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AUTOMORPHISMS OF SEPARABLE ALGEBRAS

ALEX ROSENBERG AND DANIEL ZELINSKY

1. Introduction* In this note we begin by noticing that for any
commutative ring C, the isomorphism classes of finitely generated, pro-
jective C-modules of rank one (for the definition, see § 2) form an abelian
group ^(C) which reduces to the ordinary ideal class group if C is a
Dedekind domain. In [2], Auslander and Goldman proved that if c>f(C)
contains only one element then every automorphism of every central
separable C-algebra is inner. Using similar techniques, we prove that
for general C and for any central separable C-algebra A, ^F(C) contains
a subgroup isomorphic to the group of automorphisms of A modulo inner
ones. We characterize both this subgroup and the factor group. For
example, in the case of an integral domain or a noetherian ring, the
subgroup is the set of classes of protective ideals in C which become
principal in A (i.e., Ker/S in Theorem 7). If C is a Dedekind ring and
A is the (split) algebra of endomorphisms of a protective C-module of
rank n, the subgroup is the set of classes of ideals whose nth. powers
are principal.

2* Generalization of the ideal class group Let C be a commutative
ring1 and let Jbe a pro jective C-module. Then for every maximal ideal
M in C, the module2 J®CM is a protective, hence free, CM-module.
Following [7, §3] we say J has rank one if for all M,J§Z)CM is free
on one generator,3 i.e. J(g)CM ~ CM as CM-modules.

DEFINITION. ^f(C) will denote the set of isomorphism classes of
finitely generated, protective, rank one C-modules. If J is a finitely
generated, pro jective, rank one C-module, {J} will denote the isomorphism
class of J.

We note that if {J} e ^f{C) then J is faithful, for if an ideal I
annihilates J then 0 = J(J(g) CM) = ICM = I<g>CM for every M, and so
J = 0 [4, Chap. VII, Ex. 11].

Received August 7, I960. Presented to the American Mathematical Society January 28,
1960. This paper was written with the support of National Science Foundation grants NSF
G-4935 and NSF G-9508.

1 All rings will be assumed to have units, all modules will be unitary, and if R is a
subring of S then R will contain the unit element of S. A homomorphism of rings will
preserve unit elements.

2 The unadorned (x) always means tensor product over C. CM denotes the ring of quo-
tients of C with respect to the maximal ideal M.

3 J® CM ~ CM for all M does not imply that J is either finitely generated or pro jective.
For example, let C be the ring of integers and J — [JnCp-^ p-1 where pi is the ith prime.
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LEMMA 1. ^f(C) is an abelian group under the operation 0 . The
identity element is C.

Proof. The only nontrivial item is the existence of inverses. If
{J} e ̂ F(C), let J* = Ή.omo(J, C). Since Horn distributes over direct
sums and since J is a direct summand in a finite direct sum of C s
we see that J* has the same property. Furthermore J* ®CM =
Hom^ (J<g)CM, CM) = CM [4, Chap. VI, Ex. 11] so that J* e ^F(C).

Since J is faithful, the mapping J(g)J*-*C defined by x ®/—>f(x) is
known to be an epimorphism [1, Prop. A. 3]. If its kernel is K then
K®CM = Ker(J(g) J*(g)CM->C<g)CM) = 0 for each M. Thus i f = 0 ,
J §§ J* ~ C and J* is the inverse of J.

If C is semisimple (with minimum condition) then ^(C) = 1. Using
[6, Lemma 3.14] it is easily seen that if N is a radical ideal in a ring
C and ^(C/N) = 1 then ^ T (C) = 1; therefore ^ ( C ) = 1 whenever C
is semilocal (i.e. C has only finitely many maximal ideals, but is not
necessarily noetherian). This fact also follows from Serre's theorem on
the structure of projective modules over semilocal rings [7, Prop. 6 and
6, Lemma 3.15].

When C is an integral domain, ^f(C) is the ordinary group of
(projective) ideal classes. We proceed to (prove and) generalize this
statement by considering the functorial properties of ^ ( C ) .

If C and D are commutative rings and C —> D is a ring homomorphism,
there is a corresponding homomorphism ^(C) —• ^(D) given by {/} —•
{J0D}: Clearly J^D is a finitely generated projective jD-module.
To prove that it is of rank one, let N be any maximal ideal of D and
let M be any maximal ideal of C containing the kernel of the composite
homomorphism C —»JD —> D/N. Since every element of C not in M maps
into a unit of D^, we have a homomorphism C^ —> ZV Thus (J® D)<^)DDN~
J®DN^(J®CM)& oMDN = DN.

If S is a multiplicatively closed subset of C containing no zero-
divisors we define an analog, ^(C, S) of the ideal class group of an
integral domain as follows:

Two ideals I and Γ of C are equivalent if Γ = ul for some unit u
in the ring of quotients Cs. Then ^{C, S) is the set of equivalence
classes of projective ideals of C which meet S.4 Multiplication of ideals
induces a product in ̂ ( C , S). Among other things, the following lemma
shows that ^ ( C , S) is a group.

LEMMA 2. ^ ( C , S) = Ker (^T(C)

Proof. Let the class of / belong to ^{C, S). Then some element
4 The same proof as in [4, Chap. VII, Prop. 3.3] shows that such an ideal is finitely

generated.
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of / is not a zero divisor, and consequently I<S)CM Φ 0 for each M.
Hence I(g)CM is a nonzero projective (hence free) ideal of CM and so
I§§CM = CM. Moreover, if Γ is in the same class as / then 7 and Γ
are isomorphic C-modules. Conversely, if 8 is an isomorphism of 7 with
7', then 8 0 1 gives an isomorphism of Cs = 7® Cs with Cs = Γ 0 C .̂
Thus δ 0 1 is simply multiplication by a unit u ot Cs, and so Γ — In.
Finally, by [4, Chap. VI, Ex. 19] 7 0 7 '^77' , and therefore mapping
the class of 7 in ^ ( C , S) to {7} in ^f(C) yields a monomorphism of
^ ( C , S) into ^ ( C ) .

As we already noted I®CS = ICS — Cs so that the image of 7 lies
in Ker (^(C) -> ^f(Cs)). On the other hand, if {J} e ^f(C) lies in this
kernel, J §ξ) Cs ~ Cs and so J is isomorphic to a C-submodule of Cs.
Since J is finitely generated, it is isomorphic to an ideal 7 of C and
7 0 Cs = 7C-? = Cs. Hence 7 n S Φ Φ and the class of 7 lies in ̂ ( C , S).

COROLLARY 3. If C is an integral domain or a noetherian ring
and S is the complement of the set of zero divisors then ^f{Cs) — 1,
and hence ^(C, S) ^

Proof. If C is an integral domain this is now clear. If C is
noetherian, S is the complement of the union of the primes of zero.
Since there are only finitely many of these, the standard theorems con-
cerning the relation of ideals in C and Cs show that Cs is a semilocal
ring and so by the remarks following Lemma 1, ^(Cs) = 1.

3 Separable algebras. If A is an algebra over the commutative
ring C, A is said to be separable over C if the left Ae-module5 A is pro-
jective. Central separable C-algebras are a natural generalization of
central simple algebras, and their basic theory has been given in [2] and
[3]. In particular, we single out the following results which we use
several times:

PROPOSITION 4. Let A be a central separable C-algebra and X a left
Ae-module. Then X~ A (g) Y as Ae-modules where the C-module Y~
{x G XI ax = xa for all a in A} = Hom4β (A, X). The C-module Y is
unique: If X ~ A§§ Yf as Ae-modules then Yf = Y as C-modules. The
following three statements are equivalent:

(a) X is a finitely generated projective C-module
(b) Y is a finitely generated projective C-module
(c) X is a finitely generated projective Ae-module.

Proof. The first assertion is [2, Theorem 3.1]. As for the unique-
ness: Y = Hom β̂ (A, A 0 Γ') = Hom^ (A, A)®Y'~C®Y'=Y' where

5 The algebra Ae is the tensor product over C of A and its opposite.



1112 ALEX ROSENBERG AND DANIEL ZELINSKY

all the isomorphisms are C-isomorphisms; the second isomorphism follows
from the statement "φ3 is an isomorphism" on p. 210 of [4] if Yf

is identified with Hom^C, Y'); the third isomorphism follows from
Horn e (A, A) ~ C which is the condition that A is central.

For the rest, we prove the implications a=φb=Φ>c=φa. Since A
is a finitely generated projective Ae-module, the C-module Y~ ΉίomAe(A,X)
is a direct summand in a finite direct sum of copies of X. Thus if X
is a finitely generated protective C-module, Y is also. If Y is finitely
generated and C-projective then I = A ® 7 ί s an Ae-direct summand in
a finite direct sum of copies of A's and thus a finitely generated pro-
jective Ae-module. Finally, since A is a finitely generated projective
C-module [2, Theorem 2.1], Ae is also, and so if X is finitely generated
and projective as an Ae-module it has the same properties as C-module.

As is usual in the study of simple algebras, for any central separable
C-algebra A and a pair of C-algebra automorphisms σ, τ of A we make
A into a new Aβ-module, σAτ by defining

(x (g) y)(a) — σ(x)aτ(y) for x (g) y e Ae, ae A.

Of course as a C-module, σAτ = A and so is finitely generated and pro-
jective.

Since σAτ is Ae-isomorphic to pσApτ by the mapping a —> p(a), we
need only be concerned about σAτ with τ = 1. Proposition 4 shows that

σAx is isomorphic to A (g) Jσ with Jσ = {a e A \ σ(x)a — ax for all x in A},
a finitely generated projective C-module. Moreover the chain of CM-
module isomorphisms

A <g> C* = ^ <g) C* =; (A <g> CM) <g)oM(Jσ <g> C*) ,

together with the fact that A 0 CM is a finitely generated free CM-module,
shows that Jσ§ζ)CM = CM and so {Jσ} e

LEMMA 5. Jσ = C i/ α^d oni?/ i/ ^ is α% inner automorphism.
Also Jσ® Jτ = J r σ .

Proof. Ίhe first part of the Lemma is essentially [2, Theorem 3.6]
(cf. also [5, p. 143]): If σ(x) = wam-1 then J σ = {α e A | uxu~xa — ax for
all x in A} = {a e A \ x(u~ιa) = (̂ ~αα)ίi? for all a? in A] = uC = C. Con-
versely, suppose Jσ is a free C-module on one generator, u. Since the
isomorphism A 0 J σ =σi4.! is defined by a§Z)j —> ja, we have A = J^A =
uA — σ(A)u = Au. Thus u is a unit in A lying in J σ . The definition
of Jσ then shows that σ(x) = nxu~λ for all x in A.

By Proposition 4 and the remark following the definition of σAτ we
have the following chain of Ae-isomorphisms:

A (g) Jτ <g) J σ = (o-AJ <g) 4(rAj) = (rAi) <g) XAr-i) ^ σAΓ-i = r(rAj = A (g) J r σ .
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The uniqueness statement in Proposition 4 then asserts Jσ(& Jτ = Jτσ

DEFINITION. If A is a central separable C-algebra, έ?(A) denotes
the group of automorphisms of A modulo inner ones.

By Lemma 5 the mapping σ —-> Jσ induces a group monomorphism
a:

COROLLARY 6. &V(A) is an abelian group.

We next obtain a description of Im a.

DEFINITION. ^{A) is the set of left A-isomorphism classes of left
Ae-modules P with the properties

( i ) P is C-projective and finitely generated
(ii) P(g) CM = A (g) CM as C^-modules for all M.

For the same reasons that σA1 = A® Jσ with {Jσ} e f{C)y we have
that if {P}e^F(A) then P=A®J as Ae-modules with Jej?\C).
Since, conversely, {J"(g) A} e ^f{A) whenever {J} e ^/ r (C), we see that
^{A) is just the set of left A-isomorphism classes of Ae-modules A ® J
With {J} 6 ^ (C).

Note that if we had defined ^{A) to be the set of ^'-isomorphism
classes instead of left ^.-isomorphism classes, we would have had a set
in one-to-one correspondence with ^f(C), according to Proposition 4.
See also the remark after Theorem 7.

There is a natural multiplication in ^f(A): (P19 P2) —> Pλ (g) A P 2 . If
p, = A (g) Jx and P2 = A (g) J2 then Px (g) A P 2 ^ A (g) (Jx (g) J2). Thus the
mapping /5: ^f{C) —> ̂ f(A) defined by {J} —> {A (g) J} is an epimorphism
and so ^(A) is a group.

THEOREM 7. 77^ sequence

1 > ^ ( A ) - ^ j-{C) —

is exact.

Proof. The only thing that still needs to be shown is that Im a =
Ker β. If {J} elm a then J=Jσ and β{ J} = {A <g) Jσ} = {σ AJ - {^-i} = {A}
which is the unit element of ^/ (A). Thus Ima c Ker/3. Conversely,
if {J} e Ker /3 then P — A 0 J is left A-isomorphic to A. That is, each
element of P is of the form p = αw for some fixed w in P and for
suitable a in A, uniquely determined by p. Since P is an Ae-module,
wa e P for every a in A. Hence wα = σ(a)w where σ is a well defined
mapping of A to A. It is trivial to verify that a is a C-algebra endo-
morphism. Now by [2, Theorem 3.5] σ is an automorphism and so
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a—>σ(a)w is an Ae-isomorphism of σ-^Ax to P. Thus P=A(g) Jσ-κ
By the uniqueness in Proposition 4, J = Jσ^λ and {J) e Im a.

REMARK. The proof of Theorem 7 shows that A (g) J = A (g) Jf as
left A-modules if and only if J= J1 (g) J " as C-modules with {J"} e Im α.
Clearly the same proof will show A (g) J = A (g) Jf as right A-modules if
and only if J = J' (g) J " with {/"} e Im a. Thus, given two Ae-modules
P and P', satisfying conditions (i) and (ii) in the definition of ^{A),
the following conditions are equivalent: P = P' as left A-modules; P^Pf

as right A-modules; P = P both as left and as right A-modules. This
means that ^(A) could equally well have been defined as the set of
right A-isomorphism classes or as the set of left and right A-isomorph-
ism classes (but not as the set of Ae-isomorphism classes).

In the theory of separable algebras the role of full matrix algebras
over fields is played by the split algebras, i.e. algebras of the form
Homo(V, V) with V a finitely generated, faithful, projective C-module.
For such algebras we give a fuller description of

DEFINITION. For any finitely generated, faithful, projective C-module
F, let ^(V) be the set of C-isomorphism classes of finitely generated
projective C-modules W such that Hom0 (W, W) is a C-algebra isomorphic
to Hom^F, F).

LEMMA 9. We ^{V) if and only if W ^ V® J as C-modules,
for some C-module J with {J} e

Proof. Let {J} e ^F(C). By [4, p. 210] there is a natural isomor-
phism as C-modules, and so also as C-algebras, Homσ(F(g) J, F(g) J) =
Homc (F, F) (g) Homσ (J, J) . But Hom^ (J, J) = C since C is embedded
in Homσ (J, J) by its action on the module J, and since, for every M,
CM = Homσjf (J(g) CM, J®CM) = Hon^ (J, J) (g) CM [4, Chap. VI, Ex. 11].
Thus {F(g) J} e J"(y) for {J} e J'iC). Conversely, if {W} e ^(V) then
W is a module over A = Hom^ (F, F). By [1, Prop. A. 3 and Prop. A. 6]
there is a C-isomorphism W= F(g) J with J= Hom4(F, W). Since V
is projective and finitely generated as A-module, J = H o m ^ ( F , W) is
projective and finitely generated as a C-module. Since both HomθM{W
®CM, W®CM) = ΈLoma(W, W)®CM and Hom^(F(g)C, V®CM)~
Hom^ίF, F) (g) CM are matrix rings of the same size over CM, F(g)C M

and W§§CM are free CM-modules on the same number of generators.
Theefore F(g) CM ^ W® CM = (F(g) CM) ®oM{J® CM), which forces J
<g)CM = CM, and so J e ^f(C).

By Lemma 9 we can define a multiplication in ̂ f( V) by (V®JX, F(g) J2)-+
Vφjx®Jt. Then βf; J'iC)-* ^(V), given by J — F ( g ) J , is an
epimorphism, and so ^(V) is an abelian group with unit F.
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LEMMA 10. Ker/3 = Ker/3'. Hence if A — H o m ^ F , V), the map-
ping γ: ^f(A) —• ^{V) given by A (g) J'—• F ® J is an isomorphism
making a commutative diagram:

Proof. If {J}eKer/3', the C-modules F(g) J and F a r e isomorphic.
Then clearly the left ^-modules6 A = Hom^ (V, F) and Homα (F, F(g) J)
are isomorphic. However the latter module is isomorphic to

Hom0 (F, F)(g) Homσ (C, J) = A®J,

and so {J} e Ker β.
Inversely, if {J} e Ker β, then by Theorem 7, J = Ja for some auto-

morphism σ of A. We prove F(g) Jσ — V by localizing. We first com-
pute Jσ®CM. From the definition of J σ , σAλ = Aζ>t)Jσ and so A ® J^ ® C^
= o Ai (g) CM = σ®i(A Θ C^)^!. By the uniqueness part of Proposition 4,
Jσ®CM = Jα-0!. Furthermore, since C^ is local, ^f{CM) — 1 and thus
by Theorem 7, σ 0 1 is an inner automorphism of A (g) CM. The last
part of the proof of Lemma 5 then shows that J σ & CM = CMu with u
a unit in A (g) CM.

Next, since Jσ c Hom(7(F, F) = A, there is a C-module homomorphism
θ: V(g) Jσ-+V defined by θ(v (g) i) = ^*. Then θ (g) 1 maps F(g) J σ (g) C^
to F(g) Cjf and, in fact, if we write Jσ®CM — CMuy (θ (g) l)(v (g) c%) —
(v (g) c)t6 for v in F, c in CM; here (v ® c)^ is defined because u e A (g) CM

and F(g) C^ is an (A (g) CM)-module. Since u is a unit in A (g) C^, β (g) 1
is an isomorphism. Hence if £7 and F are the kernel and cokernel of
θ respectively U®CM= V®CM = 0 for all M. This proves that U =
V = 0, and 5 is an isomorphism. Hence {J} e Ker βf.

THEOREM 11. If A — H o m ^ F , F) with V a faithful, finitely
generated, protective C-moduley the sequence

is exact.

COROLLARY 12. / / ^(C) — 1 ί/̂ en ?ιoί only is every automorphism
of every central separable C-algebra inner (i.e. O(A) = 1 /or all A),
but also, for every split C-algebra Hom^ (F, F), ί/̂ β module V is uniquely
determined (i.e. ^(V) = 1 /or ê er̂ / F, α^d, in fact ^f(A) = 1 /or

A). Conversely, if for some central separable C-algebra A [resp.

6 We consider V a right A-module, so that Homo (V, X) becomes a left A-module.
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split C-algebra A = Hom^F, V)] both έ?(A) and ̂ f(A) are trivial [resp.,
= J"(V) = 1] then ^(C) = 1 αwd so έ?(A) = ^ ( A ) = 1 /or
A.

If we change the base ring C the exact sequences in Theorems 7
and 11 behave in the expected way: Specifically, if C —> D is a ring
homomorphism and if A is a central separable C-algebra then 4 0^1)
is a central separable D-algebra [2, Corollary 1.6] and Theorem 7 yields
the exact sequence

&n fin

( 2 ) 1 > ̂ ( A <g) D) — ^ ( D ) -^-> J?(A <g> D) > 1 .

LEMMA 13. TΛβ homomorphism C—+D gives rise to a homomorphism
of complexes (1) —» (2).

Proof. The mapping ^(A) —> ^(A (g) Z>) is of course given by send-
ing each automorphism class [σ] in ̂ (A) to [σ (g) 1] in έ?(A ® D). That
the mapping {J} —> {/(g) D} yields a homomorphism ^(C) —> ^(D) was
already proved in § 2, and a similar argument shows that for {P} e ̂ ( A )
the mapping P-^P§t)D yields a homomorphism ^"(A) —> ^ ( A 0 D).
The desired commutativity properties of these maps with a, β, aD and
βD are easily verified.

We remark that if έ?(A (g) D) = 1, then by Lemma 13, a^{A) c
Ker (^Γ(C) -> ̂  (D)). This combined with Lemma 2, Corollary 3, Theorems
7 and 11 and Lemma 13 yields

THEOREM 14. Let C be an integral domain or a noetherian ring,
S the complement of the set of zero-divisors (or more generally suppose
C is any commutative ring, S a multiplicatively closed subset containing
no zero divisors such that £?{AξZ) Cs) = 1). Then έ?(A) is isomorphic
to the subgroup of the ideal class group, *J*~(C, S), consisting of ideal
classes [I] such that IA~ A as left A-module.

If besides A = Homσ(F, V) is the algebra of endomorphisms of a
finitely generated, faithful, protective C-module V, then έ?(A) is also
isomorphic to the subgroup of ^{C, S) consisting of those ideal classes
[I\ with IV ~ V as C-modules.

THEOREM 15. Let C be a Dedekind ring, A = Hom^F, V) with V
a finitely generated, protective module of rank n. Then έ?(A) is iso-
morphic to the subgroup of the ideal class group of C consisting of the
ideal classes whose orders divide n.

Proof. By classical results, [8], V is isomorphic to a direct sum
Ii Θ ' Θ In of ideals with n and the class of 7J2 i» uniquely deter-
mining the C-isomorphism class of V. Thus IV = V if and only if
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In Π Ii = Π If Since Π 1% is an invertible ideal, IV = V if and only if
In = C, i.e. In is principal. Theorem 14 completes the proof.

REMARKS. (1) If C is any integral domain and V is a free C-
module on w generators, the same proof shows that if {/} e Ima then In

is principal.
( 2 ) In case V is free so that A is a matrix algebra over C, Theorem

15 was also proved by Kaplansky (unpublished).
(3) If C is the ring of integers of an algebraic number field,

^(C, S) is well known to be a finite group. If ^ ( C , S) Φ 1, if n is
an integer prime to the order of ^"(C, S), and if A is the algebra of
n x n matrices over C, we obtain an example with έ?(A) = 1 but

r/(C) = ̂ (A) = r^{V) Φ 1. It is an open question whether έ?(A) = 1
for every A implies &F{C) — 1.
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