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EQUATION

JOSEPH HERSCH

The origin of this work lies partly in M. H. Protter's method [7],
[8], partly in two papers [3], [5], developing the idea, found in Payne-
Weinberger [6], of auxiliary one-dimensional problems; the physical
interpretation in § 3 rejoins that of [2] and [4],

l We consider the first eigenvalue λx of a nonhomogeneous mem-
brane with specific mass p(x, y) ^ 0 covering a plane domain D and
elastically supported (elastic coefficient k(s)) along its boundary Γ:

Δu + Xρ(χ, y)u = 0 in D , — + k(s)u = 0 along Γ ,
dn

where n is the outward normal.
Every continuous and piece wise smooth function v(x, y) furnishes

an upper bound for λr: By Rayleigh's principle

D(v) + §Fk{s)v2ds
\ - Min, —-J

where ds is the length element, dA the element of area, and D(v) the

Dirichlet integral \ 1 grad2 v dA. The Minimum is realized ifv = uλ(x,y)

(first eig en function, satisfying Δux + Xιpuι = 0).

In the opposite direction, we are here in search of a Maximum

principle for Xlf from which we could calculate lower bounds.

2. Let us consider in D a sufficiently regular vector field p (we
shall discuss presently what discontinuities are allowed), satisfying the
condition

(1) p n ^ k(s) along Γ .

grad2 ux + (p2 — div p) u\ — — div (ulp) + grad2 uλ + u\ψ + 2uλ grad uλ p

= —div(ulp) + (grad% + u3f ^ —diγ(ulp) .

Let us integrate this inequality:
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0 ^ D(tti) + <f ulp wds + (ί @2 - div p)u\dA

g £(%) + <f k{s)u\ds + \[(p2 - d\\p)u\dA = \\(\P + P2 - div p)u\dA

whence the lower bound

(2)

We have equality if (and only if) p — —graduju^ whence the
Maximum principle

(3)
. ,. / div p — p2\

' n^ k(s) along/* ^ I j ? ! )

Allowed discontinuities (see also [5]): the same as in Thomson's
principle for boundary value problems. — If ΰ is cut into subdomains
A> A> •••> A> by analytic arcs, it is sufficient that the vector field p
be continuous and differentiate in each D{

 and that its normal com-
ponent be continuous across all those analytic arcs; the tangential com-
ponent need not be continuous. — Other sufficient condition: p = \plf p2},
pλ continuous in x and differentiate with respect to x, p2 continuous in
y and differentiate with respect to y.

Two properties of a "good" concurrent vector field: One should
try to construct p such that p n = k(s) along Γ and (div p — ψ)lp =
const in D (such is the case for the extremal field -grad^i/Ui); the
examples calculated in [5] show that such a "good" field may be easy
to construct.

REMARK. For a fixed boundary (u — 0 along Γ), k = oo and con-
dition (1) falls off.—A "good" field will then be singular along Γ.

3 A physical interpretation^

3.1. One verifies immediately that the nonhomogeneous membrane
upon D, with specific mass = λ1/t>(ίc, y) and elastic coefficient k{s),
vibrates with ground eigenfrequency 1: Δuγ + 1 ( λ ^ ) ^ — 0.

We shall presently establish the following theorem'. Given an ad-
missible vector field p in D, the nonhomogeneous membrane with specific
mass p(χ, y) — div p — ψ in D and elastic coefficient k{s) — p n along
Γ, vibrates with ground frequency ^ 1.

The inequality (2) follows as a corollary: according to two general
principles regarding vibrating systems (cf. [1], pp. 354 and 357), a homo-



VIBRATING MEMBRANES, SCHRODINGER EQUATION 973

geneous membrane with specific mass S P and elastic coefficient k(s) ^
ίc(s) vibrates a fortiori with ground frequency ^ 1; whence (2).

3.2. The above theorem will be established by proving the following
statement to be true: If we cut the membrane (specific mass p(x, y)
= div p — ψ, elastic coefficient k(s) = p n) into slices Dj of infinitesimal
breadth along all trajectories of p, it then vibrates with ground
frequency 1.

Indeed: Each slice Dά has the first eigenfrequency 1: Call s the
arc length along the trajectory (measured from an arbitrary origin on

{ rs — > Ϊ

— 1 p-ds\,
Cj > 0 arbitrary. Then grad / = —fp;

Δf = -/div p — p - grad / = (p2 - div p)f = -pf ,

θf _ /-> . -^\ f = (— kf on Γj (infinitesimal part of Γ bounding Dj);
dn 10 along the cuts;

/ > 0 in D. Thus, our function / is the first eigenfunction of the
vibrating slice Dj with specific mass p, free along the cuts and with
elastic coefficient k on Γ? ; its first eigenfrequency is 1, because Δf +
1 pf = 0: this proves the theorem and justifies our physical interpre-
tation of (2).—The light in which the Maximum principle is viewed
here, is in agreement with [2] and [4].

4 An inequality of M. H Protter*

Let p = — - g r a d α , where ~t(x, y) is a vector field and a(x, y) > 0
a 2a

a scalar field. Then

div "* — "2 — d ί v ^ _ J- — 42L + gra(*2 a > divi _ ~b_ _ Δa^
a a2 2a Aa2 = a a2 2a

For a membrane with fixed boundary, Condition (1) falls off, so we
have by (2)

a(4) \ ^ inf D

This is M. H. Protter's inequality [7], [8] (if we write 1 = {P, Q})
—although he requires P(x, y) and Q(x, y) to be C1 in D, which is
unnecessarily restrictive (cf. also [5] and [3]): P might be discontinuous
in y and Q in x.
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M. H. Protter indicates in [8] very interesting applications of (4)
to comparison theorems between ground eigenfrequencies of two non-
homogeneous membranes spanning the same domain D.

Critical remark.—In the proof of (4) we neglected the positive

term grad2α/4α2: equality is impossible in (4) unless a(x, y) = const,

in which case (4) reduces back to (2) with p = ΐ/α.

5. Strengthening of Protter's inequality* Let first (a little more

generally) p = — + v with t(x, y), v(x, y), a(x, y) > 0; div p — ψ — 1 V

a a

- i l + div v - v2 - g r a d α t - 2— t; in order t h a t the two last terms
a2 a2 a

may cancel everywhere, let (with Prot ter ) v= - g r a d α - - g r a d ] ^ α

2α -]/ a

then div£ - v2 = - .^ΛΛ letVa(x, y) = b(x, y) > 0 in D, i.e.
l/α

J | 6 ; div p - ψ = i g ί - 1 - A . - Under the condition

(5) 1-lA _ JL J * . g fc(8) (identically satisfied if fc = oo) ,

we have the lower bound

(6)

with equality whenever — — -^-5 = — g r a ^-, as no term has been
b2 b u

neglected.—If, for example, we take ? == 0, we get an inequality of

Barta-Pόlya \ ^ inf^f- — \ — Γ l n fact, if — + k(s)b = 0 on Γ, λx is
V pδ / L θn

comprised between the two Barta-Pόlya bounds

The expression in square brackets in (6) is larger than that in (4),
because

_ Δa

 = — ΔΦ) = — div (b grad 6) = _ Δb __ grad2 6 .
2a ~ 2i2 6 2 6 6 2

this does not diminish M. H. Protter's merit, as his inequality (4)
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contains (2) as a special case, whence (6) follows.

6* Applications*

6.1. The inequalities obtained by M. H. Protter in [8] may be
sharpened by using (6) instead of (4).

6.2. Small variation of the elastic coefficient along the boundary.
First case: p(x, y), k(s); X19 ux{x, y).
Second case: p(x, y) = p(x, y), k(s) = k(s) + eK(s); \, u^x, y).
By Rayleigh's principle,

D (ut) + Φ ku\ds
\ ^ — — = λx + εQ , where Q =

\\puldA \\ρu\dA

We now introduce b — uλ(xf y) into (6):

\ ^ \ + inf* l±-(^l- - —)\ under the condition -*-L -̂ ^ εif (β),

whence \ \ div ϊdA = it - nds ^ ε Φ Ku\ds — SQ\\ pu\dA.—There exists a

vector field t such that

div 1 = eQp(x, y)u\ in D and t n = eK(s)u\ along Γ: indeed, we

can even impose the supplementary condition rot t = 0, t = grad v;

v (determined up to an additive constant) is the solution of the Poisson-

Neumann problem

Δv = eQp(x, y)u\ in D and — = εK(s)u\ along Γ .

Clearly, v and t are proportional to ε. Thus,

(7') \ ^ \ + eQ- s u p J - ^ - ) = ^ + eQ - O(ε2) .

(7) and (7') give

(7") \ =\ + eQ- O(ε2) .

The first perturbation calculus gives \ = λ̂  + εQ; we thus verify
that this is the tangent to the exact curve X1 = λ^ε).

6.3. Small variation of the specific mass p(x, y).
First case: p(x, y), k(s); λ l f uλ(x, y).
Second case: ρ(x, y) = jθ(a?, ?/) + εσ(x, y), ϊc(s) = fc(s); λlf ^(a?, i/).
By Rayleigh's principle,
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(8)

We now introduce again b = ux{x, y) into (6):

\ ^ inf J - 4 ( ^ ^ - — + \p)\ under the condition ~t n ^ 0 along Γ;
I p \ u\ u\ / J

we want to use a vector field ΐ such that "ί % = 0 along Γ and

i/αivj; ^ \ _ c _ c o n s ^ - j n jrĵ  s o (jjv ^ _ ^ ^ c ^ _ ^ ^

Jp\ u\

is determined by the condition

0 = <f ί . nds = i \ div?dA = cH|O%;dA - λx H ^ J d A ,

whence

c = λ* div t = W
1 + #

such a vector field ? exists: we can even request that it be a gradient
field; ί = O(ε).

(8') λ, ^ λ l

1 + εiϋ \ puU 1 + εi?

(8) and (8') give

(8") λ, = ^ - O(ε2) .
1 + εii

7 Schrόdinger's equation*

7.1. We consider an equation of Schrόdinger's type in 3-space:

(9) Δu + [λ - W(x, y, z)]u = 0

with some boundary conditions not specified here, but which must

permit partial integrations analogous to those of § 2; W = -^-V(x,y, z)f

h2

\ = -ψ--Elf where V is the potential, and Ex the lowest energy level.
h2

Eayleigh's principle:
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D(v)+ \\\w{x,y,z)v*dτ
(10) \ = Minυ

 J ' '

v2dτ

with, possibly, a supplementary term at the numerator, owing to the
boundary conditions; dτ is the volume element.—The Minimum is
realized for the first eigenfunction uλ(x, y, z) of the differential equation.

7.2. An argument almost identical to that of § 2 (cf. also [5])
gives the Maximum principle:

(11) — Max; mfD{W(x, y,z) + div p — p2}

where the concurrent vector fields p must satisfy corresponding boundary
conditions.—The Maximum is realized for p — — grad ux\uλ.—Allowed
discontinuities: cf. § 2 (continuity of the normal derivative, etc.).—To
get a good lower bound, one should try to construct a vector field p
such that W(x, y, z) + div p — ψ = const.

7.3. A physical interpretation.—For expository purposes, we shall
consider here equation (9) for 2 dimensions only.—This is exactly the
equation of a vibrating homogeneous membrane covering a plane
domain D, on which each area element dxdy (at the point (x, y)) is
pulled towards its equilibrium position u = 0 by a weak spring of
infinitesimal elastic coefficient W(x, y)dxdy.—We suppose that the
membrane's boundary Γ is also elastically supported with elastic coefficient
k(s): du/dn + k(s)u = 0 along Γ.

Analogously to § 3.1, we verify immediately: The homogeneous
membrane covering D, with specific mass = λx and "interior springs"
W{x, y), vibrates with the ground eigenfrequency 1.

Let us now consider another vibrating system: Given in D an
admissible vector field p with p n ^ k(s), we study the system formed
by:

(a) A nonhomogeneous membrane covering a copy Da of D, with
specific mass = (div p — p2) and elastic coefficient = p n along Γ;

(b) Another copy Db of D, without any "transversal elasticity",
where every area element dxdy contains a mass W{%, y)dxdy vibrating
independently under the action of a spring with elastic coefficient
W(x, y)dxdy.

According to § 3, the nonhomogeneous membrane (a) has ground
eigenfrequency ^ 1; each infinitesimal mass of the system (b) vibrates



978 JOSEPH HERSCH

with the exact frequency ω = 1, as this mass is equal to the spring
coefficient.—Therefore 1 is the ground eigenfrequency of the system

(a) + (6).
By superposing Da and Db and welding, in each point (x, y), the

two masses there placed, we synthesize a nonhomogeneous membrane
with specific mass W(x, y) + div p — p2, elastic coefficient = p n along
Γ, and "interior springs" W(x,y).—As the addition of supplementary
constraints (welding!) can only make the ground eigenfrequency higher
([1], p. 354), our "synthetic" membrane vibrates with a ground fre-
quency ^ 1.

Consider now the homogeneous membrane with specific mass =
infD[W(x, y) + div p — p2], elastic coefficient k(s) along Γ, and the same
"interior springs" W(x,y); this membrane has smaller masses and
greater constraints: therefore ([1], pp. 354 and 357), its ground fre-
quency is a fortiori ^ 1.

As our initial membrane [specific mass = λf, elastic coefficient =
k(s); interior springs W(x,y)] has ground eigenfrequency 1, its specific
mass \ must be ^ mfD[W(x,y) + divp — p2], which explains (11).

7.4. (Analogous to § 5): Let p = A - g r ^ d b we get

(12)

where adequate boundary restrictions must be imposed on the concurrent
vector fields t(x, y, z) and scalar fields b(x, y, z).

7.5. An application.—Small variation of the potential] boundary
conditions on the surface Γ of D: du/dn + k(X)u = 0 (XeΓ).

Boundary conditions to be satisfied by t and b:

(5')

First case:

W(x, y, z) , k(X); Xlf u^x, y, z).

Second case:

W(x, y, z) = W(x, y, z) + ew(x, y, z) , k{X) = k(X); \, u^x, y, z).

By Rayleigh's principle (10),
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D{u^) + 111 Wu\dτ \ \ \wu\dτ
(13) λxg ul = \ + εU , where U = -^ .

)))Ul τ \\\Uχ

Now let b — ux{x, y, z) into (12):

ew + — —- under the condition t n ^ 0 on /\ We

want to use a vector field t such that ϊ w = 0 and 1V

2 + sw = c =

const, div ί = u\(c — ε^); the constant c is determined by the condition

0 — Φ <J) t τldS ^ \ \ \ divΐdτ — c\\ \u\dτ — ε\ \ \wu\dτy where dS is the

surface element; hence, c = εU; div ί = εu\(U — w); there exists such a

vector field ΐ : we can even impose that it be a gradient field; t is

proportional to ε.

(13') \ ^ \ + εU- mvDφlui) = \ + εU - O(ε2)

(13) and (13') give

(13") λ1 = λ1 + εU-O(εη.

The first approximation \ = λx + εί7 of the perturbation calculus
is, as we see, the tangent to the exact curve λ̂  = λ^ε).

Post-scrίptuiru For the case fc = oo and /o = 1, the inequality (2),
written for the components p = {9>(a;, 1/), ψ(x, y)} instead of vectorially,
was known (except for the allowed discontinuities) to E. Picard as early
as 1893: Traite d'Analyse, t. II, p. 25-26, and to T. Boggio: SulΓ-
equazione del moto vίbratorίo delle membrane elastiche, Atti Accad.
Lincei, ser. 5, vol. 16 (2° sem., 1907), 386-393, especially p. 390.—They
also chose φ and ψ to be continuous in the domain, which is criticized
here and in [5] as an unnecessary restriction.—In contrast with M. H.
Protter, both Picard and Boggio seem to have under-estimated the
importance of inequality (2): it just incidentally appears (in the quoted
places) in the course of demonstrations for very simple monotony prop-
erties.
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