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Suppose that p and q are distinct points of the compact plane con-
tinuum M. If no point separates p from q in M and M is locally
connected, then it is known [5] that M contains a simple closed curve
which contains both p and q. But in the absence of local connectivity
such a simple closed curve may fail to exist. Even if no point cuts1 p
from q in M, there does not necessarily exist in M a simple closed curve
which contains both p and q. For example, no point of the continuum
C indicated in Figure 1 cuts p from q in C, but C contains no simple
closed curve whatsoever. However, if M is the continuum obtained by
adding to C either of its complementary domains, there does exist in
M a simple closed curve which contains both p and q. Here M fails to
separate the plane and this is indicative of the general situation.

Fig. 1

LEMMA. If p is a point of the compact subcontinuum Mf of the
plane S and U is a nondegenerate compact continuum containing p
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1 A point x (p Φ x Φ q) cuts p from q in M if every subcontinuum of M containing
both p and q also contains x. Obviously a separating point is a cut point but for continua
in general a cut point is not necessarily a separating point.
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and lying in (S — Mr) + p such that U — p is connected, then there
exists a connected open subset D' of S — Mf such that

(1) D' + p contains U,
(2) Df + p is a connected, locally connected, complete, metric

space, and
(3) D' + p is strongly regular (i.e., the author's Axiom 5X* [1,

p. 54] holds true in Df + p).

Proof. Let q denote a point of ΊJ — p, let n denote a natural
number such that d(p, q) > \\n, and let Ro, R19 R2, denote a sequence
of circular regions centered on p of radii \\n, Ijn + 1, 1/n + 2, re-
spectively. Now for each integer i (i > — 1), add to Mr every open
interval I of the boundary C* of R{ such that / contains no point of
1/ + M' but has both of its end points in Mr, and call the resulting
pointset N. Let A denote the sum of the components of (S — N) (S — R^)
which contain points of U and for each integer i > 1, let A denote the
sum of the components of (S — N) (Ri-2 — Rι) which contain points of
ZΛ Furthermore let Df — Σ A Certainly Df is open and since U — p
is connected, D' is connected. Also it is easy to see that Df + p contains
1/ and is a connected, complete, metric space. It remains only to show
that D' + p is strongly regular for it follows that such a space is locally
connected [2, p. 623]. Obviously D' + p is strongly regular at each
point of Dr. To see that Df + p is strongly regular at p (relative to
D' + p, of course) one has merely to observe that if k is a positive in-
teger, the boundary of p + ^D{(i > k) relative to D' + p is a subset
of the sum of those components of (S — M')'Ck-1 which intersect U and
since U contains no point of Mr except p, this set of components is
finite.

THEOREM. Let M be a compact subcontinuum of the plane S which
does not separate S. Then if p and q are distinct points of M and
no point cuts p from q in M, there exists a simple closed curve J lying
in M which contains both p and q.

Proof. Three cases arise depending upon the location of p and q.
If both p and q are inner points (non-boundary points) of M, then it
follows from [3] that both p and q belong to the same component of
the set of inner points of M. For this case the theorem is known to
hold true (see for example [4], p. 124).

If both p and q are boundary points of M, then the argument
outlined in [3] shows that M contains a compact continuum L which
contains both p and q such that every point of L — (p + q) is an inner
point of M. Since L must contain a subcontinuum irreducible from p
to q it is no loss of generality to assume that L itself has this property.
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In this case L — (p + q) is a connected subset of a component D of the
set of inner points of M and the theorem follows with the help of the
lemma in somewhat the same manner as the next case.

Finally, if q is an inner point of M and p is a boundary point of
Mf it follows from [3] that some component D of the set of inner points
of M contains q and has p in its boundary. To show that D + p contains
a continuum L containing both p and q requires a modification of the
argument given in [3],

Suppose that ε is a positive number such that ε < d(p, q). Let Cp(e)
denote a circle of radius ε centered on p and let Cq denote a straight
line through q which is perpendicular to the line pq. There exists a
simple domain J(ε) which contains M such that if J(ε) denotes the bound-
ary of J(ε), y is a boundary point of M, and z is a point of I(e) + J(ε),
then d[y, J(ε)] < ε and d(z, M) < ε. There exist arcs Tp(ε) and Tq(e) in
Cp(ε) and Cq respectively such that each is minimal with respect to sep-
arating /(ε) + J(ε), q belongs to Tq(ε), and Tp(ε) separates p from TQ(ε)
in J(e) + JΓ(e).

Since Tp(ε) and Tq(ε) have only their endpoints in J(ε), and except
for these points lie entirely in /(ε), there exist in J(ε) two nonintersec-
ting unique arcs A(ε) and B(ε) such that Tp(ε) + A(e) + Tq(ε) + B(ε) is
a simple closed curve H(ε). Let D(ε) denote the bounded complementary
domain of H(ε). If z is a point of D(ε) + H{ε), then d(z, M) < ε. Any
subcontinuum of M which contains p + q contains a subcontinuum irre-
ducible from Tp(ε) to Tq(ε) which lies in Tp(ε) + D(ε) + Tq(ε).

Now let L(ε) denote a continuum lying in Tp(ε) + D(ε) + Tq(ε) which
intersects both Tp(ε) and Tq(ε) such that if z belongs to L(ε), then
d[z, A(ε)] = d[z, B(ε)]. The continuum L(ε) must exist; for if it did not,
the set W of all points of D{ε) + H{ε) equidistant from A(ε) and B(ε)
would be the sum of two mutually separated sets one containing W Tp(ε)
and the other containing W Tq(ε) and consequently some simple closed
curve would separate Tp(ε) from Tq(ε) but at the same time would fail
to contain a point of W which involves a contradiction. So there exists a
simple infinite sequence a of values of ε such that D(ε) + H(ε) converges
to a subset of M, Tq(ε) —> Tq and L(ε) —> L as ε —> 0 in a. The set L
has the following properties:

(a) L is a continuum containing both p and point of Tq,
(b) L is a subset of M, and
(c) every point of L — (p + L Tq) is an inner point of M.

Properties (a) and (b) are evident. So it remains only to prove property
(c).

Let x be a point of L — (p + L ΓQ). Since x does not cut p from
q in My there exists a subcontinuum K of M which contains p + g but
not x. Let δ be a positive number such that 4δ = d(x, K + Tq) and let
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U&(x) and U3δ(x) be the circular regions centered on x of radius δ and
3δ respectively. When ε (inα:) is sufficiently small [T^ε) + Γβ(ε)]
[U,8(x)] = 0 but L(ε) UB(x) Φ 0. Let y be some point of L(ε) U8(x), let
r = δ + d(x, y) and let Ϊ7r(τ/) be a circular region of radius r and center
2/. Obviously U3t(x) 3 J7r(?/) 3 U,(x). So [Γp(e) + Γβ(e)]. Ur(y) = 0. If
A(ε). Ur(y) φ 0, let / be a point of Λ(ε) £/,(?/) such that <Z(/, #) = (%,
A(ε)]. But y belongs to L(ε). Hence there exists in Ur(y) a point # of
B(ε) such that d(£, #) = d[g, B(ε)] — d(f, y). The sum of the straight
line intervals yf and yg from y to f and from y to g respectively is an
arc Ty lying in Ur(y), having only its endpoints / and g in H(e), and
containing the point y of ί)(ε). Hence Ty — (f + g) c D(e) for clearly
yf cannot intersect B(e) and yg cannot intersect A(ε). But Ty K= 0
and iΓ contains a continuum lying in Γp(ε) + D(e) + Tq(e) irreducible
from Tp(ε) to ΓQ(ε). Since the points / and g separate Tp(ε) from Tq(ε)
in H(ε) this involves a contradiction [4, Th. 17, p. 167], Hence Ur(y)
H(ε) — 0 and since y belongs to D(ε), Ur(y) c D(ε); so for sufficiently
small values of ε (in a), U8(x) c D(ε). Consequently U8(x) is a subset
of M and a? is an inner point of M.

Now let C denote a circle which separates p from Γβ. Obviously
L intersects C Hence L contains a subcontinuum U irreducible from C
to p. Let </' denote a point of L' C. Clearly U — p is a connected
subset of Zλ Let M' denote the boundary of D. Since Mr is a con-
tinuum and contains only the point p of L', by the lemma there exists
a connected open subset Dr of S — ikF which contains Lr — p and has the
other properties of the set designated as D' in the lemma. It now
follows from Theorem A of [1] that there exists a simple closed curve
J1 lying in Df + p and containing p + qf. Since Dr is a connected
subset of S — M' and contains a point of L, it follows that D' is a
subset of -D and that J1 is a subset of M. Of course using J ' it is now
easy to construct a simple closed curve J which lies in D + p and contains
P + Q-
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