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1. Introduction and summary. The theory of totally positive kernels
and Pόlya frequency functions has been applied fruitfully in several
domains of mathematics and statistics. In this paper we derive moment
inequalities governing Pόlya frequency functions of various orders. In
particular, Pόlya frequency functions on the positive axis are character-
ized in terms of inequalities on the moments.

We begin by introducing the necessary definitions and notation, and
we also review some of the fundamental background. A function f(x, y)
of two real variables, x ranging over X and y ranging over Y, is said
to be totally positive of order k (TPk) if for all xλ<x2< ••• < xm,
Vi < V2 < < Vm {%i e X, y3- e Γ), and all 1 ^ m ^ fc,
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Typically, Z is an interval of the real line, or a countable set of
discrete values on the real line such as the set of all integers or the set
of nonnegative integers; similarly for Y. When X or 7 is a set of
integers, we use the term "sequence" rather than "function".

We record for later reference the following consequence of (1) proved
in [3], p. 284.

If /(#, V) is TPk where X and Y represent open intervals on the
line and all the indicated derivatives exist, then
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for all n 5Ξ k, x e X and y e Y.

A related concept to total positivity is that of sign reverse regularity.
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A function f(x, y) is sign reverse regular of order k (SRRk), if for
every xx < x2 < < xm, y1<y2 < <ym, and 1 ^ m g fe,

In this case (2) holds with the factor (—ly^^-uin multiplying the determi-
nant.

If a TPk function f(x9 y) is a probability density in one of the vari-
ables, say xy with respect to a <7-finite measure μ(x), for each fixed value
of y, and if f(x, y) is expressible as a function fQ(x — y) of the difference
of x and y, then f0 is said to be a Pόlya frequency function (density)
of order k (PFk). The argument traverses the real line. If the argu-
ment is confined to the integers we shall speak of a Pόlya frequency
sequence of order k (PFk sequence).

When the subscript co is attached to any of the above definitions,
then the property in question will be understood to hold for all positive
integers.

Many of the structural properties derived for TPk functions are
based upon the following identity (see [6], p. 48, prob. 68).

LEMMA 1. If r(x9 w) — \p(x, t)q(t9 w)dσ(t)9 then

%1> %2i * * * > (•/> c //y*/y* / v \ / / r / \

= I \ I p\ ]q\
J J J * i < * a < <*jb \ * i , t 2 , •••,**/ \ W i , W2, *-,Wk/

\Wl9Wif

x dσ{t^dσ(Q* dσ(tk) .

An important feature of totally positive functions is their variation
diminishing property. Let V(g) denote the number of variations of sign
of a function g(x) as x traverses the real line from left to right.

If h(x) is given by the absolutely convergent integral

(3) h(x) = J/(α?f w)g(w)dσ(w)

where f(x, w) is TPk, σ(w) is a nonnegative σ-finite measure and V(g) ^
k — 1, then

(4) V(h)^ V(g).

Moreover, if actually V(h) = V(g) then h and g have the same arrange-
ment of signs, i.e., the first sign of each traversing the line from left
to right, either both positive or both negative. When (2) prevails with
strict inequality a stronger version of (4) is valid. In fact, suppose h(x)
is k times continuously differentiate and that interchange of integral
and derivative is permissible in (3). Let Z(h) denote the number of zeros
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of h(x), counting multiplicities. Under the conditions of (3) we have

(5) Z(h)£ V(g).

An important special case is f{x,y) = exy which is readily shown to
be ΓPoo satisfying (2), with strict inequality for all n, x and y.

The same holds for the function f(x, y) = exp [φ(x)ψ(y)] where φ
and ψ represent strictly monotone infinitely differentiate increasing
functions. In particular, f(x, y) = xy (x > 0, y > 0) is TP^ satisfying
(2) with strict inequalities.

Throughout the paper, we shall use μs to represent the sth moment
of the density f(t); i.e.

μs = \ξsf(ξ)dξ for s > — 1 .

The expression rs = μs\Γ{s + 1) will be referred to as the normalized
moment.

In § 2 we show that if / is PFk density of a nonnegative random
variable with "normalized" moments rs — μsIΓ(s + 1), s > —1, then rs+t

is SRRk for s > -1/2, t > -1/2. We also prove that if / is a density
of a nonnegative random variable with normalized moments, rs, then
OVt}s,ί=o.i,2, is TPoo is equivalent to / a PF^ function. Similar results
are obtained for Pόlya frequency sequences pjf j = 0, 1, 2, , where we

use binomial moments Bk = ΣpA 2 ) in place of normalized moments.

In § 3 we develop several results describing the rate of decrease of
Pόlya frequency functions. For example, it is proved that for / = 0
when x < 0 and otherwise / a PF2 and ^(l/jM1)β"ί/μi, there exists ί0 such
that for t > ί0

Also inequalities on /(0) and on /'(0) are given. The key device in
these analyses is to compare the PF2 density at hand with an appropri-
ately selected exponential density, exploiting the general variation di-
minishing properties of Pόlya frequency functions.

2. Total positivity of moments* In this section we shall obtain
some interesting relationships between the property of total positivity
for the density / of a nonnegative random variable and a corresponding
property for its normalized moments.

THEOREM 1. Let f be PFk of a nonnegative random variable with
normalized moments rs, s > — 1. Then rs+t is strictly SRRk in s> —1/2,
t > -1/2.
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Proof. Write

Γ°o ξS + t

" ί , .
-da? /(f)df .

o Γ(s + t + ]

The change of variable y = ξ — x, yields

S-l/2 f~ .j.t-1/2

Since / is PFk, we know that f(y + x) is Si2i?fc f or y > 0 and a? > 0;
also [y%-ll%lΓ(t + 1/2)] is strictly TP*, in y ^ 0 and t > -1/2 as noted in
§ 1. Hence by Lemma 1, L(x, t) is strictly SRRk for t > —1/2 and
x > 0. Since [xs~1(2IΓ(s + 1/2)] is strictly TP^ in a? ̂  0 and s > -1/2,
then by another application of Lemma 1, we conclude that rs+t is strictly
SRRk in s > -1/2, t > -1/2.

A similar result holds for frequency functions on the nonnegative
integers using the binomial moments:

THEOREM 2. Let {Pj}j=otlt2,-' be a PFk sequence, with binomial moments

Then Bm+n is strictly SRRk in m = 0,1, 2, and n = 0, 1, 2,

Proof. The proof follows the lines of that of Theorem 1. Write

\m + w

where the last equality follows by virtue of the identity [2], p. 71,

( z + 1 ) = *(*)(*-*)
\n + m + 1/ χ\n/\ m /

Employing the change of variable i = j — h, we may write

— 1/Vm

Since p ί + Λ is Siϊi?,, ( J l J) is ΓP.. (see [4]) and ( ^ ) is ΓP., the con-

clusion follows.

It is of interest to investigate the converse statement of Theorems
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1 and 2. The following theorem asserts that total positivity of order
infinity of the normalized moments associated with a density function /
of a nonnegative random variable implies that / is PF^. The implica-
tions when we merely know that rg-t is TPk (k < co) remain unresolved.

THEOREM 3. Let f be a probability density of a nonnegative random
variable having normalized moments r8, s = 0,1, 2, . Then f a PF^
density is equivalent to {r8-t}Sιt==0Λt... a TP^ sequence.

Proof. Assume that {rβ_t}M=Ofif... is a TP* sequence with generating
function G(z) = ΣΓ=oΛ«β. Then

G(z) = jj>βz
β = Σ\~&$Lf(t)dt = [°etzf(t)dt = f*(z) ,

s=o s=ojo sl Jo

where f*(z) represents the Laplace transform of f(t). Interchange of
integral and summation sign is justified since ΣiT=o rsz

s converges uniformly
inside a complex neighborhood | z \ ^ r for some r > 0, [1], p. 305 and the
fact that/(ί) is nonnegative. Now from [1], p. 305, we know that G(z) is
of the form:

Π ( l + «v«)
( 6 ) G(z) = et'iΞi

Π (1 - βj)
V = l

(Ύ ^ 0 , av ^ 0, βy ^ 0, Σav, Σβv convergent).

Hence f*(z) is of the form (6). But if any av > 0, then f*(z) would
vanish for z = — l/αv, which is impossible. Thus f*(z) is of the form

( 7 ) /*(*) = e-

Π (1 -
V = l

(7 ^ 0, βv ^ 0, 2"/3v convergent).

By the Schoenberg representation theorem [7], p. 333, / is
Next assume / is a PF^ density. Then f*(z) is of the form (7) for

I z I < r, r > 0. As above, we conclude that G(z) = f*(z) so that G(z)
is of the form (6). Thus G(z) is the generating function of a TP*
sequence.

In a similar fashion we may establish the equivalence of PF^ for
{Pi}i=o.i.2.. . and TP.O for {^-^,^0,1,2,..., where {p3) is a probability freq-
uency function on the nonnegative integers with binomial moments
{Bk}. Again the equivalence is confined to order infinity:

THEOREM 4. Let {Pj}j=o>1>2>... have binomial moments {Bk}. Then

sequence is equivalent to {BJc-ι}JC>ι=0Λt2<..., a TP^ sequence.



1028 SAMUEL KARLIN, FRANK PROSCHAN, AND RICHARD E. BARLOW

Proof. Let P(z) = ΣΓ=oP;Zj and B(z) = Y£=0Bkz* be the generating
functions of {p3} and {Bk} respectively. Then B(z) = P(l + z).

Suppose {Pj} is a Pi7*, sequence. Then P(z) is of the form (6). Thus

)
Π(l-/βv) Π Λ _ . ft Λ

V 1 - f t /

First observe that Π (1 + #>) < °° since 2"αv < °° and trivially

Moreover we cannot have βv ^ 1, since in this event, P(1//3V) diverges,
contradicting the fact that 0 S P(z) < 1 for 0 ^ z ^ 1. Thus, sup/3v < 1
since 2Ά < oo, so that

Σ — — ^ Σ — < ~
1 — βv 1 — sup βv

and

Π (1 - βv) > 0 .

We note further that the coefficient

gΎ Π (1 + αv)
Π (1 - A)

is actually 1, as may be verified by substituting z — 0 in £(2). Thus
B(z) is of the form (6) so that {Bk} is a TPoo sequence.

Now suppose {Bk} is a TP*, sequence. Then

Π (i - a,) Π (i +
P(«) = B(2 - 1) = - "-1*1 - ™ α ^ x

11 (1 +

A factor z enters for each <xv = 1. Clearly Σ WvIO* + &)] < °° Also
no αv > 1 since P((^v — l)/#v) = 0 contradicting the fact that P(z) > 0
for 1 > z > 0. It follows that supΛv9fclα:v < 1 since Σa» < 00. Thus

Σ < Σ^— <
<*^ψ\ 1 — s u p av

Hence apart from the constant factor and the factor zm, P(z) qualifies
as the generating function of a TP^ sequence. Of course, the constant
factor does not affect the total positivity of the sequence, while the
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factor zm simply implies that the first m elements of {p3) are 0. Since
Σpj = 1 we conclude that {p3) is a PF^ sequence.

3. Extensions and bounds on the behavior of PF2 functions for
large values of the argument. In this section we develop several fur-
ther applications by exploiting the variation diminishing property cha-
racteristic of totally positive functions. We begin with some prelim-
inary discussions.

1. The function

(ur u > 0
( 8 ) h(u) = \ r — integer

(0 u ^ 0

for r > 0 generates a PF^ function. This follows from the fundament-
al representation theorem which exhibits the form of the Laplace trans-
form of Pόlya frequency functions (see Schoenberg [7]).

2. Let f(t) denote a PF2 density which is continuous throughout
except for at most a single discontinuity of the first kind and consider

( 9 ) g(x) = [f(t + x)h(t)dt = \f{u)h(u - x)du

where h(t) represents the function specified in (8) with r — 1.
By Lemma 1, we infer that g(x + y) is SRR2. Thus, relation (2)

applies (but with a negative sign for n = 2) and we have the inequality

0 ^ g(x)g"(x) - [g\x)Y

or

(10) /0*0\ (u ~ x)f{u)dn S

Consider now the case that / is continuous on the interval [0, oo)
and vanishes for negative x.

Then for x — 0 (10) reduces to the inequality

(11) /(0) £ -A- , μx = \~tf(t)dt .
μx Jo

We shall establish below that equality can occur in (11) if and only
if

—έΓ^i for ί ^

for t < 0 .
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3. Now consider (9) where h(u) is determined according to (8) where
r = 2. Then the function g(x + y) is SRR3 (applying Lemma 1) provided
/ is assumed to be PF3. The inequality (2) for determinants of size
3 x 3 on g(x + y) reduces to

/'(0) ^ —•- provided /(0) - 0 where ft = Γt*/(ί)
2JMJ - μ2 Jo

and /(t) = 0 for t < 0. We will see below that 2//? > μ2. Other ine-
qualitities for higher order derivatives may be deduced by similar con-
siderations.

We now establish

THEOREM 5. Let fit) be continuous on [0, oo), PF2, and 0 for t < 0.

(i) If fit) m I/ft exp (-t/ft), ίλerc

(a)
μ, < Γ(s + l)μ\ for - 1 < s < 0 and s > 1
ft > Γ(β + 1)^ for 0 < 8 < 1 ,

(b)

(c) ί/iere exists t0 such that for t > t0

(13) 0 ^ / ( )

ft
(ii) Equality in (12) /or αnj/ s Φ 0,1 implies f(t) = l/ftexp(—t/ft).

REMARK. The inequalities in (12) are partially contained in the
assertion of Theorem 1. However the present method of proof involving
the concept of variation diminishing transformations also yields results
like (13) which does not seem to follow from the theorems of § 2.

Proof. Consider the function

k(x) = - L exp (-α/ft) - f(x) x ^ 0 .
ft

By virtue of (11), ft(0) ^ 0. Now let

g(x) = exp (a?/ft)fc(a?) = — - exp (a?/ft)/(α?) .
ft

It is easy to verify that exp [(x - i/)/ft] is ΓP2. This implies that exl

is either monotone or PF2; in either case g(x) has at most 2 sign changes
(a PF2 density is unimodal). Equivalently, V(k) ^ 2 on [0, oo). We note
the relevant fact needed later that if fc(0) = 0 then k(x) cannot exhibit
two sign changes. Otherwise g(x) + ε for ε < 0 and sufficiently small
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displays three sign changes which is impossible in view of the above
discussion.

Consider the transformation

h(x) = I xsk(x)dx s > — 1 .
Jo

The kernel M(t, s) = ts is TP* for t > 0, s real and satisfies (2) with
strict inequality.

Relation (5) applies and we deduce

Z(h) £ V{k) .

Since V(k) ^ 2 we have Z{h) S 2. But, by design h(0) = h(ΐ) = 0
which means that s = 0 and 1 are simple zeros (unless h(x) = 0 and we
exclude this case as trivial). Therefore, h(s) has two sign changes and
V(k) = V(h) = 2. Taking account of the fact that fe(0) ^ 0 and the
discussion preceding (5) we deduce that k(x) > 0 f or x large and h(s) > 0
for s > 1 and - 1 < s < 0 while h(s) < 0 for 0 < s < 1. In case fc(0) = 0,
then as noted above V(k) = 1. But Z(h) — 2 means that h(s) = 0 and
consequently l///xexp (—x/μj = f(x), 0 ^x < oo. This completes the
proof of the theorem.

The inequality (13) shows that / decreases to zero at an exponential
rate of a specified amount. We can sharpen the bounds indicated there
in the following manner. Let us determine constants a and b such that

(14) ί°°xsme-bxdx = [°xSif(x)dx = μ8. i = 1, 2
Jo Jo ι

where s19 s2 are prescribed satisfying sx < s2. Performing the left hand
integrations we obtain

Thus,

(15) -1 =

Similar to (12) we can achieve other moment inequalities under the same
assumptions as prevail in Theorem 5. Throughout we exclude the triv-
ial situation when f(x) = llμ1exj>(—xlμ1).

We illustrate with two examples:

EXAMPLE 1. Put in (15) s1 = 0 and s2 = s > 1; then the inequality
(12) implies [μsIΓ(s + l)]" 1 / s = a > 1//Λ. Now employing the analogous
argument as in Theorem 5 we secure an extension of (12) to the effect
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that

(16) ( &—Y" < (—& Y" t > s > 0 .
; \Γ(t + l)/ \Γ(β + l)/

This result derives further interest by comparing with the classical
moment inequality

μψ > μl" t > s > 0 ,

valid for all density functions on the positive axis.

EXAMPLE 2. If we set sx = 1 and s2 = s > 1 in (15) we get

(17) a =
μs I

It follows from (12) that a > l\μλ and 6 > \\μλ. Also by the argument
of Theorem 4, we may show that there exists t0 such that for £ ̂  t0

0 ^ /(t) < ae~bt

for α and 6 as given in (15). Thus we achieve a sharper statement
concerning the rate of exponential decrease of the PF2 density. By
involving higher moments we may strengthen and refine these assertions
employing the same techniques.

We close this section by indicating an application of the above
method to symmetric PF2 densities. Inequality (11) becomes

(18) —^- ^ /(0) where μs = Γ \t \sf{t)dt .
^μ^ * °°

The result corresponding to Theorem 5 is as follows:

THEOREM 6. If f is a symmetric PF2 density then

for s > 1 .

\ t \ ̂  \ t0 \

Moreover

(19)

μs

o ^ fit)

^Γ(s

< i

+ l)μl

- exp (1

and strict inequality holds in (19) unless f(t) — l/2μexp(| t
The proof of Theorem 6 entails slight modifications of that of Theorem

5, and thus will be omitted. Results similar to those of Examples 1 and
2 may be obtained for symmetric PF2 densities.
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