Pacific Journal of Mathematics

THE SOCHOCKI-PLEMELJ FORMULA FOR THE FUNCTIONS OF TWO COMPLEX VARIABLES

Jerzy Górski

Vol. 11, No. 3

BadMonth 1961

THE SOCHOCKI-PLEMELJ FORMULA FOR THE FUNCTIONS OF TWO COMPLEX VARIABLES

JERZY GORSKI

Introduction. In the case of one complex variable the following theorems are well known [3]:

1. Let C be a rectifiable oriented Jordan arc or curve and $f(\zeta)$ an integrable function defined on C, analytic at a point $z_0 \in C$ (in case C is an arc we suppose z_0 is different from both endpoints of C). Then the function

$$F(z) = rac{1}{2\pi i} \int_{\sigma} rac{f(\zeta)}{\zeta-z} \, d\zeta$$

possesses the left and right limit $F_i(z_0)$ and $F_r(z_0)$, respectively, when the point ζ approaches to the point z_0 remaining permanently on one side of C and the relation

$$F_{l}(z_{0}) - F_{r}(z_{0}) = f(z_{0})$$

holds.

2. Under the same conditions concerning the curve C suppose $f(\zeta)$ satisfies at every point $\zeta_1 \in C$ the Hölder condition

$$|f(\zeta)-f(\zeta_1)| \leq M |\, \zeta-\zeta_1|^lpha \;, \qquad M>0 \;, \qquad 0$$

Then F(z) possesses at almost every point $z_0 \in C$ the left and right limit when the point ζ approaches to z_0 along a non-tangent path to C and

$$egin{aligned} F_{\imath}(z_{\scriptscriptstyle 0}) &= rac{1}{2\pi i} \int_{\sigma} rac{f(\zeta)}{\zeta - z_{\scriptscriptstyle 0}} \, d\zeta + rac{1}{2} \, f(z_{\scriptscriptstyle 0}) \; , \ F_{r}(z_{\scriptscriptstyle 0}) &= rac{1}{2\pi i} \int_{\sigma} rac{f(\zeta)}{\zeta - z_{\scriptscriptstyle 0}} \, d\zeta - rac{1}{2} \, f(z_{\scriptscriptstyle 0}) \; . \end{aligned}$$

The improper integral on the right hand side is taken in the Cauchy sense.

The aim of the present note is to extend these theorems to the theory of functions of two complex variables.¹ We start with Bergman's integral formula [1], [2] which generalizes the Cauchy formula for the case of functions of several variables. It would be very interesting to obtain similar results starting with other integral formulas which are similar to Bergman's formula e.g. A. Weil's formula [6] or later forms

Received May 12, 1960.

¹ Analogous results about the limits of exterior differential forms have been obtained by C. H. Look and T. D. Chung, see [4].

of it, see [5].

The case of a bicylinder. Let D be a bicylinder bounded by the hypersurfaces

$$egin{array}{lll} |z_1-e^{i\lambda_1}=0\;, & |z_2| \leq 1 \ |z_2-e^{i\lambda_2}=0\;, & |z_1| \leq 1 \end{array} \quad \lambda_j \in [0,\,2\pi] \end{array}$$

and let $f(\zeta_1, \zeta_2)$ be an integrable function defined on the distinguished boundary surface d of D

$$(z_1=e^{i\lambda_1}) imes (z_2=e^{i\lambda_2})$$
 .

1. Suppose that $f(\zeta_1, \zeta_2)$ is analytic at a point $z_1^0, z_2^0 \in D$. We consider the function

$$(\,1\,) \hspace{1.5cm} F(z_{\scriptscriptstyle 1},\,z_{\scriptscriptstyle 2}) = -\,rac{1}{4\pi^2}\!\int\!\!\!\int_a rac{f(\zeta_{\scriptscriptstyle 1},\,\zeta_{\scriptscriptstyle 2})}{(\zeta_{\scriptscriptstyle 1}-z_{\scriptscriptstyle 1})(\zeta_{\scriptscriptstyle 2}-z_{\scriptscriptstyle 2})}\,d\zeta_{\scriptscriptstyle 1}d\zeta_{\scriptscriptstyle 2}\;.$$

Since $f(\zeta_1, \zeta_2)$ is analytic at the point $z_1^0, z_2^0 \in d$, there exists a small bicylinder B which contains z_1^0, z_2^0 inside and such that $f(\zeta_1, \zeta_2)$ is analytic in \overline{B} . B is bounded by the hypersurfaces

$$egin{array}{lll} & z_1-z_1^0-r_1e^{i\lambda_3}=0\;, & |z_2|\leq r_2\ & z_2-z_2^0-r_2e^{i\lambda_4}=0\;, & |z_1|\leq r_1\;. \end{array} & r_j>0\;, & \lambda_{j+2}\in [0,\,2\pi]\;, & j=1,2\;. \end{array}$$

Suppose that the point z_1, z_2 belongs to DB, the intersection of D and B. Then using the integral formula for the function $f(\zeta_1, \zeta_2)$ and the domain DB we obtain

$$(2) f(z_1, z_2) = -\frac{1}{4\pi^2} \int_{a_1\overline{B}} \int_{a_2\overline{B}} \frac{f(\zeta_1, \zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_2 d\zeta_1 - \frac{1}{4\pi^2} \int_{a_1\overline{B}} \int_{a_4\overline{B}} - \frac{1}{4\pi^2} \int_{a_2\overline{B}} \int_{a_3\overline{B}} - \frac{1}{4\pi^2} \int_{a_3\overline{B}} \int_{a_4\overline{B}} ,$$

where d_j , j = 1, 2, 3, 4 denotes the positive oriented circle $z_j - e^{i\lambda_j} = 0$ and $z_j - z_j^0 - r_j e^{i\lambda_{j+2}} = 0$, j = 1, 2, respectively. (The integrands missing in the formula (2) are equal to that of the first integral.)

From (1) and (2) results

$$(3) \quad F(z_1, z_2) = -\frac{1}{4\pi^2} \int_{a_1 - a_1\bar{B}} \frac{d\zeta_1}{\zeta_1 - z_1} \int_{a_2} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2} d\zeta_2 - \frac{1}{4\pi^2} \int_{a_1\bar{B}} \int_{a_2 - a_2\bar{B}} \\ + f(z_1, z_2) + \frac{1}{4\pi^2} \int_{a_1\bar{B}} \int_{a_4\bar{B}} + \frac{1}{4\pi^2} \int_{a_2\bar{B}} \int_{a_3\bar{B}} + \frac{1}{4\pi^2} \int_{a_3\bar{B}} \int_{a_4\bar{B}} .$$

Let z_1, z_2 approach to the point z_1^0, z_2^0 remaining inside the bicylinder D, then

898

$$\begin{array}{l} f(z_1,z_2) \to f(z_1^0,z_2^0) \ , \\ (4) \quad \frac{1}{4\pi^2} \int_{a_3\bar{B}} \int_{a_4\bar{B}} \frac{f(\zeta_1,\zeta_2) d\zeta_1 d\zeta_2}{(\zeta_1-z_1)(\zeta_2-z_2)} \to \frac{1}{4\pi^2} \int_{a_3\bar{B}} \int_{a_4\bar{B}} \frac{f(\zeta_1,\zeta_2) d\zeta_1 d\zeta_2}{(\zeta_1-z_1^0)(\zeta_2-z_2^0)} \ . \end{array}$$

Using the Cauchy formula for the domain which lies on the z_2 -plane and is bounded by the curves $d_2\overline{B}$ and $d_4\overline{B}$, we obtain

(4')
$$\int_{a_2\bar{B}} \frac{f(\zeta_1,\zeta_2)}{\zeta_2-z_2} d\zeta_2 = 2\pi i f(\zeta_1,z_2) - \int_{a_4\bar{B}} \frac{f(\zeta_1,\zeta_2)}{\zeta_2-z_2} d\zeta_2 .$$

When the point z_1, z_2 tends to z_1^0, z_2^0 it results from (4')

$$\lim_{z_1, z_2 \to z_1^0, z_2^0} \int_{a_2 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2} d\zeta_2 = 2\pi i f(\zeta_1, z_2^0) - \int_{a_4 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2^0} d\zeta_2 \ .$$

The convergence is uniform with respect to $\zeta_1 \in d_3\overline{B}$, therefore,

$$\begin{array}{ll} \textbf{(5)} & \lim_{z_1, z_2 \to z_1^0, z_2^0} \frac{1}{4\pi^2} \int_{a_2 \overline{B}} \int_{a_3 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} \, d\zeta_1 d\zeta_2 \\ & = \frac{1}{4\pi^2} \int_{a_3 \overline{B}} \frac{d\zeta_1}{\zeta_1 - z_1^0} \left\{ 2\pi i f(\zeta_1, z_2^0) - \int_{a_4 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2^0} \, d\zeta_2 \right\} \,. \end{array}$$

In a similar way we obtain the formula

For the first and second term on the right hand side of (3) we obtain the limits $(z_1, z_2 \in DB)$:

$$(7') \qquad \lim_{z_1, z_2 \to z_1^0, z_2^0} \left\{ -\frac{1}{4\pi^2} \int_{a_1 - a_1 \overline{B}} \frac{d\zeta_1}{\zeta_1 - z_1} \int_{a_2} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2} d\zeta_2 \right\} \\ = \left\{ -\frac{1}{4\pi^2} \int_{a_1 - a_1 \overline{B}} \frac{d\zeta_1}{\zeta_1 - z_1^0} \left\{ 2\pi i f(\zeta_1, z_2^0) - \int_{a_4 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2^0} d\zeta_2 \right\} \right. \\ \left. + \int_{a_2 - a_2 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2^0} d\zeta_2 \right\}$$

and

(7")
$$\lim_{z_1, z_2 \to z_1^0, z_2^0} \left\{ -\frac{1}{4\pi^2} \int_{a_1 \overline{B}} \frac{d\zeta_1}{\zeta_1 - z_1} \int_{a_2 - a_2 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_2 - z_2} d\zeta_2 \right\} \\ = -\frac{1}{4\pi^2} \int_{a_2 - a_2 \overline{B}} \frac{d\zeta_2}{\zeta_2 - z_2^0} \left\{ 2\pi i f(z_1^0, \zeta_2) - \int_{a_3 \overline{B}} \frac{f(\zeta_1, \zeta_2)}{\zeta_1 - z_1^0} d\zeta_1 \right\}.$$

From (3), (4), (5), (6), (7') and (7") results

JERZY GORSKI

$$(8) \quad F_{i}(z_{1}^{0}, z_{2}^{0}) = \lim_{\substack{z_{1}, z_{2} \to z_{1}^{0}, z_{2}^{0} \\ z_{1}, z_{2} \in D}} F(z_{1}, z_{2}) = f(z_{1}^{0}, z_{2}^{0}) + \frac{1}{2\pi i} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{f(\zeta_{1}, z_{2}^{0})}{\zeta_{1} - z_{1}^{0}} d\zeta_{1} \\ + \frac{1}{2\pi i} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(z_{1}^{0}, \zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2} - \frac{1}{4\pi^{2}} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{d\zeta_{1}}{\zeta_{1} - z_{1}^{0}} \\ \cdot \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1}, \zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2} .$$

When the point z_1 , z_2 does not belong to D and tends to z_1^0 , z_2^0 , we obtain three values for the exterior limit $F_{lk}(z_1^0, z_2^0)$, k = 1, 2, 3, (in this case we need to put 0 instead of $f(z_1, z_2)$ in (2) and similar changes ought to be made in (7') and (7''))

$$\begin{split} F_{l1}(z_{1}^{0},z_{2}^{0}) &= \lim_{\substack{z_{1},z_{2} \to z_{1}^{0},z_{2}^{0} \\ |z_{1}| > 1, |z_{2}| > 1}} F(z_{1},z_{2}) \\ &= -\frac{1}{4\pi^{2}} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{d\zeta_{1}}{\zeta_{1} - z_{1}^{0}} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1},\zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2}; \\ F_{l2}(z_{1}^{0},z_{2}^{0}) &= \lim_{\substack{z_{1},z_{2} \to z_{1}^{0},z_{2}^{0} \\ |z_{1}| < 1, |z_{2}| > 1}} F(z_{1},z_{2}) \\ &= -\frac{1}{4\pi^{2}} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{d\zeta_{1}}{\zeta_{1} - z_{1}^{0}} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1},\zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2} \\ &+ \frac{1}{2\pi i} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1},\zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2}; \\ F_{l3}(z_{1}^{0},z_{2}^{0}) &= \lim_{\substack{z_{1},z_{2} \to z_{1}^{0},z_{2}^{0} \\ |z_{1}| > 1, |z_{2}| < 1}} F(z_{1},z_{2}) \\ &= -\frac{1}{4\pi^{2}} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{d\zeta_{1}}{\zeta_{1} - z_{1}^{0}} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1},\zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2} \\ &+ \frac{1}{2\pi i} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{d\zeta_{1}}{\zeta_{1} - z_{1}^{0}} \int_{a_{2} - a_{2}\bar{B} - a_{4}\bar{B}} \frac{f(\zeta_{1},\zeta_{2})}{\zeta_{2} - z_{2}^{0}} d\zeta_{2} \\ &+ \frac{1}{2\pi i} \int_{a_{1} - a_{1}\bar{B} - a_{3}\bar{B}} \frac{f(\zeta_{1},z_{2})}{\zeta_{1} - z_{1}^{0}} d\zeta_{1} . \end{split}$$

Therefore

$$egin{aligned} F_i(z_1^0,\,z_2^0) &= f(z_1^0,\,z_2^0) + rac{1}{2\pi i} \int_{a_1 - a_1ar{B} - a_3ar{B}} rac{f(\zeta_1,\,z_2^0)}{\zeta_1 - z_1^0} \,d\zeta_1 \ &+ rac{1}{2\pi i} \int_{a_2 - a_2ar{B} - a_4ar{B}} rac{f(\zeta_1,\,\zeta_2)}{\zeta_2 - z_2^0} \,d\zeta_2 \ ; \ F_i(z_1^0,\,z_2^0) &= f(z_1^0,\,z_2^0) + rac{1}{2\pi i} \int_{a_1 - a_1ar{B} - a_3ar{B}} rac{f(\zeta_1,\,\zeta_2)}{\zeta_2 - z_2^0} \,d\zeta_1 \ ; \ F_i(z_1^0,\,z_2^0) &- F_{\imath 2}(z_1^0,\,z_2^0) = f(z_1^0,\,z_2^0) + rac{1}{2\pi i} \int_{a_1 - a_1ar{B} - a_3ar{B}} rac{f(\zeta_1,\,\zeta_2)}{\zeta_1 - z_1^0} \,d\zeta_1 \ ; \ F_i(z_1^0,\,z_2^0) &- F_{\imath 3}(z_1^0,\,z_2^0) = f(z_1^0,\,z_2^0) + rac{1}{2\pi i} \int_{a_2 - a_2ar{B} - a_4ar{B}} rac{f(\zeta_1,\,\zeta_2)}{\zeta_2 - z_2^0} \,d\zeta_2 \ . \end{aligned}$$

REMARK. The formulas (10) can be transformed as follows. According to the well-known formula for the function $f(\zeta_1, z_2^0)$ of

900

one complex variable ζ_1 , which is analytic at the point $\zeta_1 = z_1^0$, we have (see [3])

$$G_i^{(z_2^0)}(z_1^0) = \lim_{\substack{z_1 o z_1^0 \ |z_1| < 1}} rac{1}{2\pi i} \int_{a_1} rac{f(\zeta_1, z_2^0)}{\zeta_1 - z_1} d\zeta_1 = rac{1}{2\pi i} \int_{a_1 - a_1 ar B - a_3 ar B} rac{f(\zeta_1, z_2^0)}{\zeta_1 - z_1^0} d\zeta_1 + f(z_1^0, z_2^0) \; .$$

Suppose the radius r_1 of the circle d_3 tends to 0, then

$$\lim_{r_1 o 0} rac{1}{2\pi i} \int_{a_1-a_1ar{B}-a_3ar{B}} rac{f(\zeta_1,z_2^0)}{\zeta_1-z_1^0}\,d\zeta_1 = G_i^{(z_2^0)}(z_1^0) - f(z_1^0,z_2^0)\;.$$

Similarly, we have

$$\lim_{r_2 o 0} rac{1}{2\pi i} \int_{a_2 - a_2 \overline{B} - a_4 \overline{B}} rac{f(z_1^0,\,\zeta_2)}{\zeta_2 - z_2^0} \, d\zeta_1 = G_i^{(z_1^0)}(z_2^0) - f(z_1^0,\,z_2^0) \; .$$

On the other hand, we have

$$egin{aligned} &\lim_{r_1 o 0}rac{1}{2\pi i}\!\!\int_{a_1-a_1ar{B}-a_3ar{B}}rac{f(\zeta_1,\,z_2^0)}{\zeta_1-z_1^0}\,d\zeta_2=G_l^{(z_2^0)}(z_1^0)=\lim_{z_1 o z_1^0top |z_1|>1}rac{1}{2\pi i}\!\!\int_{a_1}\!\!rac{f(\zeta_1,\,z_2^0)}{\zeta_1-z_1}\,d\zeta_1\ &\lim_{r_2 o 0}rac{1}{2\pi i}\!\!\int_{a_2-a_2ar{B}-a_4ar{B}}rac{f(\zeta_1,\,\zeta_2)}{\zeta_2-z_2^0}\,d\zeta_2=G_l^{(z_1^0)}(z_2^0)=\lim_{z_2 o z_2^0top |z_2|>1}rac{1}{2\pi i}\!\!\int_{a_2}\!\!rac{f(\zeta_1,\,z_2^0)}{\zeta_2-z_2}\,d\zeta_2\ . \end{aligned}$$

Therefore,

2. Suppose now that the function $f(\zeta_1, \zeta_2)$ is not analytic at z_1^0, z_2^0 but satisfies the condition

(11)
$$|f(\zeta_1, \zeta_2) - f(z_1^0, z_2^0)| \le M \cdot |\zeta_1 - z_1^0|^{\alpha_1} \cdot |\zeta_2 - z_2^0|^{\alpha_2},$$

 $M > 0, \ \alpha_j > 0, \ j = 1, 2.$

We have

(12)
$$F(z_1, z_2) = -\frac{1}{4\pi^2} \iint_a \frac{f(\zeta_1, \zeta_2) - f(z_1^0, z_2^0)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_1 d\zeta_2 \\ -\frac{1}{4\pi^2} \iint_a \frac{f(z_1^0, z_2^0)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_1 d\zeta_2 .$$

Since $f(z_1^0, z_2^0)$ is analytic, we can apply the formulas (8) and (9) to the second term of (12).

According to the assumption (11) the improper integral

JERZY GORSKI

exists. Let $\rho_j(z_j, d_j)$ be the Euclidean distance of the point z_j from the circle d_j , j = 1, 2. We shall show that the limit

$$\lim_{z_1, z_2 \to z_1^0, z_2^0} J(z_1, z_2) = \lim_{z_1, z_2 \to z_1^0, z_2^0} \left\{ -\frac{1}{4\pi^2} \iint_{a} \frac{f(\zeta_1, \zeta_2) - f(z_1^0, z_2^0)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} \, d\zeta_1 d\zeta_2 \right\} = J(z_1^0, z_2^0)$$

exists when the point z_1 , z_2 tends to z_1^0 , z_2^0 in such a way that the rations $|z_j - z_j^0| : \rho_j(z_j, d_j), j = 1, 2$, are bounded, i.e.,

(13)
$$\frac{|z_j - z_j^0|}{\rho_j(z_j, d_j)} < A$$
, $A > 0, \ j = 1, 2$.

In fact, we have

(the integrands missing in the formula (14) are equal to that of the first term). The third term on the right hand side tends to 0 when $z_1, z_2 \rightarrow z_1^0, z_2^0$. The first term can be written in the form

$$(15) \qquad -\frac{1}{4\pi^2} \int_{a_1\bar{b}} \int_{a_2\bar{b}} \frac{[f(\zeta_1, \zeta_2) - f(z_1^0, z_2^0)]}{(\zeta_1 - z_1^0)(\zeta_2 - z_2^0)} \\ \cdot \left\{ \frac{z_1 - z_1^0}{\zeta_1 - z_1} + \frac{z_2 - z_2^0}{\zeta_2 - z_2} \left(1 + \frac{z_1 - z_1^0}{\zeta_1 - z_1} \right) \right\} d\zeta_2 d\zeta_1 \ .$$

Suppose the radii r_j , j = 1, 2, of the bicylinder *B* are so small that for $\zeta_j \in d_j \overline{B}$, j = 1, 2, we have $|\zeta_j - z_j^0| \leq \delta$, where $\delta > 0$ is an arbitrary fixed number. Let z_1, z_2 satisfy the condition (13), then using (11) we obtain

$$egin{aligned} &-rac{1}{4\pi^2} \int_{a_1ar{b}} \int_{a_2ar{b}} rac{[f(\zeta_1,\zeta_2)-f(z_1^0,z_2^0)]}{(\zeta_1-z_1^0)(\zeta_2-z_2^0)} \ &\cdot iggl\{rac{z_1-z_1^0}{\zeta_1-z_1}+rac{z_2-z_2^0}{\zeta_2-z_2}\left(1+rac{z_1-z_1^0}{\zeta_1-z_1}
ight)iggr\} d\zeta_2 d\zeta_1iggr\| \ &\leq rac{1}{4\pi^2} M\{A+A(1+A)\} \int_{a_1ar{b}} \int_{a_2ar{b}} rac{|d\zeta_1||d\zeta_2|}{|\zeta_1-z_1^0|^{1-lpha_1}|\zeta_2-z_2^0|^{1-lpha_2}} < ext{const. } \delta^{lpha_1+lpha_2} \,. \end{aligned}$$

Therefore, for sufficiently small fixed $\delta > 0$ and z_1, z_2 sufficiently near to z_1^0, z_2^0 the first and third term on the right hand side of (14) are arbitrary

small. Similarly, the remaining two terms of (14) tend to 0 when $\delta \rightarrow 0$.

For the difference between the interior and exterior limits of $F(z_1 z_2)$ we obtain the same formulas (10), (10^{*}) assuming that z_1, z_2 tends to z_1^0, z_2^0 in such a way that the conditions (13) are satisfied.

The interior limit $F_i(z_1^0, z_2^0)$ is equal to $J(z_1^0, z_2^0)$ plus the terms of the right hand side of (8). Similarly, we obtain three values of the exterior limits $F_{ij}(z_1^0, z_2^0)$, j = 1, 2, 3, adding $J(z_1^0, z_2^0)$ to the terms of the right hand side of (9).

A general domain with the distinguished boundary surface. Suppose the given domain D is bounded by three² analytic hypersurfaces (for definitions see [1], [2])

$$arPhi_{j}(z_{_{1}}, z_{_{2}}, \lambda_{_{j}}) = 0$$
 , $j = 1, 2, 3$,

and let z_1^0, z_2^0 be a fixed point which lies on the part of the intersection d_{12} of the hypersurfaces $\varphi_1(z_1, z_2, \lambda_1) = 0$, $\varphi_2(z_1, z_2, \lambda_2) = 0$ which belongs to the boundary of D. We assume that z_1^0, z_2^0 does not belong to the hypersurface $\varphi_3(z_1, z_2, \lambda_3) = 0$.

1. Let $f(z_1, z_2)$ be a continuous function defined on the distinguished boundary surface d of D, analytic at the point z_1^0, z_2^0 . We consider the function $F(z_1, z_2)$ defined by Bergman's integral formula³ [2]

$$\begin{array}{ll} (16) \quad F(z_1,\,z_2) = - \; \frac{1}{4\pi^2} \! \iint_{a_{12}} \! \frac{f(\zeta_1,\,\zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} \\ & \cdot \; \frac{\{ \varPhi_1(z_1,\,\zeta_2\,\lambda_1)\varPhi_2(z_1,\,z_2,\,\lambda_2) - \varPhi_1(z_1,\,z_2,\,\lambda_1) \varPhi_2(z_1,\,\zeta_2,\,\lambda_2) \}}{\varPhi_1(z_1,\,z_2,\,\lambda_1) \varPhi_2(z_1,\,z_2,\,\lambda_2)} \; d\zeta_1,\,d\zeta_2 \\ & - \; \frac{1}{4\pi^2} \! \iint_{a_{13}} - \; \frac{1}{4\pi^2} \! \iint_{a_{23}} , \end{array}$$

 z_1, z_2 lies outside $\varphi_j(z_1, z_2, \lambda_j) = 0$, j = 1, 2, 3, and $d_{j,k}$ denotes the part of intersection of the hypersurfaces $\varphi_j(z_1, z_2, \lambda_j) = 0$, $\varphi_k(z_1, z_2, \lambda_k) = 0$ which belongs to the boundary of D.

Suppose the analytic hypersurface $\mathscr{P}_4(z_1, z_2, \lambda_4) = 0$ intersects the hypersurfaces $\mathscr{P}_1(z_1, z_2, \lambda_1) = 0$, $\mathscr{P}_2(z_1, z_2, \lambda_2) = 0$ and define a new domain $B \subset D$ which is bounded by segments of $\mathscr{P}_1(z_1, z_2, \lambda_1) = 0$, $\mathscr{P}_2(z_1, z_2, \lambda_2) = 0$ and $\mathscr{P}_4(z_1, z_2, \lambda_4) = 0$. Further, suppose that the point z_1^0, z_2^0 does neither belong to the intersection of $\mathscr{P}_1 = 0$, $\mathscr{P}_4 = 0$ nor to that of $\mathscr{P}_2 = 0$, $\mathscr{P}_4 = 0$, and lies on the boundary of B. Let B be sufficiently small so that $f(\zeta_1, \zeta_2)$ is analytic in \overline{B} .

Let z_1, z_2 be an arbitrary point in B. Using Bergman's integral

² For simplicity we assume that the number of the boundary surfaces is 3, but the considerations are valid for the general case.

⁸ The integrands of the second and third integrals equal to those of the first with ϕ_1 and ϕ_2 replaced by ϕ_1 , ϕ_3 and ϕ_2 , ϕ_3 , respectively.

formula representing the function $f(z_1, z_2)$ in the domain *B*, we obtain (comp. footnote 2)

(17)
$$f(z_1, z_2) = -\frac{1}{4\pi^2} \iint_{a_{12}\bar{B}} \frac{f(\zeta_1, \zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} \\ \cdot \frac{\{ \varphi_1(z_1, \zeta_2, \lambda_1) \varphi_2(z_1, z_2, \lambda_2) - \varphi_1(z_1, z_2, \lambda_1) \varphi_2(z_1, \zeta_2, \lambda_2) \}}{\varphi_1(z_1, z_2, \lambda_1) \varphi_2(z_1, z_2, \lambda_2)} d\zeta_1 d\zeta_2 \\ - \frac{1}{4\pi^2} \iint_{a_{14}\bar{B}} - \frac{1}{4\pi^2} \iint_{a_{24}\bar{B}}.$$

Since $\iint_{a_{12}} = \iint_{a_{12}\bar{B}} + \iint_{a_{12}-a_{12}\bar{B}}$ it follows from (16) and (17)

(18)
$$F(z_1, z_2) = -\frac{1}{4\pi^2} \iint_{a_{12}-a_{12}\overline{B}} + f(z_1, z_2) \\ + \frac{1}{4\pi^2} \iint_{a_{14}\overline{B}} + \frac{1}{4\pi^2} \iint_{a_{24}\overline{B}} - \frac{1}{4\pi^2} \iint_{a_{13}} - \frac{1}{4\pi^2} \iint_{a_{23}} .$$

If the point z_1, z_2 lies outside the domain B and the hypersurfaces $\Phi_j = 0, j = 1, \dots, 4$, we ought to substitute 0 for $f(z_1, z_2)$ in (18).

Consider the integrals on the right hand side of (18). As long as the point z_1, z_2 does not lie on any of the hypersurfaces $\mathcal{P}_j(z_1, z_2, \lambda_j) = 0$, j = 1, 2, 3, 4, we have $\mathcal{P}_j(z_1, z_2, \lambda_j) \neq 0$. According to the assumption under which the Bergman integral formula was proved (see [2]) the functions

(19)
$$\psi_{jk}(z_1, z_2, \zeta_1, \zeta_2, \lambda_j, \lambda_k)$$

= $\frac{\varphi_j(z_1, \zeta_2, \lambda_j) \varphi_k(z_1, z_2, \lambda_k) - \varphi_j(z_1, z_2, \lambda_j) \varphi_k(z_1, \zeta_2, \lambda_k)}{(\zeta_1 - z_1)(\zeta_2 - z_2)}$,
 $j, k = 1, \dots, 4$

are continuous provided that $\zeta_1, \zeta_2 \in d$ and z_1, z_2 does not lie on the distinguished boundary surface d of D. (It can happen that $\zeta_1 = z_1$ or $\zeta_2 = z_2$, but the case $\zeta_1, \zeta_2 = z_1, z_2$ is excluded.)

We denote by λ_1^0 and λ_2^0 the values of the parameters λ_1 and λ_2 which correspond to the point z_1^0, z_2^0 , i.e., $\Psi_1(z_1^0, z_2^0, \lambda_1^0) = 0$, $\Psi_2(z_1^0, z_2^0, \lambda_2^0) = 0$.

Let $z_1 = z_1^0$, $z_2 = z_2^0$, then the integrals in (18) are improper since the factors $\Phi_1^{-1}(z_1^0, z_2^0, \lambda_1)$ and $\Phi_2^{-1}(z_1^0, z_2^0, \lambda_2)$ are indefinite for $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$, respectively. The functions $\psi_{jk}(z_1^0, z_2^0, \zeta_1, \zeta_2, \lambda_j, \lambda_k)$ are continuous for $(\zeta_1, \zeta_2) \in d_{12} - d_{12}\overline{B} + d_{14}\overline{B} + d_{24}\overline{B} + d_{13} + d_{23}$ (according to Bergman's assumption) because the point ζ_1, ζ_2 does not coincide with z_1^0, z_2^0 .

In general, the integrals on the right hand side of (18) are divergent for $(z_1, z_2) = (z_1^0, z_2^0)$.

Suppose the functions $\Phi_j(z_1^0, z_2^0, \lambda_j)$, j = 1, 2, satisfy the conditions

$$(19^*) \qquad \qquad | \, \varPhi_{j}(z_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}, \, z_{\scriptscriptstyle 2}^{\scriptscriptstyle 0}, \, \lambda_{\scriptscriptstyle j}) \, | \ge A \, | \, \lambda_{\scriptscriptstyle j} - \lambda_{\scriptscriptstyle j}^{\scriptscriptstyle 0} \, |^{\alpha} \, \, , \qquad A > 0, \; 0 < \alpha < 1 \; ,$$

then $F(z_1^0, z_2^0)$ exists. We denote by $\rho(z_1, z_2; z_1^0, z_2^0)$ the Euclidean distance between the points z_1, z_2 and z_1^0, z_2^0 and by $\rho_j(z_1, z_2; \mathcal{P}_j)$ the distance of the point z_1, z_2 to the hypersurface $\mathcal{P}_j = 0$. If the functions $\mathcal{P}_j(z_1, z_2, \lambda_j)$, j = 1, 2, satisfy the conditions

$$(20) \qquad \qquad | \, \varPhi_{j}(\pmb{z}_{1}, \pmb{z}_{2}, \lambda_{j}) \, | \geq A \, | \, \lambda_{j} - \lambda_{j}^{\scriptscriptstyle 0} \, |^{\alpha} \, , \qquad \qquad 0 < \alpha < \tfrac{1}{2} \, ,$$

for z_1, z_2 belonging to Δ , where Δ is defined by the inequalities

$$(20^*) \qquad \qquad arepsilon : 0 < rac{
ho(z_1,\,z_2;\,z_1^0,\,z_2^0)}{
ho_j(z_1,\,z_2;\,arphi_j)} < M \ , \qquad M>0, \ j=1,\,2 \ ,$$

then

(21)
$$\lim_{\substack{z_1,z_2 \to z_1^0, z_2^0 \\ z_1, z_2 \in DJ}} F(z_1, z_2) = F_i(z_1^0, z_2^0) \; .$$

The proof of (21) is similar to that given in § 1.

Similarly, if the point z_1, z_2 lies outside the domain D and tends to z_1^0, z_2^0 there exists the exterior limit

(21*)
$$\lim_{\substack{z_1,z_2 \to z_1^{0}, z_2^{0} \\ z_1, z_2 \notin \mathcal{D}; \ z_1, z_2 \in \mathcal{J}}} F(z_1, z_2) = F_l(z_1^{0}, z_2^{0})$$

provided that (20) and (20^{*}) hold. The difference of both limits is equal to $f(z_1^0, z_2^0)$:

REMARK. Under the conditions (20), (20^{*}) there exists one interior and only one exterior limit of the function $F(z_1, z_2)$ for $z_1, z_2 \rightarrow z_1^0, z_2^0$.

2. Suppose now the function $f(\zeta_1, \zeta_2)$ is not analytic at the point z_1^0, z_2^0 but satisfies the condition

(23)
$$|f(\zeta_1, \zeta_2) - f(z_1^0, z_2^0)| \leq A |\zeta_1 - z_1^0| |\zeta_2 - z_2^0|, \qquad A > 0.$$

The function $F(z_1, z_2)$ can be represented as follows

Since $f(z_1^0, z_2^0) = \text{const.}$ is an analytic function, we can apply to the latter terms in (24) the results obtained in § 1. Under the conditions (20), (20*) there exists the exterior and interior limit of those terms.

Consider the first term in (24). If the function

JERZY GORSKI

$$\psi_{12}(z_1^0,\,z_2^0,\,\zeta_1,\,\zeta_2,\,\lambda_1,\,\lambda_2)=rac{arPhi_1(z_1^0,\,\zeta_2,\,\lambda_1)arPhi_2(z_1^0,\,z_2^0,\,\lambda_2)-arPhi_1(z_1^0,\,z_2^0,\,\lambda_1)arPhi_2(z_1^0,\,\zeta_2,\,\lambda_2)}{(\zeta_1-z_1^0)(\zeta_2-z_2^0)}$$

is continuous for $\zeta_1, \zeta_2 \in d_{12}$, the integral

(25)
$$-\frac{1}{4\pi^2} \iint_{a_{12}} \frac{[f(\zeta_1,\zeta_2) - f(z_1^0,z_2^0)] \cdot \psi_{12}(z_1^0,z_2^0,\zeta_1,\zeta_2,\lambda_1,\lambda_2)}{\varphi_1(z_1^0,z_2^0,\lambda_1)\varphi_2(z_1^0,z_2^0,\lambda_2)} d\zeta_1 d\zeta_2$$

exists provided that $\mathscr{P}_1(z_1^0, z_2^0, \lambda_1)$ and $\mathscr{P}_2(z_1^0, z_2^0, \lambda_2)$ satisfy the condition (19*). If in addition $\psi_{12}(z_1, z_2, \zeta_1, \zeta_2, \lambda_1, \lambda_2)$ is continuous for $\zeta_1, \zeta_2 \in d_{12}$ and $z_1, z_2 \rightarrow z_1^0, z_2^0$ and if $\mathscr{P}_1(z_1, z_2, \lambda_1), \mathscr{P}_2(z_1, z_2, \lambda_2)$ satisfy (20), (20*), there exists the limit of (25) for $z_1, z_2 \rightarrow z_1^0, z_2^0$. In the case where $\psi_{12}(z_1, z_2, \zeta_1, \zeta_2, \lambda_1, \lambda_2)$ is not continuous for $\zeta_1, \zeta_2 \in d_{12}$ and $z_1, z_2 \rightarrow z_1^0, z_2^0$ we use the condition (23). Then the limit of (25) exists provided that $z_1, z_2 \rightarrow z_1^0, z_2^0$ under the conditions (20), (20*).

Observe that for the difference between the interior and exterior limit of $F(z_1, z_2)$ we obtain the formula (22).

3. If one of the hypersurfaces $\Phi_j(z_1, z_2, \lambda_j) = 0$, j = 1, 2, depends on one of the variables z_1, z_2 , e.g., if $\Phi_1(z_1, z_2, \lambda_1)$ is independent from z_2

then the integrand in the first term on the right hand side of (18) can be represented in the form

(27)
$$\omega_{12} = \frac{f(\zeta_1, \zeta_2)[\varPhi_2(z_1, z_2, \lambda_2) - \varPhi_2(z_1, \zeta_2, \lambda_2)]}{(\zeta_1 - z_1)(\zeta_2 - z_2)\varPhi_2(z_1, z_2, \lambda_2)}$$

According to Bergman's assumption (26) is continuous for $\zeta_1, \zeta_2 \in d$, $\zeta_2 = z_2, \zeta_1 \neq z_1$. For $z_1 = z_1^0, z_2 = z_2^0$ the integral $\iint_{a_{12}-a_{12}\overline{B}}$ in (18) and the remaining integrals are improper. If $\mathscr{P}_2(z_1^0, z_2^0, \lambda_2)$ satisfies the condition (19*) it is sufficient to take into account the singularity due to the factor $(\zeta_1 - z_1^0)^{-1}$.

According to (26) the first coordinate of every point ζ_1, ζ_2 of d belongs to the curve $C_1: z_1 = \varphi(\lambda_1)$. Suppose, the double integral over $d_{12} - d_{12}\overline{B}$ can be represented as follows

$$(28) \qquad \iint_{a_{12}-a_{12}\bar{B}} \omega_{12} d\zeta_1 d\zeta_2 \\ = \int_{\sigma_1} \frac{d\zeta_1}{\zeta_1-z_1} \int_{[a_{12}-a_{12}\bar{B}]z_2} \frac{f(\zeta_1,\zeta_2)[\varPhi_2(z_1,z_2,\lambda_2) - \varPhi_2(z_1,\zeta_2,\lambda_2)]}{(\zeta_2-z_2)\varPhi_2(z_1,z_2,\lambda_2)} d\zeta_2 ,$$

where $[d_{12} - d_{12}\overline{B}]_{z_2}$ is the projection of the set $d_{12} - d_{12}\overline{B}$ on the z_2 plane. Under the conditions (19^{*}) assuming that

906

$$rac{f(\zeta_1,\,\zeta_2)[arPhi_2(\!z_1,\,z_2,\,\lambda_2)-arPhi_2(\!z_1,\,\zeta_2,\,\lambda_2)]}{arPhi_2(\!z_1,\,z_2,\,\lambda_2)}$$

is analytic at the point z_1^0, z_2^0 the integral (28) possesses one interior and two exterior limits when $z_1, z_2 \rightarrow z_1^0 z_2^0$. Similarly, the integrals $\iint_{a_{13}}$ and $\iint_{a_{14}}$ in (18) possesses one interior and two exterior limits. In the case where $\mathcal{P}_1(z_1, z_2, \lambda_1) = z_1 - \mathcal{P}(\lambda_1), \ \mathcal{P}_2(z_1, z_2, \lambda_2) = z_2 - \psi(\lambda_2),$

we obtain the same result as for a bicylinder.

The Sochocki-Plemelj formula (22) was proved for a REMARK. special class of domains-domains with the distinguished boundary surface. The basic tool was the Bergman's integral formula (16). It arises the problem to generalize the Bergman formula for more general domains with maximal manifold (Bergman-Silov boundary) and to extend the Sochocki-Plemelj formula for such domains.

References

1. S. Bergman, Über eine in gewissen Bereichen mit Maximumflächen gültige Integral darstellung der Funktionen zweier komplexer Variablen, Math. Z., 39 (1934), 76-94 and 605-608.

-, An integral representation of functions of two complex variables, Rec. Math., 2. _ **1** (43), (1936), 851-862.

3. А. И. Маркущевич, Теория аналитических Функций, Москва 1950.

4. C. H. Look and T. D. Chung, An extension of Privalof's theorem, Acta Math. Sinica, 7 (1957), 144-165.

5. F. Sommer, Über die Integralformeln in der Funktionentheorie mehrerer komplexen Veränderlichen, Math. Ann., 125 (1952), 172-182.

6. A. Weil, L'intégrale de Cauchy et les functions de plusieurs variables, Math. Ann., 111 (1953), 178-182.

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

F. H. BROWNELL University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7. California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
T. M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE COLLEGE
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE COLLEGE	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY	HUGHES AIRCRAFT COMPANY
UNIVERSITY OF SOUTHERN CALIFORNIA	SPACE TECHNOLOGY LABORATORIES
	NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 11, No. 3 BadMonth, 1961

Errett Albert Bishop, A generalization of the Stone-Weierstrass theorem	777
Hugh D. Brunk, Best fit to a random variable by a random variable measurable with	
respect to a σ -lattice	785
D. S. Carter, Existence of a class of steady plane gravity flows	803
Frank Sydney Cater, On the theory of spatial invariants	821
S. Chowla, Marguerite Elizabeth Dunton and Donald John Lewis, Linear	
recurrences of order two	833
Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as	
an algebra	847
William J. Coles, Wirtinger-type integral inequalities	871
Shaul Foguel, Strongly continuous Markov processes	879
David James Foulis, <i>Conditions for the modularity of an orthomodular lattice</i>	889
Jerzy Górski, The Sochocki-Plemelj formula for the functions of two complex	
variables	897
John Walker Gray, Extensions of sheaves of associative algebras by non-trivial	
kernels	909
Maurice Hanan, Oscillation criteria for third-order linear differential equations	919
Haim Hanani and Marian Reichaw-Reichbach, Some characterizations of a class of	
unavoidable compact sets in the game of Banach and Mazur	945
John Grover Harvey, III, Complete holomorphs	961
Joseph Hersch, <i>Physical interpretation and strengthing of M. Protter's method for</i>	
vibrating nonhomogeneous membranes; its analogue for Schrödinger's	
equation	971
James Grady Horne, Jr., <i>Real commutative semigroups on the plane</i>	981
Nai-Chao Hsu, <i>The group of automorphisms of the holomorph of a group</i>	999
F. Burton Jones, <i>The cyclic connectivity of plane continua</i>	1013
John Arnold Kalman, <i>Continuity and convexity of projections and barycentric</i>	
coordinates in convex polyhedra	1017
Samuel Karlin, Frank Proschan and Richard Eugene Barlow, Moment inequalities of	
	1023
	1035
Azriel Lévy and Robert Lawson Vaught, <i>Principles of partial reflection in the set</i>	
	1045
Donald John Lewis, <i>Two classes of Diophantine equations</i>	
Daniel C. Lewis, <i>Reversible transformations</i>	1077
Gerald Otis Losey and Hans Schneider, <i>Group membership in rings and</i>	
semigroups	1089
M. N. Mikhail and M. Nassif, On the difference and sum of basic sets of	
I V	1099
Alex I. Rosenberg and Daniel Zelinsky, <i>Automorphisms of separable algebras</i>	
Robert Steinberg, Automorphisms of classical Lie algebras	
Ju-Kwei Wang, Multipliers of commutative Banach algebras	
Neal Zierler, Axioms for non-relativistic augntum mechanics	1151