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ON THE DIFFERENCE AND SUM OF BASIC

SETS OF POLYNOMIALS

N. N. MIKHAIL AND M. NASSIF

l If the two functions f(z) and g(z) are connected by the relation

g(z + l)-g(z)=f(z),

then f(z) is called the difference of g(z) and g(z) is the sum of f(z).
These relations are denoted by

f{z) = Δg{z) g(z) = SSf(z) ,

and it is obvious that any function of period unity can be added to the
sum of a given function. The authors considered recently [1] the dif-
ference set {un(z)} and the sum set {vn(z)} of a given simple set of
polynomials1 {pn(z)}- These sets are the simple sets defined by

(1.1) un(z) = Δpn+ι{z) (n^O),

(1.2) vo(z) = 1; vn(z) = ̂ Pn-Az) (n ̂  1) ,

and the indetermination in the sum set is removed by supposing that

(1.3) vn(0) = 0 (n ̂  1) .

The main result of the above mentioned work concerns the order δ
and a of the difference and sum sets respectively of a simple set of a
given order ω. In fact, it has been shown that

(1.4) δ ̂  max (1, ω) ,

and

(1.5) σ ^ ω + 1 .

Our aim in the present paper is to generalise these results for more
general classes of basic sets of polynomials. It will be here shown that,
with suitable modification of the definition of difference sets, the upper
bound in (1.4) remains the same for the most general classes of basic
sets of polynomials. As for the sum sets, it will be here proved that,
in order to get a finite upper bound for the order of the sum set, a
limitation on the class of basic sets is inevitable.

2 This section and the following one are devoted to the study of

Received January 9, 1960, and in revised form May 23, 1960.
1 The reader is supposed to be acquainted with the the theory of basic sets of poly-

nomials as given by Whittaker [3].
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the difference set {un(z)} of a general basic set of polynomials {pn(z)}.
As an introduction we first consider the difference set {&n(z)} of the
unit set (zn). According to (1.1), this set is given by

(2.1) &n{z) = (z + 1)Λ+1 - zn+1 (n^O).

It has been shown [1; formula (2.14)] that this set admits the representation

(2.2) *" = ΣKM) ,

where2

(2.3) \KJC\ < — (0 < k < n) .

Considering now the difference set {ujz)} of a general basic set
{Pn(z)}> the definition (1.1) has to be slightly modified in order to avoid
a linear dependence among the polynomials of the resulting set. In
fact, suppose that zn admits the representation

(2.4) z» = Σ πn.*P*(z) (n^O),
k

and in particular,

(2.5) 1 - Σ π*.*P*(z) .
k

A process of differencing, operating on this last relation, yields a
linear relation between the involved differenced polynomials. For this
reason a polynomial of the set {pn(z)} has to be eliminated. Suppose,
in fact, that ττ0(μ is the first non-zero coefficient in (2.5) then the differ-
ence set {un(z)} is not defined by

(un(z) = Δpn{z) (0 £n^ μ-1)

\un(z) = Δpn+1(z) (n ^ μ) .

Thus the polynomial p^(z) is eliminated. In case of simple sets
μ = 0 and the definition (2.6) reduces to that in (1.1).

We first show3 that the set of polynomials {un(z)}, as defined by (2.6)
is basic. To this end we define the set {p\(z)} by

/ 9 ηΛ Pn\z) = WzjiPniZ) — j

pl(z) = (l/z){pn+1(z) -

It can be easily verified from the definitions (2.1), (2.6) and (2.7)
that the set {un(z)} is the product set

2 In our notation K denotes positive finite numbars indepsnient of n that not necessarily
of the same value at different occurrences.

3 The following discussion is due to Newns in his study on the derived sets [2; p. 465J.



ON THE DIFFERENCE AND SUM OF BASIC SETS OF POLYNOMIALS 1101

(2.8) K(z)} = {φlizWJίz)}

Hence, in order to prove that {un(z)} is basic it is sufficient to show that
the set {pl(z)} is basic. In fact, rewriting (2.5) and using (2.7) we get

where &*(z) — (l/z){pμ(z) — pμ(0)}. Since the first sum is equal to 1 it
follows that

(2.9) ^

Inserting (2.7) and (2.9) in (2.4), written for zn+1 we obtain the
unique representation

As the first sum is zero it follows that the set {pl(z)} is a basic set
that admits the unique representation

(2.10) zn = Σ<*Pl( s ) ,
k

where

('''»,» '^W+l.fc+l '''W+l.μ \/*/ = ΓΊ M ^ \J)

Hence the set {un(z)} is the basic, as required.

3. We propose here to establish an upper bound for the order of
the difference set of a given basic set of polynomials, and the following
theorem shows that the bound given in (1.4) remains the same for
general basic sets.

THEOREM 1. Let {pn(z) be a general basic set of polynomials of
order ω; then the difference set {un(z)}, defined by (2.6), will be of order
δ, where

(3.1) δ ^ max (1, ω) .

Proof. Let (yn,k) be the coefficients corresponding to those in (2.4)
for the set {un(z)}. Hence, in view of (2.2), (2.8) and (2.10) it follows
that

(3.2) 7n,ic - Σ X J 4 . * -
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Adopting the usual notations for basic sets we write4

Fn(p; R) = max max
%,3 \z\=B

and Fn(u; R) for the corresponding expression for the set {un(z)}. Since
the set {pn(z)} is of order ω, then given any finite number ωλ > ω we
shall have

(3.3) Fn(p; R) < Kn<* n {n ^ 1) .

Choose the integers sn and tn for the set {un(z)} such that

Fn(u; R) = max V γ

hence (3.2) implies that

(3.4)

where

Fn(u; R) — max
\z\=R

= Σ

Writing flr^(«) = Σfc=*n^ί.*Pί(«)» t h e n it follows from (2.8) that, if

(3.5)

then

(3.6)
A;

Applying the relations (2.7) and (2.11) in g3{z) we easily obtain

(3.7) g,(z) - (1/2)Γ Σ πJ+1Λ{pk{z) -

Putting

Σ

= max
\z\=B

= max | g,(z) \
\z\=B

M(pn; R) = max

and observing that

4 Because of the variety of sets considered here the dependence of the entity on the
particular set is explicitly written, whenever it is possible; thus we shall, for example,
write M(pn; R) — max | pn(z) I.
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Σ fg max
k = m

g Fj+1(p; R) (Λ > 0) ,

then, for any positive number p, (3.7) yields

(3.8) . //,(p) ̂  (l/|0)Γ4Fi+1(p; /o) + ' f ^ . 1 , ^ ? 2F0(p; p)
I I JΓ0,μ I Λf(pμ; p)

τr
o,μ

KF3+1(p; p) .

Suppose now that p > E + 1 and apply Cauchy's inequality for g}(z)
as given in (3.5). Hence inserting (2.1) and (3.8) in (3.6) we obtain

(3.9) L}{R) < KFm(p; p) Σ M ( * » ; R )

< ίΓifJ+ι(p; /o) Σ { R \ l f < KFH1(p; p) .
& p

Substitution from (2.3), (3.3) and (3.9) in (3.4) now gives

Fn(u; R)<K^\Xnj\ Fj+1(p; p)
3=0

. Kn\ ψ

and since j \ > (Jle)}; (j ^ 1), the above inequality yields

(3.10) Fn{n; R) <

Suppose that ω ^ 1, then ωλ > 1 and (3.10) implies that

Fn(u; R) < K(n + l)\en+1(n + iy»+™»i-v ,

which ensures the order δ of the set {un(z)} cannot exceed ωt; and since
ω1 can be taken as near to co as we please we deduce that δ ^ ω.

Suppose that ω < 1; then by suitable choice we shall have ωx ^ 1
and hence (3.10) gives

Fn(u; R) < K(n + l)\en+1 ,

and thus δ ^ 1. We thus conclude that δ <Ξ max(l,o>) and the proof
of Theorem 1 is complete.

4. In the remaining sections the sum set {vn(z}} of a given set
{pn(z)} is considered. As in the case of difference set we introduce by
considering the sum set {φn(z)} of the unit set (zn).

This set, according to the definitions (1.2) and (1.3), is given by
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Φlz) = 1; φn(z + 1) - φn(z) = s - 1

It has been shown [1; formula (4.7)] that this set admits the repre-
sentation

(4.2) «"

and that it accords to the inequalities [1; formulae (2.5), (2.6)]

(4.3) ( W ~ i ) ! < W ; R)<(n- l)!eβ (w ^ 1; B > 1) .
(Δπ)

In case of sum sets the definitions (1.2) and (1.3) remain valid for
general basic sets of polynomials. In fact, the sum set {v(z)} of the set
{Pn(z)} is the basic set given by

(4.4) viz) = 1 vn(z) = ΣP»-I .*Φ*+I(*) fa ^ 1) ,

k

where

(4.5) pn(s) - Σ P».*s* ,
A;

and it admits the unique representation
(4.6) sn = Σ tarn.*vfc(ί5) ,

A;

where

ίτϊro,o = 1 , τtr0)W = 0; (w > 0) , vfnι0 = 0, (w ^ 1) ,

Σ

It should be noted that, if the class of the basic set {pn(z)} is not
restricted, the order of the sum set {vn(z)} may be infinite, even if the
order of the set {pjίz)} is zero. This fact is illustrated by the following
example5, which also suggests that, in order to ensure a finite upper
bound for the order of the sum set, the basic set {pn{z)} should accord
to the restriction that Dn = 0(ri), where Dn is the degree of the poly-
nomial of highest degree in the representation

Σ
k

EXAMPLE. Let (vn) be an increasing sequence of even integers such
that vn > 2n for all large n and l i m ^ vj(n log n) = 0. Consider the

5 This generalised example was suggested by the referee of this paper, as a substitute
of two, originally given, particular examples.
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basic set {pn(zj\ given by

Pinto = *?"

where ω is any nonnegative number.
It is easily seen that this set is of order ω. Forming the sum set

K(z)}, (4.4) gives

(4.8) v2n+1(z) =

v,nΦ) = &•+,(*) + {(2n

In view of (4.2), it is easily verified that

(4.9) *» = Σ (j *? i ) ^ ω - Σ ( 2 / + i)ί(2 ^

Writing, in view of (4.6),

(4.10) ωn(v; R) = Σ i ̂ n.* I M(vk;R) ,
k

and applying (4.3), equations (4.8) and (4.9) yield

ωφ; R) > 2n{{2n - l)l}«MVn_ι+1; R}

> {(2n - l)!}-(yn_1)!/(2π)^- .

Hence, the order of the sum set {vn(z)} is

a = lim lim sup **<».& B) ^ H m s u p ω log (2n - 1)1 +
\ w_oo 2^ log 2n

^ (o + lim sup yw/2w = ω + lim sup Dw/^ ,

since

Z)2W = 2n J?2W+1 = max (2n + 1, vn) .

The possibilities lim sup^oo DJn = 1, α:, oo, where 1 < α < oo, can be
covered by choosing vn = 2n + 2, 2[(n + i)a], 2(2n + l)[τ/k>g (2w + 1)]
respectively, where [x] has its usual meaning of " the integral part of x".

5. The above example shows also that the result formulated in the
following theorem is best possible.

THEOREM 2. Let ω be the order of the basic sets {pn(z)} which
satisfies the condition that

(5.1) lim sup DJn — a < oo ,
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then the sum set {vn(z)} will be of order σ ^ ω + α.

Proof. Since the set {pn{z)} is of order ω, then for any finite
number ωλ > ω we have

(5.2) ωn(p; R) < Kn»* , (n ^ 1) ,

where ωw(p; i?) is the Cannon sum for the set {pn(z)}, given by

ωn(p; JR) = Σ I ^».* i M(pk; R) .
A;

Also, given any finite number af > α, there exists, in view of (5.1),
a positive integer n0 such that

Dn < a'n , (w > n0) ,

so that

(5.3) (Dn)\ < Γ(a'n + 1 ) < if (α^) α / w + έ , (n > n0) .

Now, let dw be the degree of the polynomial pn(z); then combining
(4.3) and (4.4) we obtain

(5.4) M(vn; R)^ S\ pn^,k { M(φk+1; R)
fc = 0

< Kid^r + l)!M(ί)ra_ i ; R); (n ^ 1, R > 1) .

Applying (4.7) we get the familiar inequality

(5.5) ωn(v; R) g g ( j ) ΣI π*.s I M(«ί+1; Λ) .

Inserting (5.2), (5.3) and (5.4) in (5.5) and mindful of the definition
of the number Dn, it follows, for n > n0, that

ωn(v; R) < JΓg (jj)(A + l)!ωfc(p; Λ)

ΣΣ

p (jΛ = K2n(a'< K(a'n + ιyf-+^n^np (jΛ = K2n(a'n + \γ

This relation implies that the order σ of the sum set {vn(z)} does
not exceed ω1 + a!. Since ωx and a! can be arbitrarily chosen near to
ω and a respectively, we conclude that σ g ω + a; and Theorem 2 is
therefore established.

Finally, the authors wish to express their thanks to the referee of
this paper for his helpful comments and constructive suggestions.
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