For we
have

< - qJ+i(qJ+iVJ+1 + ( - lyΛ-i-iPi+il/^-^")

since y{n-j-1]{d3) Φ 0, if ^(d^) = 0 then fn-j-1 = 0, and v'ά = vj+1. Thus,
if r > n — ί, vf"^1] = ̂ _ ! and also ^ w~ί} = vn = 0. The first of these
implies that vf1 ~i] = <_x — vM — y0 = — ?/0 ^ 0, a contradiction. Further,
we have d{ = = cίi+r_1, so ̂ U ) has a zero of order greater than r — J
at ώ .̂ This suffices to justify (20). We note in addition that
ri+,Adi)n^\di) = 0 (i = 0, • , w - 1).

Now by hypothesis (— lf^f^^ ^ 0 (i = 0, , n — 1). Lemma 4
implies that ( - l)V i + M + 1 ^ 0 (ΐ = 0, , w — 2). Finally,
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evaluation at d* gives a non-positive quantity; evaluation at d{ gives zero.
Hence the inequality (16) follows from (20).

6. Concluding remarks. If we want (16) for only one particular
value of k (k < n), we need correspondingly less hypotheses on y(x) and
its derivatives, u(x) and its derivatives, and f^x) (i = 0, •• ,w), since
only k + 1 of the functions in each of these sets are actually involved
in any of the proofs.

Since (— l)"~*/ΐ(αθ <Ξ 0, from (2) we may delete any combination of
terms excluding the last, and to the right-hand side of (16) we may
add any terms of the form

u

{j)2dx

Thus, e.g., (2) implies

0 g ( - If [fn-*u™2dx + [fnu™*dx ,
j a J a

which perhaps corresponds more obviously to (16) than does (2).
Finally, the set of allowed values of (kQ kn) can be split into

halves such that one half, together with the inequality Ly ^ 0, and also
the other half, together with Ly <Ξ 0, will produce the inequalities.
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