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PREDICTION THEORY FOR MARKOFF PROCESSES

A. V. BALAKRISHNAN

In this paper we consider the least square prediction problem for
Markoίf processes with stationary transitions. The main result concerns
the partial differential equation characterizing the prediction operator,
and the conditions for the uniqueness of the solutions.

Introduction. Let x(t) be a Markoff process with stationary trans-
itions. It is well-known that the optimum mean square predictor of
g{x(s + ί)) given x{σ) for σ S s is given by the conditional expectation:

E[g(x(t + s)) I x(σ) ^ s] .

For a Markoff process this becomes

(1.1) E[g(x(t + 8)) |>(8)]

and further, if the transitions are stationary, we need only to consider:

(1.2) E[g(x(t)) I x(0)]

Let p(t, ξ I x) be the distribution function (suitably normalized) of the
conditional or transition probability of transition from x to f in time t.
Then, of course, (1.2) becomes

(1.3) \g®d&(t, ξ\x).

Now if g(.) is in C[a, β], where — &> <a<β< + co is the interval over
which the transition probabilities are defined, we obtain a semigroup of
linear operators over C[a, β] defined through (1.3). If now we know
the infinitesimal generator of this semigroup, we obtain an abstract
differential equation for (1.3):

(1.4) -2«k£L = Au(t, g)
at

where u{t, g) represents (1.3) and A is the infinitesimal generator, pro-
vided g(.) is in the domain of A. If we know the representation of A,
and if in particular, it turns out to be a partial differential operator,
(1.4) offers an alternate way of deter ming the prediction functions (1.2)
provided uniqueness of the solution can be proved. In what follows,
we shall be concerned primarily with situations where such a reduction
is possible, and the associated conditions for uniqueness.

Received September 1960.

1171



1172 A. V. BALAKRISHNAN

Main Results:

2. Markoff processes of the diffusion type. A well-known set of
sufficient conditions under which, the reduction to a parabolic partial
differential equation is possible are the Lindberg-Levy conditions which
we state here in their weakest form due to Feller [3, 4], Let

( i ) M dζP{t, ξ I x) — 0 as t -> 0 +
t Jlf-*l>ε

Ί (ϋ) -τ( (ξ-x)d(P(t,ξ\x)~^b(x) as ί —0 +

(iii) — (
t Jlf-*

- xYdtP(t, I I * ) — 2a{x) as t — 0 +

Then for each g(.) in C[a, β], if we set:

(2.1) T(t)g(x) - \*g(ξ)deP(t, ξ \ x ) .

T(t) is a semigroup of linear bounded operators over \a, β] and moreover

( i ) || T(t)g \\g\\ (contraction semigroup)

(ii) || T(t)g — flf || —>0 as ί—^0+ (strongly continuous)

(iii) T(t)g is non-negative if g is nonnegative.

(positivity preserving)

(vi) For g(ξ) = constant Γ(ί)flf = gf .

Properties (i), (iii) and (iv) are obvious from (2.1). That T(t)g again
belongs to C[a, β] follows from condition (i) of Llf and so does property
(ii). Let A be the infinitesimal generator of the semigroup. Then the
most important property one would like to deduce from Lx is that it
coincides with a second-order differential operator. Unfortunately,
however, this is not always entirely true. For example following Feller
[4], suppose we define the transition density kernels,

P(t, ξ\x) = ̂ 7 = [ e x P - ( g ( g ) ^ g ( a ? ) ) ] g y ( g ) , α = -°o, β =

where say g{.) is a polynomial which vanishes at the origin, and g\ξ) > 0.
Taking g(ξ) = ξ\ we obtain for ξ φ 0

b(ξ) = - |

However, at ξ — 0,
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α(0) = 0

6(0) = 0 .

Direct substitution into (2.1) shows that for /(.) in the domain of A,
/(0) = /'(0) = /"(0) and that

b!

Although for any ξ ± 0,

(2.2)
dξ

Here it may be noted that the exceptional point zero is a point of
discontinuity of the functions α(.) and δ(.). One might then expect
that this may avoided if they are required to be continuous. However,
it should be noted even in this case that A may not still coincide
entirely with the differential operator on the right in (2.2)—in fact, it
may only be a contraction of that operator. With some additional con-
ditions on a(ξ) and b(ξ) we can nevertheless obtain a stronger result.

THEOREM 2.1. Let a(ξ), b(ξ) given by Lλ be continuously twice
differentiate in the open interval (a, β) and a(ξ) > 0 therein. Let the
limits in Lx hold uniformly in x in each compact sub-interval. Suppose
in addition they satisfy:

(2.3) \°q{ξ)w{ξ)dξ = + ~ = \"q(ξ)w(ξ)dξ
JO JO

where a < 0 < β

dt
)o)oa(t)w(t)

w(t) - exp -

Then the infinitesimal generator A of the semigroup coincides with
the differential operator C

(2.4) C - a{ξ)-f- + 6(f)A
dξ2 dξ

where the domain of C consists of functions f{ξ) with first and second
derivatives such that

aξ aξ
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belongs to C[a, β].

Conversely suppose the functions a(ξ) and b(ξ) are given, with α(̂ >
positive and continuous and b(ξ) continuous in the open interval [a, β],
and suppose (2.3) is satisfied. Then C generates a semigroup given by
(2.1) where the kernels are Markoff transition probabilities which satisfy
the conditions Ll9 the limits holding uniformly in x in each compact
sub-interval.

Proof. Let us consider the converse statement first. Under the
conditions (2.3) on the coefficients a{ξ) and b{ξ), Hille [5] has shown
that C is the infinitesimal generator of a strongly continuous positive
contraction semigroup. Denoting this semigroup by S(t), we have, for
any /(.) in C[a, β]:

(2.5) S(t)f(x) = \βf(ξ)dξP(t, ξ; x)

where the P{t, ξ; x) are Markoff transition kernels. Moreover, it is
readily shown that the kernels satisfy the conditions Llf with the
necessary uniformity.

Suppose next that we are given transition probabilities satisfying
Lλ where α(.) and δ(.) satisfy (2.3). We know then (2.1) yields a strongly
continuous semigroup, and we have to show that its infinitesimal gener-
ator A coincides with C. For this, suppose /(.) is in the domain of C2.
Then /(.) has first and second derivatives. Further, suppose /'(.) vani-
shes outside a compact sub-interval, say [ru r2]. Now because a{ξ) > 0
and continuous in [a, β], it follows that /"(•) is continuous in compact
sub-intervals, and hence in particular in [rlf r2]. Now for each x in
[a,β]

S(t)f(x)-f(x) = U [f(x) _ m]dP{t, ξ i x)
t t Jl?-*l>ε

+
2t

where 0 < | θ \ < 1 .
In view of Llf it follows that

\
J l ί -

(2.6) limit τΨ)f(χ)-f(χ) = a{x)f"(x) + b{x)f'{x)

and because of the asserted uniformity of the limits in Lλ and the con-
ditions on /(.), it is clear the limit in (2.6) is uniform in x in [a, /3]o-
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Hence, for such /(.) it follows that

Af=Cf.

Moreover, for the same /(.), note that Cf again vanishes outside [rl9 r2].
Also, Cf again belongs to the domain of C and hence has first and
second derivatives. Hence the argument above can be repeated to yield
that

ACf = C2/

and, of course

CAf = C2f

or

CAf = ACf.

Denoting the semigroup generated by C by S(t) if follows readily that

S(t)T(t)f= T(t)S(t)f t > 0

and hence using the Dunford argument [See [7]]:

S(t)f- Γ(ί)/ = \\dldσ)S(σ)T(σ)f= ΫS{σ)T{σ){Λf-Cf)dσ
Jo Jo

it follows that

S(t) = T(t)f.

It only remains to show that the set of such functions /(.) is dense in
C[a, β] . Now the class of functions in C [a, β] whose derivatives vanish
outside compact subsets is dense in the domain of C Because of the
postulated twice differentiability of the coefficients a(x) and b(x), it
follows that this class automatically belongs to the domain of C2,
proving the required denseness. It is quite probable the result holds
without demanding differentiability of the functions a(x) and b(x).

This proves the theorem.
We note in passing that the conditions (2.3) do not imply uniqueness

of solutions of the forward equation, as Hille [3] has shown. From our
point of view, this lack of uniqueness is of no concern to us, thus
avoiding problems associated with the duality between the backward
and forward equations. In particular, Theorem 2.1 establishes that for
/(.) in the domain of C,

E[f(x(t)) I x(0)] = u(t, x)

is the unique solution of the Cauchy problem:



σu
dt

,χ)

, x on
dx2

= /(»).

+ b(xy du
dx

1176 A. V. BALAKRISHNAN

with

As an example, consider the situation of Gaussian white-noise input to
a nonlinear system, the input-output processes being related by [See
Doob [2, p. 273] for the notation]

(2.7) dx(t) =VΎ(x(tγ + l)dζ(t)

ξ(t) being the real Gaussian additive process with

E[\dξ(t)\*] = dt

so that the output process is Markoffian and we have for the limits in L^.

a(x) = {x2 + I)2

b(x) = 0 .

These clearly satisfy all the required conditions of Theorem 2.1 and the
predication function is the solution of the equation:

(2.8) - ^ = (x* + I)2 d%U

dt dx2

subject to the initial condition

u(0, x) = f(x)

where it is assumed that

belongs to C[— ™, +00].
In this particular case, we can obtain the solution in terms of orthogonaί
functions:

(2.9) u(t, x) = JLan Wn(x)e~n{n+1)t

0

where

a. = ί ~-¥M-f(x)dx
J-~ (x2 + I)2

Wn(x) = •/— V{x2 + 1) sin (n + 1)(— - arc tan a?) .

[See Hille [5]] for this solution. The convergence of the series in (2.4)
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is uniform in x in [a, β].
It may be noted that functions such as

fix) = x

and

f(x) = exp iXx

are not in C[— °o, +00], so that we cannot obtain the prediction as the
solution of the partial differential equation directly, in the sense in
which we have stated that Cauchy problem. It may, however, be
possible to consider a slightly different i?-space such as the space of
functions f(x) continuous in (—00, 00) and such that

limit/(a) exp - \x\p , 0 < p < 1
Ixl-

exist for some p, as Hille [6] does for the heat equation.
It should also be noted that in this example, the transition density

kernel has the expansion

Pit; ξ\x) = iξ2 + I ) " 2 Σ
0

As t —> 00, we obtain the density

(2.10) p(^;|Hα;)

and it should be noted that (2.9) for each t is an orthogonal expansion
with respect to this density. Also (2.10) corresponds to the (unique)
stationary first order distribution with respect to which the process is
ergodic. A sufficient condition for the existence of such an expansion
(which automatically also yield the corresponding limiting density) due
to Hille [5] is that in addition to (2.3) the following

(2.11) [°q'ix)dx\ wiξ)dξ < +00 and [βq'(x)dx[Xw(x)dx < 00
Jo Jo Jo Jo

be also satisfied. In this case, the limiting density is simply

q'jx)
q{β)-q{a) '

All transition probabilities are absolutely continuous.

3 Markoff processes not of the diffusion type We shall next
consider the prediction problem not of the diffusion type, i.e., whose
transition kernels do not satisfy conditions Llf but rather an extended
version of them, leading to elliptic partial differential equations. Thus,
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let the transition density kernels satisfy:

( i ) 2p(t,ξ\y)-p(2t,ξ\y)^0

( i i) - U [2p(t, ξ\y)- p(2t, ξ I y)\dξ -> 0 as t -> 0 + L2

t2 J\y-ξ\>e

(iii) _ U (ξ - y)[2p(t, ξ\y)- p(2t, ξ \ y)]dξ - > b(y)
t2 J\y-ξ\<e

(iv) -U (y-mwt,ξ\y)-p(2t,ξ\y)]dξ^2a(y).
t2 J\y-ξ\<e

Then the prediction function satisfies the elliptic partial differential
equation:

As before, the main difficulty is in obtaining uniqueness of the solutions.

THEOREM 3.1. Suppose a{y), b(y) are twice continously differentia-
ble in [a, β] and a(y) > 0 therein. Suppose further that the limits in
Lλ hold uniformly in y in each compact subinterval. Further, suppose
that a(ξ), b(ξ) satisfy (2.3). Then for each /(.) in the domain of C,

u(t, x) = E[f(x(t)) I x(0) = x]

satisfies the partial differetial equation

(3.2) ^ L + Cu(t, x) = 0

and is the only solution of it satisfying to the conditions:

(a) || %(*,.)-/(.) | |-> as t->o

(b) | |2%(ί,.)-^(2ί)ll
(c) SuPί \\u(t, .) || < co

Conversely, suppose a{ξ), b(ξ) are given such that they are continuous
in [a, β] and a(ξ) > 0 therein, and such that they satisfy (3.1). Then
the Cauchy problem for (3.1) has a unique solution satisfying (a), (b) and
(c) for each /(.) in the domain C, the solution being given by

where the p{t,ξ\ x) are Markoff transition densities satisfying L2, the
limits existing uniformly in y in compact sub-intervals.

Proof. For a proof of the converse part [see [6]]. Since a(.), b(.)
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satisfy these conditions in the forward part as well, let us denote the
corresponding semigroup by T(t) with generator B. Then we know that

B2= -C .

For each /(.) in C[a, β] let us next let

u(t, x) = E[f(x(t)) I x(0) = x] .

Then the conditions L2 on the transition kernels imply that u(t, x)
satisfies (a), (b) and (c), and moreover setting

u(t, x) = S(t)f(x)

S(t) is a strongly continuous semigroup over C[a, β]. Let us denote
its generator by A. We have now to show that

(3.2) A2 = B2 = - C .

For this, let /(.) belong to C[a, β] and let/'(.) vanish outside a compact
sub-interval [rl9 r2]. Then as in the proof of Theorem 2.1, we shall
first show that /(.) belongs also to the domain of A2 and that

A*f = B2f .

For this we note that

T(2t) + I - 2T(t) f(χ)

0

= - M " ( / ( I ) - f(x))W2t, t\x)- 2p(t, ξ I x)]dξ

t J-°°

and as before, as t —• 0, by virtue of L2 this goes to

-a(x)f"(x) -b(x)f(x)

and the rest of the arguments go over similarly. Also we readily
obtain that:

A2B2f = B2A2f .

This is enough to imply that

T(t)f=S(t)f

and the differentiability properties of a(x) and b(x) again imply that
such functions/(.) are dense in the domain of C and hence (3.2) follows.
This concludes the proof.

The simplest example of a process with transition kernels satisfying
the conditions L2 is the Cauchy additive process, with the independent
increments having a Cauchy distribution:
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jEΊexp i s(ζ(t + Δ) - ξ(t))] = exp - | s | Δ .

More generally, such a process arises as the output of a first-order system
whose imput is the Cauchy additive process:

dx(t) = b(x(t)dt + a(x(t))dζ(t)

in the notation of Doob (loc. cit.), ξ(t) being the input Cauchy additive
process ('non-Gaussian white noise'). Now

x(t + Δ) - x(t) = b[x(t)]Δ + a[x(t)][ξ(t + Δ) - ζ(t)]

where the right-side, for given x(t) is specified in terms of ξ(t) whose
statistics are known. The limits required in L2 are then established
by direct calculation. In the case of (i), we may note that we need
only prove it for small t, since the semigroup property will then imply
it for all values of t. We omit the details of these calculations. The
differential equation is:

jhι a(x)2 d2u W aΛ J?ϋL = π
2 d2 K } ddt2 2 dx2 K } dx

As an example we may consider the case where: α(.) and 6(.) are
constants:

a(x) = i/ΊΓ

b(x) = — 2x .

The differential equation then is:

d2u o θu , d2u

dt2 dx dx2

The (unique) solution of this is the prescribed type for each initial func-
tion/(.) can be expanded in Hermite polynomials [See [6] for a general
proof]

(3.3) u(t, x) = Σ^anHn(x) exp - V2n t
0

where the Hn(.) are the Hermite polynomials orthogonal with respect
to the Gaussian density:

) exp - x2

and

an = — 7 = 1 f(x)Hn(x) exp - x2dx .

The series in (3.3) converges to the solution function uniformly in com-
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p a c t s u b s e t s of ( — 0 0 , + 0 0 ) . T h e t r a n s i t i o n k e r n e l d e n s i t y p(t,ξ\x)
is g i v e n b y

Pit, ξ\x) = JLf- * exp Γ - B - s β E p - a / r _ JL
2π J—vV(l - exp -2a) L (1 - exp - 2a) 4σ

as follows again from the theory in [6]. Alternately, it has the ex-
pansion:

P(t, II x) = Σ Hn(x)Hn(ξ) exp - | 2 - 1/2% ί .
0

As t—> oo, the limiting density is: Gaussian:

2>(f) = — = exp — ξ2

Vπ

with respect to which (as first-order density) the process becomes strictly
stationary. It may be shown that the limiting density is again always
given by

P'(x)l(q(β) - q(a))

and is thus completely determined by the system, that is by α(.) and
&(.) only. The expansion (3.3) is, of course, in terms of functions
orthogonal with respect to this density. Thus, taking the example
treated in § 2, with

a{x) = (x2 + l )vΊΓ

b(x) = 0

yielding the differential equation:

<? 2^ , / 2 _, -j \2 d2U __ r,

we have the expansion:

(3.4) u(t, X) = ΣJ a»Wn(x) exp - Vn{n - 1) t
0

with Wn(x) and an as in (2.3). As before, a sufficient condition for the
existence of such expansion, is that (2.3) and (2.11) be satisfied. How-
ever, this is not necessary as the previous example (3.3) shows.

Extensions. A generalization of the type of process treated in § 3
is got by replacing the kernels in L2 by
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( I being the Binomial coefficients, leading to the equations

( i r f α ( ^ + b(x)
dtn J L ' dx2 ' dx

However, we have been unable as yet to establish the conditions for
uniqueness of the solutions.

We have only so far considered first-order Markoff processes. The
extension to higher order processes is similar in principle although it
entails partial differential equations in several space variables [see [8]
for example], and the results on the related Cauchy problems are still
incomplete to a large degree.
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UPPER BOUNDS FOR THE EIGENVALUES OF SOME

VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction* Let p(x) ^ 0, x e [0, a], be the density of a string
fixed at the points x = 0 and x = a under unit tension. The natural
frequencies of the string are determined by the eigenvalues of the
differential system

(1) n" + Xp(x)u = 0, u(0) = u(a) = 0 .

We note that these eigenvalues depend on the density function p(x)
and denote them accordingly by

o < \(p) < UP) < UP) < .

M. G. Krein [5] has found the sharp bounds

X M ~ ~W (n = 1, 2, •)

where X{t) is the least positive root of the equation

VX tan X = — - —
1 — t

p(x)dx = M and 0 ^ p(x) ^ H.
0

Sharp lower bounds are found in [1] when instead of the condition
p(x) g H, we have p(x) either monotone, p(x) convex, or p{x) concave.
The precise definitions of convex and concave are given below.

In this paper, we find sharp upper bounds for Xn(p) (n = 1, 2, 3, •)
whenever p(x) belongs to any one of the following sets of functions:

(a) Eλ(M, H, a), the set of monotone increasing functions where

\ap(x)dx = M and 0 ^ p(x) ^ H, x e [0, α] .
Jo

(b) E2(M, H, a), the set of continuous convex functions, i.e., conti-
nuous functions p(x) such that

p(x) ^ x*-χ

 p(Xl) + x~χi P(χ2), O^x^x^a,
Jϋ2 *vj_ *v2 1

S a
p(x)dx = M and 0 ^ p(x) ^ H, x e [0, a] .

0
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(c) EZ{M, α), the set of continuous concave functions, i.e.,— p(x)

S a
p(x)dx = M, x e [0, a],

0

In general, the values of the maxima appear as the roots of a tran-
scendental system of equations and are not obtained explicitly. However,
explicit bounds are given in some special cases.

The methods used generalize to give bounds for the eigenvalues of
a vibrating rod. Upper bounds are also found for the lowest eigenvalue
of a vibrating membrane over a circular domain when the density is
bounded and convex and also when the density is concave.

We make use of the following lemmas.

LEMMA 1. Let p(x) and q{x) be nonnegative integrable functions
defined for x e [a, b] and let f(x) be nonnegative, continuous and mono-
tone increasing in [a, 6]. If c e (a, b) is such that p(x) ^ q(x)for x e (a,c)
and p(x) ^ q(x) for x e (c, b)y then

p(x)dx — I q(x)dx
a Ja

implies that

S b Cb

p{x)f{x)dx 5i I q(x)f(x)dx .
α Jα

// f(x) is monotone decreasing, the inequality sign is reversed.
A proof of this lemma is given in [1].

LEMMA 2. Let Ek be one of the classes of functions defined above.
There exists a function p(x) e Ek such that

Xn(p) = sup Xn(p) .
()eE

Let p(x) e Ek for some k = 1, 2, or 3. By the definition of Ek,
there is a number H such that 0 S p(%) ^ H, xe [0, a]. (When k = 3,

that is when p(x) is concave, we take H = .) It follows that
a

Hence, there is a number μ such that

μ = sup Xn(p) .
p(χ)eEk

Let E(M, H, a) be the set of all functions p(x), x e [0, α] such that
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0 ^ p(x) S H < co and 1 p(x)dx = M. Krein [5] has shown that there
Jo

exists a subset {p»(x)} of E(M, H, a) and a function ρ(x) e E(M, H, a)

such that

pv{x)dx = \ ρ(x)dx .

o / J o

The convergence is uniform for x e[0,a] and furthermore

lim Xn(pv) = Xn(ρ) .
V->oo

In particular if p(x) e Ek, then the functions pv(x) also belong to
Ek. We now show that in each of the cases k = 1, 2, 3, p(x) e Ek also.

We first consider EX(M, H, α), that is, the family of all monotone

p(x)dx — M. Then pv(x)

e Eλ(M, H, α), (v = 1, 2, . .) . Let

p^(x)dx .
0

Since pv(^) is increasing, σv{x) must be convex. Hence, lim σv(x) = <τo(cc) =
p(x)dx must also be convex. For if

0

w\

(xλ < x < x2)9 then the same inequality must hold in the limit. It then
follows that p(x) is increasing.

For the family E2(M, H, α), that is for convex p{x), we first note
that the functions pv(x) (v = 1, 2, •••) are also convex. We now con-
sider these functions while restricting x to lie in the interval [δ, a—δ]
where 0 < δ < α/2. From the convexity of pv(x), it follows that

%{x + h) — py(x)

Hence {pv(x)} is an equicontinuous family of functions in this interval.
We now consider

pv(x) - ρ(x) I ^ pv(x) - h) — σv(x)

σv{x + h) — σo(x) _ σo(x + h) — σo(x)
h h

where α?, α? + h e [δ, α - δ]. Since

h

σo(x + h) - fl-o( p(x)

+ fe) "~ + θh) for

some 0 < θ < 1, it follows from the equicontinuity that the first term
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on the right may be made small by choosing h small. The last may
be made small by choosing h small since σ[(x) = p(x). Then for fixed
h, the middle term may be made small by choosing v sufficiently large.
Thus pv(#) —> p(x) as y —> oo in any closed interval properly contained in
(0, a). Hence we must have point wise convergence and p(x) must be
convex, x e (0, α).

The corresponding result for the family of functions E3(M, α), that
is when p(x) is concave, follows directly from the convex case by con-
sidering {— pv(x)}.

S a
p(x)dx =

o

M is

(2) 8Xn(p) = -Xn(

where un{x) is the normalized eigenfunction corresponding to Xn(p) and

[\δp)dx = 0.
Jo

Consider the differential system associated with a vibrating string
of linear density p(x) + εq(x) Ξ> 0, namely

(u + εv)" + (λ + εμ)(p(x) + eq(x))(u + εv) = 0 ,

u(0) + ev(0) = u(a) + εv(a) = 0 ,

S a
\p(x) + εq(x)]dx = M. We denote the nth. eigenvalue of this

0

system by Xn(p) + εμn and the corresponding eigenfunction by un(x) +
εvjx) where un(x) is the eigenfunction corresponding to Xn(p). un +
εvn(x) then satisfies the equation

< + < + (Xn(p) + εμn)(p(x) + εq(x))(un + εvn) = 0 .

Multiplying this by un(x) and integrating the resulting expression over
the interval (0, α), we get

(Xn(P) + eμn)[l + ε\\pnnvn + qu\)dx + 0(ε2)] - 0 .
Jo

S a Γa

u"undx — —Xn(p) and taken \ pu\dx = 1.
o Jo

Solving for μn, we find
(x)ul(x)dx - λ J β ( t ; X - vnu

r:)dx + 0(ε)
J ^

μ" 1 + 0(e)
Integrating the second integral by parts, we find that it vanishes so
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t h a t lett ing ε—>0, we get

Hence

[p(x) + εq(x)]dx = M and

S o
p(x)dx = M, it necessarily follows that \ 8p(x)dx = 0.

o Jo

2» Monotone density functions* We first consider the case where
p(x) is a monotone increasing function such that 0 ^ p(x) ^ H < oo,
that is when p(x)εE1(Mf H, a).

THEOREM 1. Let Kip) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a monotone increasing density
function p(x)εE1(Mf H, a). Then

Kip) ^ KiP)

where pix)εExiM, H, a) is a step function with at least one and at most
n discontinuities in the open interval (0, α).

By Lemma 2 there exists a monotone bounded function p(x) e
EλiM, H, a) such that λn(/t>) = maxpe23l λΛ(p). Hence, letting pix) = pix) in
the variational formula (2), we have 8Xnip) ^ 0. We now show that
unless pix) e E^M, H, a) is a step function with at most n discontinuities
^XniP) > 0 for some 8p = εq where pix) + 8pix) e E^M, H, a). Hence,
pix) must be a step function with at most n discontinuities.1

Let ujx) be the eigenfunction corresponding to λn(p). Denote the
nodal points of ujx) by xk (fc = 0,1, , n) where x0 = 0 and xn = a.
Since unix) has only one extremum point in each of the intervals ixk-lf

xk)ik = 1,2, , vήulix) has only one maximum there. Let that point
in ixk, xk+1) be xk (& = 1, 2, , n). For k = 1, 2, , w, we let

r(x) — ak— Vk pix)dxjixk — a?ft_i), a? e [^fc.!, xk] .

Since αfc is the mean value of pix) in ixk~19 xk) and p(ίc) is monotone
increasing, it follows that ak+1 ^ pix) iί xe [xk, xk] (fc = 1, 2, , w — 1)
and that α^ ^ p(αj) if α? 6 [xk, xk] (fc = 1, 2, , ^ ) . Hence, it is possible

1 The author is indebted Z. Nehari for suggesting the variational approach used in
this paper.
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to find a point ξk e (xk9 xk) such that

\ak if x € [xk, ξk)
r(x)=\ , (fc = 1,2,

(α if xe[ξk,xk]

satisfies the relation

_ r(x)dx = \_ p

(k = 1, 2, , w). We have taken an+1 = iί, the upper bound of p(#).
In each of the intervals (xk-lf xk) and (xk, xk) (k = 1, 2, , n), r(ίc) and
p(a?) satisfy the hypothesis of Lemma 1.1 relative to ul(x). Hence, we
have

\Xk p(x)ul(x)dx ^ \x* φ)ul(x)dx

and

p(α?)t6̂ (cc)dx ^ \ r(x)u2

n(x)dx

(fc = 1, 2, , n). Summing on k, we find that

\\v{x) - r(x)]ul(x)dx ^ 0 .
Jo

The equality sign will hold if and only if p(x) = r(x), i.e., p(x) is con-
stant or is a step function with precisely one jump in each of the in"
tervals (xk-19 xk) (k = 1, 2, , ri). If we let q(x) = r(x) — p(x), then
for small ε > 0 Lemma 3 gives the result

e q(x)ul(x)dx

= -K(p)\aSp(x)ul(x)dx > 0
Jo

unless p(x) = r(x). Hence, p(x) = r(x) if Xn(p) is a maximum. But r(x)
is a step function with at most n jumps in (0, a).

Finally, we show that the maximizing density cannot be a constant
so that there must be at least one jump. We first consider the lowest
eigenvalue. We show that δ\(p) > 0 when p(x) = M/a for a particular
Sp = εq.

The eigenfunction corresponding to λ^ikf/α) is

Ul(x) = i/2/S sin πx

a

If we let
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f-e if x e (0, α/2 + rj) ,

δp(#)d# = 0 and
0

δλΊ(M/α) = —

From the symmetry of ux{x) about the point x = α/2 and Lemma 1 it
is easily seen that

\a8p(x)ul(x)dx > 0 .
Jo

Hence, δλ̂ Af/α) > 0 so that \(M/a) cannot be a maximum value of

The corresponding result for the higher eigenvalues can be obtained
t>y choosing

8p(x) = εq(x) = - e(al2n
(2n — l)α „ if x e (al2n + W, a) ,

o v

Λvhere 0 < ^ < α/2w. It then follows from the periodicity of

un(x) = τ/2/αsin nπx
a

and the argument used for X^M/a) that Xn{Mfa) cannot be a maximum
value of λΛ(p), p e EX{M, H, a).

The upper bound of \(p), p e £Ί(M, iί, α) is thus given as the max-
imum of the lowest eigenvalue of the system.

(3) u" + XpΘ(x)u = 0, u(0) = u(a) = 0

where

ΘH if xe [0, fα) ,

i ϊ if cc € [|α, α]

0 < 6> < 1 and | = ί ~ ^/^fa ^ T h a t θ = 0 m a y be excluded from con-

sideration follows easily from the derivation of the form of p{x) and
the fact that the maximum of uλ(x) in this case must occur in the open
interval (ξa, a). For we would have αx = \Xlpθ(x)dx Φ 0 .

Jo
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The eigenfunctions of (3), are [2]

(sin VxnH (1 — £)α sin VxnΘH x , x e [0, ξa) ,
rti ί/y \ —— J

(sin V\nΘH | α sin V\nH (a — x) , # e [£α, α]

where Xn(Pβ) is the wth positive root of

tan (ξaVxθH) + v T t a n α(l — f )i/λ!f = 0 .

We could now compute
dθ

and determine the value which

maximizes \(PΘ).

The determination of the bounds for the higher eigenvalues is also
seen to be a problem in ordinary calculus since the jumps of the step
function which give the maximum must occur in the open interval
(0, a).

3. Convex density functions* Let p(x), x e [0, a] be a continuous

S α
p(x)dx = M and 0 ^ p(x) ^ H, that is, let

p(x) e E2(M, H, a).

THEOREM 2. Let \(p) be the lowest eigenvalue of a string with
fixed end points and with density p{x) e E2{My H, a). Then

where μ(h) = [6(h — l)^]2/^3 and tx is the least positive root of

\ T (t)T ( <2 ~ W* \ - 0

if 1 < h < 2 and μ(h) = h(StJ2)2 and tx is the least positive root of
J"_2/3(i) = 0 if h^2. The minimum is uniquely attained for the
function

ί 4
(5) p(x) = \

ifl<h =

(M - aH)x + H, xe(O, a/2) ,

p(a — x) , x 6 (α/2, α) ,

< 2 and

(6) p(x) =
[HIM](M - Hx) , xe (0,

0 , x e (MIH, α/2) ,

p{a — x) , x e (α/2, α),
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if h = — ^ 2 .

M

It is well known that \(p) is the minimum of

[au'2(x)dx
= -i°

I p{x)u\x)dx
Jo

where the minimum is taken over all functions ueC which vanish a t
x — 0 and x = α. If we let

t h e n

A,! V/// - mOA

\ uf\x)dx
Jo

S o Γa
p(x)u2(x)dx 1 p(α — x)u\x)dx

_ ? _ ^ (. m a χ JoS
1 J L 1 Λ Λ _ ? _ ^ (. m a χ

since the eigenvalues of a string with density p(a — x) are the same
as those of a string with density p(x). Hence any upper bound of λ^p)
is also an upper bound of Xλ(p).

The differential system (1) with p(x) replaced by p(x) has the same
lowest eigenvalue as the system

<7) u" + Xp{x)u = 0, u(0) = uf(a/2) = 0, x e [0, α/2].

Furthermore, since p(x) is convex, so is p(x), x e [0, α], and the bound
i ί is also a bound of p(x).

We now compare the lowest eigenvalue of the system (7) with that
of the same system when p(x) is replaced by

Pl(x) = μ/a

2](M - aH)x + H, x e [0, α/2] ,

if 1 < ^ r < 2 and

f a? e [ 0 f

^ e [ikf/ίί, α/2] ,
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if —— ^ 2. In either case, since ft(O) = H ^ p(0) and 1 pλ{x)dx =

S M Jo

α/2_

p(a;)d#, it follows from the convexity of p{x) that there is a point
ξ 6 (0, α/2) such that ρλ(x) ^ p(#) if x e (0, £) and ρx{x) g p(#) if a; e (f, α/2).
There will be strict inequality in each of these open intervals unless
p(x) = Pi(x), xe[0, α/2]. If u(x) is monotone increasing in [0, α/2] with
w(0) = ^'(α/2) = 0, we have by Lemma 1
(8)

Since the first eigenfunction of the system (7) is a monotone increasing
function, it follows from the comparison theorem [2] that

\(P) ^ λiίft)

There will be equality if and only if p(x) = ft (a?), for if u(x) is the
eigenfunction corresponding to the lowest eigenvalue of (7) with p(x)
replaced by ft(ίc) Φ p(x) then (8) will be a strict inequality and hence

S α/2 fo/2

u'\x)dx u'\x)dx
1 ρ1{x)u\x)dx \ p{x)u\x)dx
Jo Jo

But λx(ft) is also the lowest eigenvalue of the system (1) with p(x)

replaced by

pla -x), xe [α/2, a] .

This is just the function (5) if 1 < - ^ - < 2 and the function (6) if
M

^ 2. Hence we see that X^p) ^ \(p) for any bounded convex p(x).
M

When jθ(ίc) is defined by (5) we find that

a\ p(x)dx
Jo

where μ(h) = [6(h — lfaf/h3 and ίx is the least positive root of

Jii*(t)J%lΛ(kt) - J-ll3(t)J.2l3(kt) = 0 ,

= ( 2 - [4], When p(x) is defined by (6) we have
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S a
p(x)da

0

where μ(h) = h(3tJ2y and tx is the least positive root of J-3iz(t) = 0 [4].
A better bound is obtained if, instead of the bound H, we use 3 —

i[p(0) + p(a)] for the bound of p(x). This results in a smaller value of
μ(aH/M) whenever p(0) Φ p(a).

For the larger eigenvalues we prove the following.

THEOREM 3. Let Xn(p) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a convex density p(x) e E2{M, H,a).
Then

Xn(p) ^ Xn(p)

where p(x) e E2(M, H, a) is a piecewise linear convex function with at
most (n + 2) pieces.

The existence of a bounded convex function p(x) such that max?6ί?2

^n(p) = ^n(P) follows from Lemma 2. It then follows by Lemma 3 that

S\n(p) - -K(P)\aδf*x)ul(x)dx ^ 0 .
Jo

We now show that either p(x) is a convex piecewise linear function
with at most (n + 2) pieces or there exists a function q(x) such that
δλw(p) > 0 when 8p = εq where p(x) + Sp(x) e E2(M, H, a). Let un(x) be
the eigenfunction corresponding to Xn(p). We first find a convex
function r(x) such that

S a Ca

r(x)ul(x)dx ^ I p(x)ul(x)dx .
o Jo

Instead of trying to find r(x) directly, we carry out a preliminary con-
struction. As in Theorem 1, we denote the minimum points of u\{x)
by xk (k = 0,1, , n) and the maximum points by xk (k = 1, 2, , n).
We first consider each of the intervals (xk, xk+1) (k = 1, 2, , n — 1)
separately.

Let L(x) be any linear function such that L(x) ^ p(x), xe(xk,xk+1)
for some fixed integer k(l ^ k ^ n — 1). Then m(x) = max {L(ίc), 0}
satisfies the inequality 0 ^ m(x) ^ 2)(α?). Now let ck be any number
such that ck ^ pί^^). Then there is a number αΛ such that

(9) I k+1[ak(x - xk) + ck]dx =
J



1194 DALLAS BANKS

If ak(x — xk) + ck ^ m{x), x e (xk, xk+1), then we let

9k(x, ck) = ak(x - xk) + ck , a; e (a?fc, α t + 1) .

If αft(# — xk) + ck < m(x) for some x e (#*, £fc+i), then we redefine αfc

by the condition

(10) I [ak(x — xk) + ck]dx + \ m(x)dx =

where | f c satisfies the equation ak(ξk — &fc) + ck = m(ξk). In this case,
we define gk{x, ck) by

(<xΛ(α? — a?Λ) + ck , a; € (xk, ξk) ,

(m(aj) , a 6 [&, αΛ + 1) .

Now consider the interval (a?fc, a?fc). Let m(x) = max {L(a?), 0} where L(ίc)
is any linear function such that L(x) ^ p(x) iί x e (xk, xk). There is a
number δfc such that

S χjc C xfc

_ \bk(x — xk) + cΛ]cί^ = I p(x)dx .
If 6fc(α; — ίCjk) + ck ^ m(ίc) for a; e (»A, a?Λ), w e l e t

K(®t ck) = bk(x — xk) + ck , x e (xk, xk) .

If bk(x — xk) + ck < m(x) for some cc e (xk, χk), we redefine bk by the
condition

S ηk Γxk

_ m(x)dx + \ [bk(x — xk) + ck]dx =
where r)k satisfies the equation bk{ηk — xk) + ck = m(τ]k). We then define
K(x, ck) by

7 (m(x) , a? € (xk, Ύ]k) ,

/&*(#, cΛ) = j

We may consider ak and bk to be functions of ck. They are conti-
nuous functions as is easily seen from the defining relations of ak and bk.
It follows that there is a number yk ^ p(#Λ) such that ak = 6fc if ck — yk.
For if cA = p(Xfc), the convexity of p(#) implies that ak — bk ^ 0. On
the other hand, if ck is sufficiently large, ak — bk < 0. Hence, by the
continuity, the value 7k exists such that ck = yk implies ak — bk.

In the interval [x0, x^\, we define gQ(x, c0), in the same way that
9k(Xt ck) was defined except that we specify cQ = p(0) — 70. Similarly
in [xn, a] we define hn(x, cn) as above except that we take cn = p(a) = yn.

We now let

γ ίγ\ ft (V <Ί\ t p f Π ? !
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[hk(x, Ύk) , x e [xkJ xk] ,
rΛx) —

[Uk[

(k = 1, 2, ••*, n — 1). From (9) or (10), which ever applies, we have

rk(x)dx — 1 p(x)dx .

The convexity of p(x) and the definition of rk(x) imply by Lemma 1 that

Similarly from (11) or (12) we have

(14) ΓVfc(a;X(x)(ίa; ^ (!*p(»K(«)^ .

Furthermore, we have strict inequality unless rk(x) = jo(̂ ) in each case.
We are now able to define the function r(x) by induction. We

carry out the process only for n — 3 to avoid unnecessary detail. In
(x0, xx), we let m(x) = 0 and define rλ(x) as above. In (xu x2), we also
define r2(α;) with m(x) — 0. Then, comparing rx(βx) and r2(βx) we have
the following alternatives:

( i ) If r^Xj) > r2{x^)9 we define a new function r2(x) with m(x) =
max {^(x), 0}, a? e [xx, x2] where we define rλ(x) in this interval by extra-
polation.

(ii) If rλ{x^ < r2(^i), we define a new function r̂ a?) with m(x) =
max {r2(ίc), 0}, a? e [x0, xj, where r2{x) is defined in this interval by extra-
polation.

(iii) If r^) = τ2(βx) we leave rx{x) and r2(x) as they are.
Using whichever alternative applies, we define

τ2(x) , x e [ ^ , x j .

Now, define r3(a?), a? e [̂ 2, ^3] with m(a?) = 0 and compare r{1)(x2) and
r3(a?2). We use the same alternatives as above, the only difference being
that if rω(x2) < rB(x2) we must redefine r{1)(x) with m(x) = max {r3(#), 0},
a? e [a?0, #2] where as above we define rB(x) by extrapolation.

It is clear that the above process can be completed for any integer
n. The function which we obtain by this method we call r(x). It will
be a convex function since any two adjacent segments of the graph of
r(x) can only have a point of intersection which lies on or below the
graph of p(x). Since there is possibly a subinterval of [0, a] where r(x)
may be zero, r(x) may have up to n + 2 linear pieces.
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If we sum the inequalities (13) and (14) we find that

S a Ca

r(x)u2(x)dx ^ I p(x)ul(x)dx
o Jo

with strict inequality unless r(x) = p(x) in (0, a). Choosing 8p = eq(x) =
ε[r(x) — p(x)], we have that p(x) + 8p(x) is convex if ε > 0 is small and
hence

\a8pul(x)dx < 0
Jo

or 8Xn(p) > 0 unless p(x) = r{x), x e [0, a]. Since we must have 8Xn(p)
^ 0, it follows that p(x) is the same type of function as r(x). From
the method of determining r{x), we see the p(x) is a convex piece wise
linear function with at most n + 2 linear segments.

We note from Theorem 2 that this is precisely the case when n = 1.

4. Concave density functions. We consider the case when p(x),

S a
p(x)dx = M, that

0

is, when p(x) e E3(M, a).

THEOREM 4. Let Xn(p) be the nth eigenvalue of a string with fixed
end points and with a concave density function p(x) e E3(M, a). Then

K(P) ^ K(P)

where p(x) e Ed(M, a) and is a piecewise linear concave function with
at most n pieces.

The existence of a concave function ρ(x) such that

max Xn(p) = Xn(p)
peε3

follows from Lemma 2. As in the previous cases, we must have
δλ,^) ^ 0. We show that it is always possible to find a function q(x)
such that

= -Xn(p)\a8p(x)ul(x)dx > 0
Jo

when p(x) = εq(x) where p(x) + Sp(x) e E3(M, a), unless p(x) e E3(M, a) is
a piecewise linear concave function with at most n pieces. Hence, it
follows that p(x) must be such a function.

We find the function q(x) by the method used in the proof of
Theorem 3. Thus, we seek a function r(x) such that

J a Ca

r(x)ul(x)dx ^ I p(x)ul(x)dx .
o Jo
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Where un(x) is the eigenfunction corresponding to Xn(p). To apply the
method of Theorem 3, we consider

[p(x)ul(x)dx = \\-p(x)][-ul(x)]dx .
Jo Jo

Then — p(x) is convex and the zeros xk (k = 0, 1, 2, , n) of un(x) are
the maximum points of —ul{x). The maximum points xk(k = 1, 2, , n)
of ?4(x) are the minimum points of —ul(x).

Over each of the intervals (xk, xk+1)(k — 0,1, , n — 1) we define
—rk(x, ck) where — p(xk) ^ ck g 0. As in the convex case, there is a
number γfc such that rk(x, yk) is linear at x — xk. Using the inductive
argument as before, we let m(x) = L(x) since L(x) will be negative and
form new functions — rk(x, yk). Finally we obtain —r(x) which is convex
and satisfies the inequality

p(x)ul(x)dx ^ 1 r(x)u2

n(x)dx .
o Jo

Hence, choosing q(x) = r(x) —p(x), we have

\aδpul(x)dx = [a e q(x)ul(x)dx ^ 0 ,
J Jo

where for ε sufficiently small p(x) + Sp(x) e E3(M, a). Furthermore,
there is strict inequality unless p(x) is a concave piecewise linear func-
tion with at most n pieces. This proves the theorem.

It follows immediately from Theorem 4 that

1X*7 " aM

when p(x) is concave.1 For in this case, p(x) is a linear function. But,
as was shown in the proof of Theorem 3, λ ^ ) ^ λ ^ ) where p(x) =
i[ρ(x) + ρ(a — x)]. In this case, ρ(x) = M/a and \(Mla) = π2[aM.

5 The vibrating rodL The eigenvalue problem associated with a
vibrating rod with clamped ends and density p(x) Ξ> 0, x e [0, a] is

(15) uiΌ — Xp(x)u = 0 , w(0) = u'(0) = w(α) = w'(α) = 0 .

As in the case of the string, we denote the ordered eigenvalues by

0 < \(p) < λ2θ) < .

That there should be strict inequalities in this expression has been
1 This result has already been obtained by Z. Nehari. His proof is the one dimensional

analog of that given in [7] where he shows that the lowest eigenvalue of a circular mem-
brane with a superharmonic density p(xf y) is bounded above by that of a homogeneous
membrane of the same total mass.
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shown in [6].
In this section, we consider the problem of finding upper bounds

for these eigenvalues when p(x) is restricted to be either monotone,
convex or concave. In the first two cases, we require in addition that
p(x) 5g H < oo. As in the case of the string, we denote the set of all

S a
p(x)dx = M where p(x) is monotone

0

increasing, convex and concave by Eλ{M, H, α), E2(M, H, a) and EZ{M, a)
respectively. The H in Eλ{M, H, a) and E2{M, H, a) indicates that in
these cases p(x) <Z H.

LEMMA 4. Let Ek be one of the sets of functions defined above.
There exists a function p(x) e Ek such that

Xn(ρ) = sup Xn(p) .

This follows in exactly the same manner as the result of Lemma
2. We need only note that the result of Krein quoted in Lemma 2
may be generalized to this case. The generalization is trivial for the
Green's function of the system (15) and its first partial derivatives are
bounded. Krein's proof then applies word for word to this case and
hence the proof of Lemma 4 follows as in the proof of Lemma 2.

S a
p(x)dx = M is

0

S λ » - -Xn(p)\aδp(x)ul(x)dx
Jo

where un(x) is the normalized eigenfunction corresponding to Xn(p).

S a
8p(x) = 0.

0

The result is easily derived in the same way as the result of Lemma 3.
The results of Theorems 1, 3 and 4 will now generalize to the case

of a vibrating rod with clamped ends. The only question which arises
concerns the properties of the eigenfunction un(x) corresponding to
Xn(p). It must be true that un(x) has the same general character as
the wth eigenfunction of a vibrating string. In particular, it has been
shown in [6] that un(x) has exactly n — 1 zeros in the open interval
(0, a). Furthermore u2

n(x) has exactly one maximum between any con-
secutive pairs of zeros. For suppose there are two or more maximum
points between some consecutive pair of zeros. Then u'n(x) must have
at least n + 4 zeros in [0, α]. Hence K{x), K'(x) and u(

n

iv)(x) must
have at least n + 3, n + 2, and n + 1 zeros respectively in the open
interval (0, a). This leads to a contradiction if p(x) > 0 since u{

n

ίv) =
Xnp(x)un(x) may have only n — 1 zeros in (0, a). If p(x) ^ 0, we may
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apply the same argument with p(x) replaced by p(x) + ε, ε > 0. Thus,
if un2(x) is the nth eigenf unction, u2

n2(x) has n maximum points in (0, a).
Letting ε —> 0, we see that the same must be true of the nth eigenf unc-
tion when the rod density is p(x) ^ 0.

From these observations, Lemmas 4 and 5, and the arguments used
in Theorems 1, 3 and 4, we have the following result.

THEOREM 5. Let Xn(p) be the nth eigenvalue of a rod with clamped

ends and density p{x), x e [0, a], such that \ p(x)dx = M.

(a) // p(x) is monotone increasing and bounded

Kip) ^ KiP)

where pix), x e [0, a] is an increasing step function with at least one

S a
pix)dx =

o

M.

(b) If p{x) is convex and bounded

Xn(p) =g Xn(p)

where p{x), x e [0, α] is a bounded piecewise linear convex function

S a
p(x)dx = M.

o

(c) // p(x) is concave

KiP) ^ KiP)

where pix), x e [0, a] is a piecewise linear concave function with at

most n linear pieces and \ pix)dx — M.
Jo

In the case of the lowest eigenvalue, the density which gives the
upper bound may be obtained precisely when pix) is convex or concave.
It follows from the Rayleigh quotient as in Theorem 2 that for pix) =
i[pix) + pia — x)]

Xiip) ^ \iv) .

This and the above theorem thus show that when p(x) is convex, pix)
is symmetric and piece wise linear with at most three linear pieces and
that when pix) is concave, pix) is a constant. This result may also be
obtained by the method used in the proof of Theorem 2.

6. The membrane* We consider a vibrating membrane stretched
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with uniform unit tension over a disk D = {(x, y) \ x2 + y2 < R2}. We
assume the areal density of the membrane is given by the measurable
function p(x, y) where

1 \ P(%> y)dxdy = M.

For such a membrane with a fixed boundary, the eigenvalues and eigen-
functions are determined by the integral equation [8]

(16) u(x, y) = WjZiXf V> ξ> VM£> VM£> y)dξdr}

where G(x, y, ξ, rj) is the Green's function of D. We denote the first
eigenvalue by \(p) and the corresponding eigenfunction by ux(x, y).

We find upper bounds for \(p) by use of the following result.

LEMMA 6. The lowest eigenvalue of a circular membrane with
fixed boundary and integrable density p{x, y) is always less than that
of a circular membrane with fixed boundary and density.

- 1 f23Γ

p(x, y) — p(r) = \ p(r cos θ, r sin θ)dθ .
2π Jo

Proof. We use the fact the first eigenvalue is given by the in-
fimum of the Rayleigh quotient

11 (ul + uξ)dxdy
R(u) = — ^

11 p(x, y)u\x, y)dxdy

where the infimum is taken over all functions u(xf y) eC such that
u(x, y) vanishes on the boundary D. In particular, the lowest eigenvalue
of a circular membrane with density p(r) is given by

1 \ (ul + uξ)dxdy

\(p(r)) - mf - p .
ue°' \\ p(r)u\x; y)dxdy

We note that

2π Jo 2π"J

Hence, it follows that
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i \ v(r,φ)u2(r,φ)rdφdr
± = sup UE= sup

ί ( (—\2πp(r, Φ + Θ)dθ)u\r, φ)rdφdr
J JD\27Γ JO /

sup
uec

2 7 Γ J

11 (u2

x + Uy)dxdy

p(r, φ + θ)u\r, φ)rdφdr

i.e., λ^ί)) ^ \(p) since λ^p) does not depend on θ. We may now prove
the following.

THEOREM 6. The lowest eigenvalue of a circular membrane with
fixed boundary and a bounded convex density p(x, y) is less than the
lowest eigenvalue of a circular membrane with density

JO , 0<r^R-Hla,

if R> H/a and

q(r) = a(r-R) + H

S R

q(r)rdr = M.
0

We first note that since p(x, y) is convex, so is
1 Γ2?r

p(r) = 1 p(r cos </>, r sin φ)dφ .
2π Jo2π

For suppose τx and r2 are such that —R^r1<r2^R. By the con-
vexity of p(x, y) we have

cos φ, Tl + n sin φ) rg i[p(rx cos φ, n sin φ)

+ p(r2 cos φ, r2 sin φ)] .

Integrating this with respect to </>, we have

We now consider
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'ul + ul)dxdy

where u{x, y) is the eigenf unction corresponding to \(p(τ)). For any
function u1(x,y)eC, we then have

J > ))D

In particular, if tφ, y) = ux{r) is the eigenf unction corresponding to
the first eigenvalue \(q) of a membrane with density q{τ), it is a de-
creasing function of r, This is easily seen by considering the differential
equation which is equivalent to the integral equation (16) [3], By Lemma
1, we thus have

(17) 2π\Rp(r)ul(r)rdr ^ 2π[Bq(r)u\(r)rdr .
Jo Jo

Hence,

ι M r ) )

This same method yields a result if p(x, y) is a concave function.
For p(r) is also concave and the inequality (17) holds if we choose q(r) =

p(x, y)dxdy = M. Hence we find that
D

where j 0 is the least positive zero of «7"0(α?) = 0. As pointed out in [1],
this result is a corollary to a theorem of Nehari [7] which says that if

Λ2

p{x, y) is superharmonic in D, then λx(p) ^ TΓ-^—If. Since a concave

function is superharmonic, this implies the above result.
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ON THE FIELD OF RATIONAL FUNCTIONS

OF ALGEBRAIC GROUPS

A. BlALYNICKI-BlRULA

0. Introduction. Let K be an algebraically closed field of char-
acteristic 0, let k be a subfield of K and suppose that G is a {k, K)
algebraic group, i.e., an algebraic group defined over k and composed of
iΓ-rational points. Let k{G) denote the fields of /c-rational functions on
G. Gk denotes the subgroup of G composed of all fc-rational points of
G. If g e Gk then the regular mapping Lg(Rg) of G onto G defined by
Lgx — gx (Rgx = xg) induces an automorphism of k(G) denoted by g^r).
Let Dk denote the Lie algebra of all /^-derivations of k{G) (i.e., of all
derivations of k{G) that are trivial on k) which commute with grJ for
every g eGk.

For any subset A of k(G) let G(A) denote the subgroup of G com-
posed of all elements g such that gr(f) = / , for every f e A. In the
sequel we shall always assume that Gk is dense in G.

The main result of this paper is the following theorem:

THEOREM 1. Let F be a subfield of k(G) containing k. Then the
following three conditions are equivalent:

(1) F is (Gfc)ι - stable
( 2 ) F is Dk — stable
( 3 ) F= k(GIG(F)) and so F coincides with the field of all ele-

ments of k(G) that are fixed under G(F)r.
By means of the theorem, we establish a Galois correspondence be-

tween a family of subgroups of G and the family of (GA)Γstable subal-
gebras of the algebra of representative functions of G.

The author wishes to express his thanks to Professor G.P. Hochschild
and Professor M. Rosenlicht for a number of instructive conversations on
the subject of this note.

1# Let K be an algebraically closed field of characteristic 0, let &
be a subfield of K and suppose that V, W are (k, K) — algebraic varieties.
Let fc( V), k( W) denote the fields of Λ-rational functions on V and W,
respectively. If A is a subset of k(V) then k(A) denotes the fields
generated by k and A.

The following result is known1:
(1) Let F be a rational mapping of V onto a dense subset of W

and let φ be the cohomomorphism corresponding to F. Then there exists

Received September 28, 1960, in revised form November 14, 1960.
i See e.g. [2],

1205
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an open subset W1a W such that F~\x) contains exactly [k(V): φ(k(W))]
elements, for every x e Wt.

LEMMA 1. Let A be a subset of k(V) and suppose that there exists
a dense set Vx c V and an open subset V2 c V such that for any two
distinct points xlf x2, where x1 e V19 x2 e F2, there exists a function fe A
which is defined at xlf x2 and f(Xi) Φ f(x2). Then k(A) = k(V).

Proof. Let B be a finite subset of A, say B = {f19 •-,/„}. Then
FB denotes the rational mapping FB: V—*Kn defined by FB(x) — (fx{x),
•••,/«(&)) and WB = (FB(V)- c K\ Let Δ{WB) be the diagonal of
WB x WB and VB = ((FB x FB)-χΔ{ WB))~ c V x F. Then there exists a
finite subset BQa A such that F Λ o C VB, for every finite subset B a A
(since V x V satisfies the minimal condition for closed sets). Let Fo be
an open subset of V such that FBQ is regular on Fo. We may assume
that Vo = V2 = F, since we may replace V by Vo Π F2. If α?! e Vi, α?a e F
and a?! 9̂  α?2 then there exists /e^4 such that / is defined at xlf x2 and
/(»i) ^ / ( ^ ) . Hence (^, αj2) 0 F { / } and so (x19 x2) 0 F £ o . Thus FBQ{xλ) ψ FBQ(X2).

Therefore, for every x e FBQ{Vλ), FB\(x) contains exactly one element.
But FBQ( FJ) is dense in WBQ. Hence it follows from ( i ) that [k( V): k(B0)] = 1,
i.e., k(V) = k{BQ). Thus k(V) = k(A).

Let G be a (&, ίΓ) — algebraic group. Suppose that Gk is dense in
G. Let D be the Lie algebra of all derivations of K(G) commuting with
gr, for every g eG, and let Dk denote the Lie algebra consisting of all
derivations from D that map k(G) into k{G). Let k[D] (K[D]) denote
the fc-algebra (K — algebra) of transformations generated by the identity
map and Dk(D).

If d e Dk then d restricted to k(G) is a fc-derivation commuting with
gri for every g eGk. On the other hand if dx is a A -derivation of k(G)
commuting with gr, for every g eGk, then there exists a unique exten-
sion d of dx to a i£-derivation of K{G), and the extension belongs to Dk.
Hence we may identify Dk and the Lie algebra of all ^-derivations of
k(G) that commute with grj for every g eGk.

(ii)2 If feK(G) and / is defined at a point geG then df is defined
at g, for any cί e K[D],

LEMMA 2. Let f e K(G) and suppose that f is defined at g e Gk. If
f Φ 0 then there exists d 6 k[D] such that (df)(g) Φ 0.

Proof. Suppose that f Φ 0. If f(g) φ 0 then the identity element
of k[D] satisfies the desired condition. Hence we may assume that
f(g) = 0, Let (9k{^κ) denote the local ring of g in k(G) (K(G))
and let mk(mκ) be the maximal ideal of ^k(^κ). Then femκ. Let

2 See [4] p.51,
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#i>•'••> #m be elements of mk such that xx + m\, , xm + ml is a fc-
basis of mklm\. The xλ + m\, > #™ + w^ is a if-basis of mκ\m\. Hence
every mapping (xl9 , xm) —» fc can be extended to a derivation
9: ^^r —> if. On the other hand / Φ 0 and so there exists an integer t

such the / e m i r - m*/1. Hence / = Σ^+ .+i^ί α^ ;m «ίS ••• ,»i? + / i ,
where/i em^"1, aiv...timeK and at least one αί]L i w is different from
zero. Let dt be the derivation of &κ into K such than ^ a?,- = δ t i , where

Si3- = | J ϊ* ί f; 4 It is known3, that there exist d, e Dk such that (dj){g) =

9*/ for every / e ^ . Then (dji d%>)f(g) = i j ^lα^,. . . ,^ ^ 0 if
α iχ ί m ^ 0. Hence the lemma is proved.

If A is a subset of k(G) then G(A) denotes the subgroup of G com-
posed of all elements g such that gr leaves the elements of A fixed.
For any A c k(G)y G(A) is a fc-closed subgroup of G.

(iii)4 Let Gλ be a fc-closed subgroup of G. Then G/Gi is defined
over k. Let φ be the cohomomorphism of k(GIGλ) into &(G) correspon-
ding to the canonical mapping G —> GjGx. Then φ{k{GjGJ) coincides with
the subfield of all elements of k(G) which are fixed under gr, for every
g e G±. In the sequel we shall identify k{GjG^) and φ{k{GlG^).

Proof of the theorem.
Implications (3) =φ (1) and (3) =φ> (2) are obvious.

( l )=φ(3) 5 . Let g, eGk,g2eG and G(F)giΦG(F)g2. Then g2g^φG(F).

Hence there exists foe F such that (g2gΓ1)rfo Φ /0. Therefore there exists
an element g e Gk such that (g2gΓ1)rfo and fQ are defined at g and
(Q29Γ1)rfo(9) Φfo(g), i.e., Mg^g) Φ fig), {gτxg\flg2) Φ {g^g\flg^). Let
/ = (gΐ^ifo- Then feF since flff1^ e Gk; f is defined at g1 and r̂2, and
f(9l) ψ f(g2). Thus it follows from Lemma 1 that F = k(GIG(F)), because
G(F)-GkIG(F) is dense in G/G(F).

(2)==>(3). Let /i, , / n be a set of generators of F over fc, and
let Vx be an open subset of G such that /i, ,/ Λ are regular on V1#

We may assume that Vx = G{F)V1. Let ^ e Vτ Π Gfc, βr2 e Vlf G(F)g1 Φ
G(Fl)g2- Then g2g^ $ G(F) and so there exists ft such that (g2gτι)rfi Φ A-
We know that {g2gΐι)rfi and /< are defined at glm Hence it follows from
Lemma 2 that there exists an element d e k[D] such that

Φ (dMg), i.e., (<*/<)(&) Φ

Therefore, for any pair of distinct elements G(F)gl9 G(F)g2 such that

G(F)9leG(F) Gk n W ( F ) and G(F)g%eVJG{F) ,
3 See [4] p. 51,
4 See Proposition 2, p. 495 in [5].
5 This part of the proof is modeled after the proof of Lemma 5.3 p. 515 in [3].
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there exists an element fe F which is defined at G(F)gu G(F)g2 and such
that f(G(F)g1) Φ f(G(F)g2). But VJG(F) is an open subset of G\G{F),
and G(F)Gk Π VJG(F) is dense in G\G{F). Hence it follows from Lemma
1 that F=k(GIG(F)).

This completes the proof of the theorem.

2. Applications. As a consequence of Lemma 2 one can get the
following corollary:

COROLLARY. If a is an automorphism of k(G) commuting with Dk

and leaving the elements of k fixed then there exists heGk such that
a = hr.

Proof, a induces a rational map JFV G —* G. Let g e Gk be a point
such that Fa is defined at g and let F0(g) = h~xg Then h e Gk and
f(g) = (af){hr1g), for every fek(G) that is defined at g. Hence (df)g =
(a(df))(h-1g), for every d e k[D]. But (aid/Wh^g) = {h-\a{df))){g) and
d commutes with a and h'1. Therefore (df)(g) — {d{h~\af){g))). Hence
it follows from Lemma 2 that / = h~\af). Thus hrf = α:/, for every /
that is defined at g. Therefore hrf = af, for every fek(G).

It follows from the corollary that if F is a Dk — stable subfield of
k(G) containing k then every Dk — automorphism of k{G) leaving the
elements of Ffixed belongs to G(F)r, i.e., the Dk — Galois group of k(G)
over F coincides with G(F)r. Combining this result and the above theorem
we obtain that there exists the usual one to one Galois correspondence
between Dk — stable subfields of k(G) containing k and fc-closed subgroups
of G.

Let k[G] denote the ring of regular (i.e., representative) functions
on G. Let & be the family of all (Gk)t — stable (or, equivalently, Dk —
stable) subrings R of k[G] containing k and satisfying the following con-
dition if feR,geR and f/g e k[G] then f/g e R. Let 5^ denote the
family of all fc-closed subgroups H of G such that G/H is isomorphic to
an open subset of an affine variety.

THEOREM 2. The mappings H-+k[G] Π k{G\H) and R-^G(R) es-
tablish a Golois correspondence between & and &*.

Proof. H e gr then k[G] n k(GIH) e £P and G(k[G] Π k(G/H)) = H,
since k(G/H) is generated by k[G] Π fc(G/ff).

Now, if Re^ then G(R)e&. In fact, if Re&, then &(i?) is
(GΛ — stable and so k(R) = k(G/G(R)). For every fe R, (Gk)tf generates
a finite dimensional fc-vector space, Hence there exists a finitely generated
over k (G*), — stable subring # 0 of i? such that fc(i?0) = k(R). Let IF denote

β Ci. [1] p, 324,
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the affine variety that has Ro as its coordinate ring. One can define a
structure of a G-homogeneaus space on W, since K[R0] is Gt — stable.
Let η be the canonical mapping of G/G(R) into W. Then η commutes
with the action of G and is birational. Hence Ύ] is an isomorphism of
G/G(R) onto an open subset rj(GIG(R)) of W.

Moreover, R = k[G] Π k(G/G(R)), since Re & and k(R) = fc(G/G(Λ)).
This completes the proof of the theorem.

Added in Proof. The equivalence (1) <#=Φ> (2) of Theorem 1 in the
case where k is algebraically closed has been proved by E. Abe and T.
Kanno (Tohoku Math. Jour. 2nd series 11 (1959), 376-384).
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SIMPLE PATHS ON CONVEX POLYHEDRA

THOMAS A BROWN

1. Introduction* In problems of linear programming, one sometimes
wants to find all vertices of a given convex polyhedron. An algorithm
for finding all such vertices will often define a path which passes from
vertex to vertex along the edges of the polyhedron in question [1], and
thus it is natural to ask, as Balinski does in [2], whether or not one
can always find a path along the edges of a convex polyhedron which
visits each vertex once and only once. This question has been answered
in the negative independently by Grϋnbaum and Motzkin [5] and the
author [3]. The purpose of the present paper is to present a modifica-
tion of the results of [3], and answer certain questions which were
asked by Grϋnbaum and Motzkin.

Figure 1.

Received September 5, 1960 in revised form October 20, 1960.

1211



1212 THOMAS A. BROWN

2 Path numbers and path lengths For any graph G with n(G)
nodes we let m(G) denote the number of disjoint simple paths required
to cover all vertices of G, and let p(G) denote the maximum number
of nodes contained in a simple path on G. We call m(G) the "path
number" of G and p(G) the "path length" of G. If G can be repre-
sented as the edges and vertices of a convex polyhedron in three-dimen-
sional space, we say that G is "3-polyhedraΓ\ Now let

p(n) = mm{p{G): G is 3-polyhedral and n(G) — n}

m(n) = max{m(G): G is 3-polyhedral and n(G) = n} .

We will show, by means of a class of examples, that m(n) ^
(n - 10)/3 and p(n) ^ (2n + 13)/3 for all n.

3 The graphs Gk. Let the graph Gk(k ^ 3) have 3k + 2 vertices,
which we will denote by α, bif cif dif and e(i ranging from 1 to k). Let
the edges of Gk be (α, &<), (α, <?<), (e, d<), (β, c )̂, (<?<, c i+1), (c o &J, (<?<, d<),
(ίίt., c ί+1), and (6t , c ί + 1). Thus α and e are of valence 2k, the c{ are of
valence 8, and the hi and c^ are of valence 3. See Figure 1 for a draw-
ing of G4. Gk can be represented as a triangulation of the plane, and
it is easy to show by induction [4] that if n(G) ^ 4 and G can be

Figure 2.
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represented as a triangulation of the plane, then G can be represented
as the edges and vertices of a convex polyhedron in 3-space. Alterna-
tively, one could apply the "Fundamentalsatz der Konvexen Typen" of
E. Steinitz [6]. But in the case of Gk it is really unnecessary to use
any such general results, for Gk is clearly the graph of the polyhedron
obtained by appropriately truncating a bipyramid whose base is a regular
2&-gon (Figure 2 illustrates how the top half of a bipyramid should be
truncated in obtaining G4).

If we color α, cif and e black and let b{ and d{ be white (where i
ranges from 1 to fc), then Gk consists of n + 2 black nodes and 2n white
ones. Since each white node has only black neighbors, each simple path
in Gk must contain at most one more white node than black. Thus at
least 2fc — (fc + 2) = fc — 2 disjoint simple paths are required to visit
every node of Gk. The following set of paths shows that the path-
number of Gk is, in fact, exactly k — 2:

Similarly, since no simple path can contain more than fc + 2 black
vertices, it follows that no simple path can contain more than

(fc + 2) + (fc + 3) = 2fc + 5

vertices. It is easy to construct simple paths containing exactly this
many vertices, and thus the path-length of Gk is 2fc + 5. Since n(Gk) =
3fc + 2, it follows that if n = 2(mod 3),

p(n) ^

m{n) ^

+ 11
3

n-8

To get bounds for n = 1 (mod 3), consider the graph Gk obtained
by omitting one white vertex from Gk. For n = 0 (mod 3), consider the
graph Gk obtained by adjoining to Gk a vertex connected to cίfd19 and

e. It follows that

2n + 13
V{n) ^

m(n) Ξ>

3

n-10

p(n) 5g 13

n = 1 (mod 3)

m(n) ^

3

n — 9
n = 0 (mod 3) .

Griinbaum and Motzkin asked if n(G) = p(G) provided all of the
faces of the polyhedron representing G were triangles, and our examples
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show that this is not the case. They further conjectured that

maxn{Q)=nm(G)-p(G) ^ n1+y for some γ > 0 .

Our examples show that

Thus for any 7 < 1 we can find an Ny such that

msLXn{G)=nm(G)'p(G) > n1+y for all n ^ Ny .

Furthermore, this result is the best possible in a sense; for since
m(G) < n and p(G) g n, it follows that

mBlχn{G)=nm(G)'p(G) < n2 for all n .

I want to thank Dr. Michel Balinski for drawing this subject to my
attention, and the referee for making me aware of the paper by Griinbaum
and Motzkin.
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SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. CARLITZ

1. Let alf a2, a3, denote indeterminates. The Bell polynomial
φn(alf a2, a3, •) may be defined by φ0 = 1 and

(1.1) Φn = *,(«,, «,, α., •) = Σ ^Σ

where the summation is over all nonnegative integers kά such that

kλ + 2k2 + 3fc3 + == n .

For references see Bell [2] and Riordan [5, p. 36]. The general coefficient

(1.2) A n { h , K k t , • ) = fcJ

is integral; this is evident from the representation

)! (3fe,)!

and the fact that the quotient

(rk)l
kl(r\y

is integral [1, p. 57],
The coefficient An(klf k2, fc3, •) resembles the multinomial coefficient

M(klf K fcs •) = ~k + & + fc + )!
kλ\k2\kz

If p is a fixed p r i m e i t is k n o w n [3] t h a t M(k19 k2, k3, •••) is prime t o
p if and only if

ki = Σ aijPj (0 ^ α i y < p) ,

&! + fc2 + fc3 + = Σ ajPj (0 ^ αy < p)
i

and

It does not seem easy to find an analogous result for An(klfk2,kz, •••).
For some special results see § 3 below.

Received October 31, 1960
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Bell [2] showed that

(1.3) φp = a» + ap (modi?)

and also determined the residues (mod p) of φp+1, φ p + 2 , φp+3. He also
obtained an expression for the residue of φp+r as a determinant of order
r + 1. Generalizing (1.3) we shall show first that

(1.4) φpr = af + cΰΓ1 + +apr (mod p)

and that

(1.5) φpnitti, a2J α3, . .) = φn(φp, ατ21>, aw •) (mod p)

for all n ^ 1. Note that on the right the first argument in φn is φp and
not tfp.

2. From (1.1) we get the generating function

(2.1)

Indeed this may be taken as the definition of φn. Differentiating with
respect to t we get

oo J.n oo J.n oo J.r

Σ Φ»+1-V - Σ Φn-tγ Σ «r+1-V '
« = 0 72,1 n=0 ^ ! r=0 r\

so that

(2.2) ψM+1 =

Since the binomial coefficient

unless p | r and

it follows from (2.2) that

(2.3) φpn+1 = Σ (Jf)φ, ( ,_ r ) α w + X (mod p)

If for brevity we put

A(t) = Σ ccrtηrl ,
l
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SO t h a t

n=0 n\

it is easily seen by repeated differentiation and by (1.3) that

(2.4) Σ Φ*+*%f ~ WW)* + A™(t)}eAW (mod p) .

(By the statement

Σ ^n—r = Σ Bn—r (mod m) ,
w=o 72Ί Λ = O 72<!

where An, Bn are polynomials with integral coefficients, is meant the
system of congruences

An = Bn (mod ra) (n = 0,1, 2, .. •)) .

Hurwitz [4, p. 345] has proved the lemma that if alt α2, α3, are
arbitrary integers then

The proof holds without change when the an are indeterminates. Since

A\t) = Σ α.+rζ-

it follows easily from Hurwitz's lemma that

(A\tγ - (ax + Σ ^ + 1 ^ - ) P = αf (mod p) .

Thus (2.4) becomes

Σ Φn+i.-V = («ϊ + Σ «r+ -V) Σ Φ»-V 'w=o 72,1 \ r=o 7*J / Λ = o 72,1

which yields

(2.5) φn+p = (α? + αp)φΛ + Σ (J^απ-A-,. (mod p) .

In particular, for n = 0, (2.5) reduces to Bell's congruence (1.3).
Similarly

ΦP+I = (α? + ap)ax + αp + 1 Ξ φpaλ + αp + 1 ,

Φ P + a = ψpφ2 + 2ap+1ax + ap+2 ,
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and so on.
We remark that (2.5) is equivalent to Bell's congruence involving a

determinant [2, p. 267, formula (6.5)]. Also for s = ax = a2 — •••, (2.5)
reduces to

±(2.5)' an+p(s) = (sp + s)an(s) + s

= an+1(s) + s*an(s) (mod p) ,

where [5, p. 76]

and S(n, k) denotes the Stirling number of the second kind. The con-
gruence (2.5)' is due to Touchard [6],

If in (2.5) we replace n by pn we get

n ίn\
(2.6) Φpίn + l) = ΦpΦnp + Σ ( r )<Xp{r+l)Φpln-r) (mθd p)

for all n = 0,1, 2, . Thus φpn is congruent to a polynomial in φp,
(Xϊpy <*3P, alone. Moreover, comparing (2.6) with (2.2), it is clear that

(2.7) φpn = φn{φpy a2pj a,p, . . . ) (mod p) ,

so that we have proved (1.5).
Replacing n by pn in (2.7) we get

Φp*n = ΦpniΦp, &2p, M3p, •) = φn(φ* + Cίp<L, (X2p2, (X&, •) .

In particular for n = 1

a%

Again replacing ^ by p ^ we get

Φ Λ = φw(Φ 2̂

so that in particular

af

Continuing in this way we see that

(2.8) φprn = φn(ΦPr, a2pr, a,pr, . •) (mod p)

and

(2.9) φpr Ξ φpl_x + apr = af + a*r~~1 + + <v (mod p) .

We have therefore proved (1.4) as well as the more general congruence
(2.8).
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Since

φ2 = a\ + a2 ,

φs = a\ + Zaxa2 + a3,

φ4 = oίί + §a\a2 + Aaxaz + Sal + a, ,

it follows from (2.8) that

!

'Φ*pr = ΦJr + OΓ2pr ,

φ3pr = φjr + 3φpr0:2l)r + α8pr ,

04p» = ΦPr + 6φjrαr2pr + 4φprα3pr + 3aτjpr + α:42,r ,

and so on.
We note also that (2.3) implies

(2.11)

ί! + Sφ2pr(Xpr+1

3 By means of (1.5) we can obtain certain congruences for the
coefficient A(k19k2fk39 •••)• Indeed by (1.1) and (1.3)

(3.1) φn{φpja2p,a3pj . . . )

= Σ An{kly K K ' OK + ap)^a\ιa\ι... (mod p) ,

where the summation is over nonnegative fcy such that

kx + 2fc2 + 3fc3 + = n .

The right member of (3.1) is equal to

(Ί 9\ V A (h h h . . . 1 V I λ \fYp

(kj) r=0 \ '

On the other hand

(3.3) φpn = Σ Apnihi, h2, ht

summed over

(3.4) K + 2h2 + 3hz + = pn .

It follows from (1.5) that

Apn(h19 h2, h3, •) = 0 (mod p)

except possibly when

(3.5) hj = 0 (j>ifP + j) m

When this condition is satisfied (3.4) becomes
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K + p(hp + 2h2p + •) = pn

consequently hx — pkλ and (3.3) becomes

ΦPn = Σ Apn(pklf 0, . . , 0, h9, .)a

We have therefore proved the following result:

THEOREM 1. The coefficient Apn(hlf h2, h3, ••) occurring in (3.3) is
certainly divisible by p unless (3.5) is satisfied and hx = pkγ. If these
conditions are satisfied then

ίk \
Apn(hlf h2, hZi •) = (, * )An{k1 — hp, hp, h2p, •) (mod p) .

\'i/p/

If we make use of (1.4) we obtain the following simpler

THEOREM 2. Let

hx + 2h2 + Sh3 + = pr .

Then the coefficient Apr(hlf h2, h3, «••) is divisible by p except when

h = 0 (iΦ o) , hj = ps ,

for some j y in which case

Apr(h19 h2J hz, •) = 1 (mod p) .

Using (2.10) and (2.11) we can obtain additional results. For example
take

hx + 2h2 + 3&3 + = 2pr .

Then A2pr{hlf h2, h3, •••) is divisible by p unless ( i ) all hs = 0 (s Φ j),
hj = 1 or 2; (ii) all hs = 0 (s Φ i, j), hi = hj = 1. In case (i) A Ξ 1, in
case (ii) 4 Ξ 2 (mod p).

For ^ = Spr the corresponding results are more complicated.

4 We turn now to the polynomial Cn(alf a2, az, •••), the cycle in-
dicator of the symmetric group [5, p. 68]:

(4.1) Cn = Cn(alf a2y a3, •) = φn(a19 a2, 2laz, •)

^ kλ\k2\kz... \ l / \ 2 / \ 3

where the summation is over all nonnegative fey such that

kλ + 2k2 + 3fc3 + = n .

It is convenient to define Co = 1.
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Put

the general coefficient of CH. Clearly cn(klfk2,k3, •••) is integral and

indeed a multiple of An(k19 k2, k3, •) .

From (4.1) we get the generat ing function

(4.3) G(t) = Σ < ? „ — = exp (axt + — α 2 ί 2 + — α 3 ί 8 +
n=0 tl! V 2 3

For brevity put

Differentiating (4.3) with respect to t we get

G'(t) - C'(

that is

oo j.<n oo oo j.n

w=0 72,J r=0 Λ = 0 7l!

This implies

(4.4) uw + 1 - 2,

so that

(4.5) Cn+1 = aλCn (mod n) .

By repeated differentiation of (4.3) we get (compare (2.4))

(4.6) - ^ - G ( ί ) = {(C'(t))p + C(p)(ί)}G(ί) (mod p) .

Now since

Cf(ί) = ^P cc tn C ^pHt) — y1 ίti 4- x) lVct
n=0 n=0 92,|

it is clear that

(C'(ί))'sαϊ, C ^ ί ί j s - α , (modp);

at the last step we have used Wilson's theorem. Thus (4.6) becomes
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Σ Cn+P^- = (αϊ - a,) Σ cΛ-,
w=o n\ «=o nl

so that

(4.7) C n + P = (α? - αp)Cn (mod p) .

In particular we have

(4.8) Cp = a\ - ap (mod p)

and

(4.9) Cn+rp = (α? - α p) rCn (mod p)

We remark that for p = 3, 5, 7, (4.8) is in agreement with the explicit
values of Cn given in [5, p. 69].

By (4.9) with n = 0 we find that the coefficient

cr,(fci, fc2, &3, •) Ξ 0 (mod p)

unless all fc, except kλ and fcp vanish and kL is a multiple of p; in this
case we have

(4.10) crp(pk, 0, , 0, kp, •) = (-1)*'(£) (mod p) ..
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EXTENSIONS OF HOMOMORPHISMS

PAUL CIVIN

1. Introduction- A multiplication was introduced by R. Arens [1] [2]
into the second conjugate space I?** of a Banach algebra, B, which
made I?** into a Banach algebra. The algebra of the second conjugate
space was studied by Civin and Yood [3], with particular attention given
to the case where B was L(@), the group algebra of the locally compact
abelian group ©. Among the results they noted was that the algebra
M(@) of finite regular Borel measures on © was isomorphic as an algebra
with a quotient algebra of L**(@). With £> also a locally compact abelian
group, P. J. Cohen showed [4, p. 220] that any homomorphism of
into M(!Q) has an extension which was a homomorphism of M(®) into

In §3 we discuss the extensions of homomorphisms defined on a
Banach algebra A into either the second conjugate algebra 5** of a
Banach algebra B or certain of its quotient algebras. The result of
Cohen quoted above is included in Theorem 3.7 when © and ξ> are
compact groups. In §4 we indicate, for compact ξ>, a class of homomor-
phisms from L(@) into Λf(ξ>), which are induced by homomorphisms of
Z(<8) into L**(φ).

2 Notation, The notation of Civin and Yood [3] is used throughout.
If A is a Banach algebra, A*, A**, ••• denote the various conjugate
spaces of A. For / e A*, x e A, </, x) e A* is defined by </, x){y) =
f(xy), y e A. For F e A**, / e A*, [F,f] e A* is defined by [F,f] (x) =
F(ζf, αζ», x e A. Also for F e A**, G e A** the multiplication FG is
defined in A** by FG{f) = F([G,f]), f e A*.

For some purposes, Arens [2] also considers a second multiplication
F-G defined for F and G in 4** in a manner similar to the above,
except that at the first stage, </|α> e A* is defined by </|α> (y) = f(yoή9

f e A*, x,y e A. Arens calls the multiplication in A regular provided
that F'G = GF for all F,G 6 A**. Clearly, if A is commutative, then
A** is commutative if and only if the multiplication in A is regular.
The same notation as above, in terms of bilinear functional, is used in
the sequel with respect to a multiplication in A**** which comes from
the first of the above multiplications in A**.

If π is the natural mapping of A into A**, we say that a mapping
φ defined on A** into a set @ is an extension of a mapping p defined
on A into @ if φ{πx) — p(x) for x e A.

For any subset $ in A*, we use the notation ^ for {F e A** | F(f) =
0, / e 3}.

Received December 12, 1960. This research was supported by the National Science
Foundation, grant NSF-G-14, 111.
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For a commutative Banach algebra A, we let 2)(A) denote the closed
subspace of A* generated by the multiplicative linear functionals. If
A = L(@), the group algebra of the locally compact group ©, we write

in place of ?)(£(©)).

3 Extension of homomorphisms We first consider the possibility
of extending a bounded homomorphism of the Banach algebra A into
the Banach algebra 1?** to a w*-continuous homomorphism of A** into
JB**. Throughout this section we adopt the notation π for the natural
mapping of A into A** and σ for the natural mapping of 5* into 2?***^

3.1 THEOREM. Let A and B be Banach algebras. Let φ be a
bounded homomorphism of A into the center of j?**. Then there is a
unique w*-continuous homomorphism ψ of A** into J5** which is the
extension of φ.

Proof. Let / e £**, and x,y e A. Then <>*</ /, x) (y) = <p*σf{xy) =

ψ{χy){f) = ψ(y)φ{χ)U) = 9>te) ([?>(*),/]) - ^M<PO*O,/]G/) Thus
For any G e A**, [G, φ*σf](x) G«φ*σf, «» =

= σ*φ**Gφ(x)(f) = <P(x)σ*φ**G(f) =
,/](x). Consequently, [G,φ*σf] =

9>V[σ*9>**G, / ] . Therefore for any F e A**, F([G, 9>*σ/]) =
F(φ*σ[σ*φ**G, /]) = σ*φ**F([σ*φ**G, / ] ) . Hence σ*φ**(FG){f) -
FG(φ*σf) = F([G,φ*σfl) = σ*φ**F([σ*φ**G,f\) = σ*φ**Fσ*φ**G(f). Thus
σV** is a homomorphism of A** into i?**.

For £ e A, a n d / e £*, (7*^**(πx)(/)-τrίc(^*σ/) = 9>*σ/(a) - σf(<p(x)) =
<p(x)(f). Thus (7*^**(ττ^) = 9>(a?) and <?V** is an extension of φ.

Let G e A**, Ga e A** and suppose G = w* -limGa. Then for
any / e B*, \im σ*<p**Ga(f) = l imGα(^*σ/) = σ*^**G(/), and so σ*φ**
is w*-continuous.

The assertion of uniqueness follows from the following.

3.2 LEMMA. Let A and B be Banach algebras, and let φ be any
bounded linear transformation of A into I?**. Then #•*<£>** is the only
w*-continuous extension of φ to a transformation of A** into 2?**.

Proof. That <7*̂ >** is a ^-continuous extension was given above.
Suppose that ψ is a w*-continuous extension of φ, so that ψ(πx) — φ(x)
for all x e A. Let G e A** and let {xa} be a net in A such that w*-\im
πxΛ = G. Then for / e 5*, ψ<G)(/) = Km ψ(πxa)f = lim φ(x.)(/) = lim

= lim τrxα(^*(7/) = G(φ*σf) = σ*^**G(/). Hence

If 5 is commutative with a regular multiplication, an alternative
proof of Theorem 3.1 may be given on the basis of the following lemma
and Theorem 6.1 of [3].
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3.3 LEMMA. If B is a commutative Banach algebra with a regular
multiplication then σ* is a homomorphism of j?**** into 2?**.

Proof. Since multiplication in B is regular, JB** is [2] a commutative
algebra. Let U, V e £****. F o r / e £*, and F, G e £**, <<//, F>(G) -
0 / T O - * W ) = GF(f) - G([JF,/]) - σ[F,f](G), and therefore
<σ/,F> - σ[F,f]. Also [F,σ/](F) = F«σ/, F » = V(σ[F,f]) =
tf * F[F, /] - (</* F)F(/) = Fσ* V(f) = F([σ* V, /]) = σ[σ* V, f](F). Thus
[F, σ/] - σ[σ* V, / ] . Consequently <J*(£/F)(/) = UV(σf) = t/([F, α/]) =
t/(4<7*F,/]) = σ*C/([σ*F, /]) = ** Uσ*V{f) and σ* is a homomorphism
a claimed.

We note that it is impossible in general to conclude that the range
of the extension of φ is in the center of i?** even though the range
of ψ is in the center. For let A = B be a commutative algebra whose
multiplication is not regular, and let φ — π. Then the w*-continuous
extension of π is the identity map and JB** is not commutative.

One further example is in order, to see that in general a bounded
homomorphim φ from A into 5** does not admit a w*-continuous extension
as a homomorphism from A** into 5**. For this purpose let A be the
group algebra of the integers, ©, and let B — A. Let ίγ, 7 e ® be the
translation operator on A*, defined by tyf(a) — f(a + γ), feA*, and α,
r e ® . Let e e i * correspond to the function identically one on ©. Let
3 - { F e A**|F(£7/) = F(f), for all γ e ®,f e A*}. Then as noted in
formula (3.2) of [3],

(3.1) GF=G(e)F, F e$, G e A**.

In particular any F e g with F(e) = 1 is an idempotent. As noted in
[3], S is a two sided ideal in A** with only zero in common with the
center of A**. Since © is a discrete group A has an identity and thus
[3, Lemma 5.4] A** has an identity E. Let F be a nonzero idempotent
in $. Thus E — F is also an idempotent. Let φ(x) = πx(E — F). Since
πA is in the center of A**, φ(x) is a homomorphism of A into A**.
If φ had a w*-continuous extension as a homomorphism, the extension
ψ would have the value ψ(G) = G(E — F), (? e i ** . We now show
that ψ is not a homomorphism. As noted above F is not in the center
of A**, so we may pick H e A** such that HF Φ FH. Also pick
G e A** such that G(e) - 1. Then ψ(GH) =GH(E - F) = GH - GHF =
Giϊ — (Giί) (β)F. Now e is a multiplicative linear functional on A, and
so by Lemma 3.6 of [3], (GH)(e) = G(e)H(e) = H(e). Thus ψ (GH) =
GH-H(e)F=GH-HF. On the other hand ψ(G)ψ(H) = (G-GF)(H~
HF) = (G-F)(H- H(e)F) - GH - FH - H(e)GF + H(e)F = GH - FH.
Since FH Φ HF, ψ(GH) Φ ψ(G)ψ(H) and ψ is not a homomorphism.

Before turning to other types of extensions we note one further
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item on the matter of w*-continuity of homomorphisms.

3.4 LEMMA. If A and B are Banach algebras and ψ is a bounded
homomorphism of A** into the center of J3**, then there is a w*-continuous
homomorphism p of A** into i?** such that ψ(πx) — p(πx) for x e A.

Proof. Since ψπ is a homomorphism of A into the center of B**,
we may take p = tf*^**τz:** and apply Theorem 3.1.

Homomorphisms of A** into I?** which are not w*-continuous exist,
as may be seen in the following example. Let @ be an infinite compact
group and let A — B be the group algebra of @. Then by Lemma 3.8
of [3], A** has a right identity E which is not an identity. Define for
F e A**, f (F) = EF. Then ψ{FG) = EFG = EFEG = f(F)f{G).
However ψ although bounded is not w*-continuous. For let G e A**
and let {xa} be a net such that w* — lim πxa = G. Then if ψ were
w*-continuous we would have ψ(G) = limψ(πxa) = lim-Etoi^ = limπa^ =
G. However, ψ(G) = EG and EG Φ G for some G e A**.

We next turn to the question of extending homomorphisms from A
into certain quotient algebras of 1?** in the case in which both A and B
are commutative. We must first characterize the w*-closed ideals of a
second conjugate algebra.

3.5 LEMMA. Let A be a commutative Banach algebra. Let ft be
a w*-closed subspace of A** and let ft0 = {/ e A*\F(f) = 0, F e ft}.
7%ew ^ is α^ idβαi o/ A** i / and only if [G,/] e $ 0 for all
G 6 A**,/ G So.

Proof. Since $ is w*-closed, 3 — ^o^ Suppose $ is an ideal of
A**. For any F e $, G e A**, and / e ^ 0 , FG € $ and FG(/) = 0.
Therefore F([Gyf]) = 0 for all F e ft, and so by definition [G,/] e ft0.
Suppose next that the stated condition holds. Let F e g and G e A**.
For any / e ft0, [G, / ] e ft0 and thus FG(f) = F([G, / ] ) = 0. Consequently
FG e ft/ — ft and ft is a right ideal. For any x e A, πx is in the
center of A**, hence if F e ft, πxF — Fπx e ft. Since πA is w*-dense
in A** and left multiplication is w*-continuous [2], we see that GF e ft
for any G e A**, and thus ft is an ideal of A**.

3.6 THEOREM. Let A and B be commutative Banach algebras. Let
ft be a w*-closed ideal of I?**. Suppose that φ is a bounded homomor-
phism of A into the center of J5**/ft. Then there exists a w*-closed
ideal ft' of A** and a homomorphism ψ of A**/ft' into £**/ft suck that
if π is the natural embedding of A into A**, then ψ(πx + ft') =
φ{x), x e A.
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Proof. Since $ is w*-closed, 3 = ^ o

x where % = {/ e B*\F(f) = 0
for all ί7 e $}. Let β be the linear space isometric isomorphism of 3o*
onto £**/$ defined for î 0 e 30* bγ βFQ = F + S where ί7 e £** is an
arbitrary extension of Fo. Define multiplication in $0* so that β (and
thus β-1) is an algebra isomorphism. For / e Qf0, define φ*f by φ*f(x) =
(β~~1(p(x))(f), x e A. Then #>*/ is linear and since £> is bounded
II^JX^II^IM! IN! 11/11, and <pJeA\

Let Qf0' be the w*-closure of the range of φ*, and let $' = $V"
Clearly $' is w*-closed. We next show that $' is an ideal of A**. Let
fe%. Then for any x,y e A,<cpJ,x){y) - ^ / ( a y ) - {β'ιφ{xy))f =
(β~1(P(yx))(f), since the range of <p is commutative. Suppose that 9(1/) =
tf + & and 9>(a?) = F + $ so that ?>(yaθ = UV+%. Then <fi-x<p(xy)){f) =
ί/F(/) - C7([F, /]). Since fe 3f0, and 3 - 3 ^ is an ideal, flr = [7, /] e 3 0

by Lemma 3.5. Hence (β'Wyx))(/) - C/(sr) - {^-^y))^) = 9>*ff(»), for
all 1/6A We therefore have <(<£>*/, x> = φ*g and so ζ<P*f,xyeί3Ό for
any a eA and / e ^ 0 Suppose next that g e $„', and ίceA. Say fir =
w* -lim 9>*/Λ with /Λ e $0. Then for ί/ei , <̂ r, x>(y) = ^(^) = lim φJΛ{xy) =
l i m ^ / β , x>(|/), and hence <flr, a?> = w* — l im<^/ Λ , a?>. However, by
the above, <$>*/„, x> e Qfo

f, and %' is ^*-closed so <flr,a?> e $50' for any ^ e So'
and a; e A.

Let GeA** and let / e $ 0 \ Let {̂ α} be a net in A such that
w*-limπa?Λ = G. Then [G,/](«) = G«/ f a?» = lim πa?β(</, «» = lim
</, ^>(xa) = lim /(αajΛ) = lim fζx^x) = lim </, £*>(#) for cc G A. Consequently
[G, /] = w* - lim (f,x*y, and is thus in $0 ' as %' is ^;*-closed. Hence, by
Lemma 3.5, 9f = ^o'-1 is a w*closed ideal of A**.

For F e A**, define γF(/) = F{φJ) for / e ^ 0 Clearly 7F is a
bounded linear functional on $0, and so has an extension of the same
norm which is an element of 5**. We again denote the extension by
7F. Thus γ is a bounded linear map from A** into 2?**. Note that if
F.-F.e ft' and fe So, then y(F1 - F2)(f) = (F, - F2) (<?*/) 0, and thus

. Thus for any Fe Fo + 3, (|γF0 + 3 ' | | = | |γF+3f| | ^
^ H and hence \\ΎF0 + 9f|| ^ | | F 0 + SΊI Il9>*ll

Define ψ. on A**/^' by ψ(F + ^') - γί 7 + ft. By the above, we see
that ψ is a bounded linear mapping of A**/$' into J5**/g. Also for
αeil,ψ.(;rc + S') r=r γ ^ + 3. Since γτί£(/) = πx(φj) = ^^/(aj) =
(/3-V(^))(/) for /eSo, 7*Γ<B - /5~VW e 3, and ψ(πa? + 3)' - ?>(&).

Thus all that remains is to see that ψ satisfies the required multi-
plicative property of a homomorphism. Let F,GeA**. To see that
ψ(FG)=ψ(F)ψ(G), we must show that for fe &, M-F7)r(G)-7(ίτG)}(/) = 0.
Since {7(F)γ(G) -γ(FG)}(/) -7(F)([7(G),/])~FG(^,/)-F(^[γ(G),/]-
[G,9>*/]), it suffices if we show that 9>*[7(G),/] - [G, ̂ / ] = 0. Let
x,yeA and suppose that φ(x) = U + $, 9>(») = ^ + S, and thus 9>(a?») =
9>(»α?)= Fi7+^. It follows that <φ*f,xXy)=φ*f(xy)= VU(f) = F([C7, /]).
Now, since / e &, [U,f]e ^ 0 by Lemma 3.5. We therefore have (Φ,. f. χ>(y) =
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<P*[U, f](y) for all ye A, and consequently <9>*/, a?> = 9>*[ϊ/,/]. Thus
[G, Ψj]{x) = G«<p*f, x» =G(φ*[U,f]) = 7G([U,f] = (yG)U(f). On the
other hand, <p*[lG, /](%)= U([yG, / ] ) = UyGif). Since under our hypothesis
9>(a?) = C/ + 3f is in the center of B**/$, UyG(f) = (jG)U(f) for fe%
and we have the desired result.

It should be noted that the ideal $ ' in general is dependent on the
homomorphism φ. Two instances should be noted where this is not the
case. The first, when $ ' = 0, has already been treated in the discussion
of w*-continuous extensions of homomorphisms of A into the center of
-B**. The other is the following.

3.7 THEOREM. Let A and B be commutative Banach algebras. Let
ψ be a homomorphism of A into JB**/2)-L(JB). Then there is a homomor-
phism ψ of A**/Dx(-B) such that ψ(πx + ψ) = <p(x).

Proof. If in the proof of Theorem 3.6, $ 0 = 2)(5), it follows from
Lemma 3.6 of [3] that for any fe% which is a multiplicative linear
functional on B, that φ*f is a multiplicative linear functional on A.
Hence, the norm closure of the range of φ* is contained in ?)(A). In
view of Lemma 3.6 of [3], the subspace tyL{A) is a w*-closed ideal of
A**, and if used in the role of & affords the same conclusion. Note
that the homomorphism φ is not postulated to be bounded or with range
in the center of 5**/2)J-(JB). This is legitimate since in view of Theorem
3.7 of [3], J?**/^)-1 is automatically commutative and semi-simple, and
thus φ is automatically bounded.

If A and B are the group algebras of the compact groups ® and
ξ>, then A**lψ{A) and B**l%)L{B) may be identified with the measure
algebras M(®) and M(ξ>) respectively by Theorem 3.18 of [3]. Thus
Theorem 3.7 includes in the case of compact groups, the result of
P. J. Cohen [4] quoted in the introduction.

4 Group algebras* Let @ be a locally compact abelian group.
As in §3, we denote the group algebra of @ by L((S) and the algebra of
finite regular Borel measures on @ by M(®). For notational purposes,
it is also convenient to identify the character group © of (S with the
subset of !/*(©) consisting of the nonzero multiplicttive linear functional
on L((S). The topology of @ is then in agreement with the w*-topology
of © as a subset of L*(@).

Suppose that ξ> is a locally compact abelian group. A continuous
homomorphism v of © into ξ> is called nonsingular if for every Borel
set E is ξ> with zero Haar measure, v~\^) is of zero Haar measure in ©.

A complete characterization of all homomorphisms φ of L(@) into
was given by P. J. Cohen [4]. He utilized the function φ* from

into {©, 0} defined by <pj(x) = φ(x)(f), x e L(®),fe &
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4.1 THEOREM. (P. J. Cohen) Let © and ξ> be locally compact dbelian
groups, φ a homomorphism of L(@) into M(!Q), φ* the induced map of
φ into, {©, 0}. Then there are a finite number of sets Sti9 which are
cosets of open subgroups of φ, and continuous maps ψt: k{ —* ©, such
that

(4.1) ψiix + y-z) = ψiix) + ψM - ψάz)

for all x, y and z in Bif with the following property: There is a
decomposition of £> into the disjoint union of sets &j9 each lying in
the Boolean ring generated by the sets ®i9 such that on each @y, φ* is
either identically zero or agrees with some ψi9 where @y c Sί#

Conversely, for any map of ξ> into {©, 0}, there is a homomorphism
of L((§>) into M(fg) which induces it. The map φ carries L(@) into
L(fQ) if and only if φ^r1 of every compact subset of © is compact.

Suppse that the sets Bt are cosets of the subgroups It; of φ. There
is a closed subgroup £>; of £>, ̂  = {h e φ[ (hf h) — 1, h e UJ, such that Û
may be viewed [6, p. 130] as the character group of £>/£>;. Let α{ e ̂ i y

and define ψ/: U< -> © by

(4.2) ψ/(x) = ψMi + x) - ψi(ai), x e U4.

The condition (4.1) on ψi is then equivalent to the assertion that ψ/ is
a homomorphism of U* into @, and ψ/ is continuous along with ψim We
may also consider the dual homomorhism p^. @ —> Ui = ξ>/ξ>;, defined dy

(4.3) (ψ/(a?), g) - (a?, A(flr)), a? e U, = (φ/^Γ, flf e (8.

In view of the Cohen theorem, the homomorphism ψ is determined by
the sets &i9 @y and the functions /3ίβ The notation introduced above
will be used in the sequel without further comment. We also use the
notation p* as the mapping of .L*(ξ>) into L*(@) which is defined by
P*f(x) = p{x){f), K e L(@), fe L*(§), whenever ^ is a bounded linear map
of L(®) into L**(φ).

4.2 LEMMA. Lei X be a nonsingular homomorphism of © m£o a
locally compact abelian group &. Then λ induces a homomorphism p
of L(©) into L**($) such that for feSl,p*(f)=fo λ.

Proof. For fc e L*(£), define λ ί̂fe) by

aeG.

We first must show that λ^ is a well-defined bounded linear mapping of
L*($) into L*(©). Suppose that Kt andur2 are two bounded Borel measur-
able functions on ® such that kλ{β) = k2(β) for almost all β in ffi. Let
© = {a e ©I fc2 (X{a)) Φ k2(X(a))}. Then © - λ-χ(λ(@)) and by the hypothesis
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of non-singularity © has measure zero in ©. Since it is now immediate
that |λ*(fe)(α:)| ^ ||fc|| for almost all a in ©, it follows that λ* is a
bounded linear map of L*($) into Z/*(@).

For x e L(®), define ρ(x) on L*(St) by

Clearly p(x) e L**(£B), and /> is a bounded linear mapping from L(@) into
L**(Λ), and ^ / = / o λ .

We next show that /> satisfies the multiplicative condition for a
homomorphism. Let x,ye L(©) and / e L*(β). Then

- β)dβda

For any 2 e L(SΪ), and δ e ®, it is easily seen [3] that </, z>(δ)

(s + δ)«(γ) dγ. Therefore,

Since the order of integration may be reversed, we see that for

lp(y),f](v) = j φ / ( 7 + X{β))y{β)dβ. Hence,

X(β))y(β)x(a) dβ da .

Since we thus have ρ(xy)(f) = p(x)p(y)(f), for all feL*(K), p is a
homomorphism.

4.3 THEOREM. Lei © αmZ § 6β locally compact abelian groups,
with ξ> compact. Let φ be a homomorphism of L((§>) into M(ξ>). Le£
M(ξ)) 6e regarded as I#* *(©)/?) "L(Φ)> α ^ ί e ί ^ ^ e *^e natural mapping
of L**(!Q) onto L**(^)/?)J"(©)- Γfce^ i / βαcfc homomorphism βif de-
termined by φ, is nonsingular, there is a homomorphism p of L(®)
into L**(ξ>) such that φ — θ o p.

Proof. The justification for considering M(§) as L**(©)/?) 1(ξ>) is
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Theorem 3,18 of [3].
If <?*(/) = 0 for all /e@ y , define p3: L(@)->L**(ξ>) by pά{x) =

0, xeL(®).

Suppose that @, c ^ c ^ , and £>*(/) = ^h(/) for / e @iβ In view
of (4.1), the homomorphism ψ/ of Ui into G may be defined by ψi'(k) =
ψi(/c + &;) — ψi(&i) for an arbitrary h{ e @iβ The dual homomorphism ft
of © into £>/£>; is by hypothesis nonsingular. Thus by Lemma 4.2, there
is a homomorphism p/ of L(G) into !/**(©/©<) such that ft*'(fc) = fc o ft,
for fc e (£/&Γ = Wi

For/eL(φ/&) define £<(/) on © by 0<(/)Gβ) =/(/S + &)• Suppose
that the Haar measure on £>; is normalized so that the measure of &
is one. The formula relating integration on a group with that on a
quotient group shows that θ{ is an isometric isomorphism of L(ξ>/fe)
into L(ξ>). Thus by Theorem 6.1 of [3], θ** is a homomorphism of

) into L**(£). Also for any WGL(§fe), and / e !,*(£),

= Sβ/ί- S§
where dβ is the Haar measure on £>/£>*. Thus

f(β + 7)

and we conclude that θffφ) = \ f(β + γ) dy.

It is well known that in a group algebra the pointwise multiplication
by a character is an automorphism of the algebra. We next show that
the same situation prevails in the second conjugate algebra of a group
algebra. Let % be a locally compact abelian group and define, for
ηeX, ψg and τ]og by pointwise multiplication on X if x e L(Z) and
geL*(X). Define η o G(g) = G(r] o g) for GeL**(2) . Clearly the map
G—>τ]oG is a one-to-one bounded linear map of L**(£) onto itself.
Let F, GeL**(5ε) and ^ G L * ( 2 : ) . It remains for us to show that
(ψF){ψG)(g) = η?(FG)(g). Since {ψF)(ψG)(g) - ?o FφyoG, flr]) =
^ o ^ o G , g]), while ψ(FG){g) = FG{ψg) = F([G, ψg\), it suffices if we

show that for all a? e L(£), ^DyoG, #1 (*)== 1^' ^°^ W ^ o w ^°[^0^^ ff] ί̂ ) =
[^°G, g](yoχ)=ηoG«g, ηoXy) = G(ηo<β, ηoχ», while [G, ηog\(x)=G«r)og, α?»,
so it suffices if we show that for all # e L(%), ηoζg, rjoχy{y) =(flog, x}(y).
Since ψζg, ψxy(y) = g((ηoχ)(ηoy)) = g(^o^) = ^o^r^) = <^og, a.>(y), the
original assertion follows.

Define the mapping ^ by

(4.4) pax) = kγ'oθ^
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where the dot at each occurrence indicates multiplication of the appro-
priate functions. Since fc* e |>, and ψ (fc ) e ©, p5 is a composite of four
homomorphisms and is thus a homomorphism of L((S) and L**(φ).

Suppose that /e@y cffi<, so that <P*f=ψif. Since $ f is a coset of
I!;, there is a fc e U* such that f=k{ + k. We use the same notation
for k when it is viewed as a member of (ξ>/ξ>;)"\ For any x e

p'j{ψi{k%)oχ)θ*(k). From the formula obtained earlier for 0**, it is
immediate that 0** simply transfers k from being viewed as a member
of Hi c ξ), to being viewed as a member of (φ/φ<)~ c L*(ξ)/^). Thus

= j β (fc, ftW^ifeJW^a)^ = J@ (ψl(k), a)ψi(ki)(a)x(a)da ,

by use of (4.3). Thus by use of the definition of ψl in terms of kiy we have

ifc), a)x{a) da

), 0L)x(a) da = j @ <p*f(a)x(a) da .

We therefore conclude that ρ3 *f(x) = <P*f{%) for all & e L(@) or that

Prf=<P*ftoτ ft®*.
Now, by the Cohen theorem, ξ> is the disjoint union of the sets @5 .

The characteristic function of @, is then the Fourier transform of an
idempotent measure in M(!g) = I / * * ^ ) / ? ) 1 ^ ) . Let i^ be any member
of L**(ξ>) such that ^JP,- is the Fourier transform of the characteristic
function of <&Jm Then F) - Fά e S ) 1 ^ ) . Now, Theorem 3.15 of [3] states
that SHξ)) is the radical of £**(£>), and therefore Theorem 2.3.9 of [5]
yields Eά e L**(ξ>) such that E) = Ej and ΘE5 = ^ .

We next show that if i Φ j , then E{FE5 = 0 for any .Fe L**(φ).
Suppose that / e φ , then Lemma 3.6 of [3] yields

F o r / e £ , Ek(f) = Fk(f) = χ(@k)(f), where χ(@fc) is the characteristic
function of @Λ. Thus since S* and S3 are disjoint EiFE3-(f) = 0. Hence
EiFEj ey)1, the radical of L**(ξ>). For a compact group φ, the radical
is also the right annihilator of !/**(£>) by Theorem 3.5 of [3]. Thus
since E, = El E{FE5 = E^FE,) = 0.

Let jθ be defined on L(®) by

/o(») - E1p1(x)E1 + + Erpr(x)Er, x e L(®),

where © = @i U U @r. Clearly /> is a bounded linear transformation
of L(®) into L**(φ), and to see that p is a homomorphism it suffices if
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we show that Eiρi{xy)Ei = Eφ^Eφ^Ei. The latter equality is
ertablished by an identical argument to that used above to show EiFEj =
0 for i Φ j . Thus p is a homomorphism of L(&) into L**(§).

To see that θop = φ9 it suffices if we show that φ*{f) =
(θ°P)*(f) for fe f>. Suppose that fe <&k. Then for x e L(@), (#°iθ)*(/)(#) =
Oop(x){f) = Ekpk(x)Ek(f), since ^ ( / ) = 0 if i =£ fc. Thus {0op)^f)(x) -
Pk(%)(f) = ^ * / as was shown earlier.
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ASYMPTOTIC DECAY OF SOLUTIONS OF

DIFFERENTIAL INEQUALITIES

PAUL J. COHEN AND MILTON LEES
1

1. Introduction, Let A be an operator in a Hubert space Hy and
let u(t), 0 ^ t < <χ> be a strongly continuously differentiate function of
t with values in H such that Au(t) is continuous. We say that u(t) has
property S if, as t —> oo, it cannot vanish faster than every exponential,
unless identically zero. A sufficient condition for all solutions of the
abstract differential inequality

(1.1) \\^
II at

to have property S was determined by P. D. Lax [1], The required
condition is that there exists an infinite sequence of lines parallel to the
imaginary axis whose abcissae Xn tend to — oo and on which the resolvent
operator (A — λ)"1 is uniformly bounded by some constant d~ι, and that
supφ(ί) < d.

In this paper we give another sufficient condition for all of the
solutions of (1.1) to have property S. We require that the operator A
be symmetric, i.e., (Au,v) = (u, Av), for all u and v in the domain of
A, and that the function φ(t) be continuous and in Lp(0, oo), for some
p in 1 <g p ^ 2. Actually, under these conditions, we prove a slightly
stronger result; namely, that there exist constants K > 0 and μ such
that the non-trivial solutions of (1.1) satisfy || u(t) || ^ Keμt.

The restriction in Lax's result on the size of φ(t) cannot be lessened
in general. For in the contrary case he constructed a solution of (1.1)
that, as t —•> oo, behaves like exp ( — bt2), b being a positive linear function
of supφ(ί). It is therefore natural to ask whether there exist solutions
of (1.1) which, as t —> oo, tend to zero faster than exp(—λ£2), for every
λ > 0. We shall show that, at least for symmetric operators, this is
only possible for the trivial solution. More generally, we obtain results that
relate the rate of decay at infinity of the solutions of (1.1) to the asymp-
totic behavior of the function φ{t).

In the final portion of this paper we derive similar results for solu-
tions of concrete parabolic differential inequalities. Results concerning
the asymptotic behavior of solutions of parabolic partial differential ine-
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qualities have been obtained recently by M. H. Protter [2].

2Φ The estimate from below. Throughout this paper A will denote
a symmetric operator in a Hubert space H, and u(t) will denote a strongly
continuously differentiable function defined for 0 ^ t < oo with values
in H such that Au(t) to continuous. We shall also assume that φ(t) is
a positive continuous function belonging to Lp(0, oo), for some p in the
interval 1 ^ p ^ 2.

THEOREM 1. // ^(£) is a solution of the abstract differential ine-
quality

11 si it 11
(2.1) — - Au ^ φ(ί) || u || , 0 ^ t < oo ,

II dt II

%(0) ^ 0, then there exists K > 0 ami μ swcfc that

(2.2) l|tt(ί)ll δ i&μ ί , 0 ^ t <

The proof of Theorem 1 requires several lemmas concerning operators
in finite-dimensional Hubert spaces. Let D be a symmetric operator in
a finite-dimensional Hubert space F. Since F is finite-dimensional and
D is symmetric, there is no loss of generality in assuming that D is in
diagonal form.

For any real number λ and any vector v in F, denote by Pλv the
projection of v onto the subspace of F spanned by those eigenvectors of
D whose eigenvalues are not less than λ. Since D is in diagonal form,
we have

(2.3) (DPkv,Pλv)^X\\Pλv\\».

Similarly, if we define Rλv — v — Pλv, then

(2.4)

Let p be an arbitrary positive number, and define a sequence {tn}
as follows: ί0 = 0, and tnJ for positive integers n, is determined from
the relation

(2.5) \tn+1Φ(y)dy = p ,

where tn+1 = oo if

LEMMA 1. Let v(t), 0 ^ t < oo, be a differentiable function of t
with values in F such that
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(2.6) \ \ 4 l \ \\\
II cίt

Assume that v(0) φ 0 and that

(2.7) \\Pxv{t

Then there exists p0 > 0 such that for all p ^ p0

(2.8) 2 | | P λ ι ; | | ^ | | Λ λ ι ; | | f tn ^ t£ t%+ι .

Proof. The set T = {t: 2 \\ Rλv || ^ || Pλv ||} is closed, and the ine-
quality (2.8) obviously holds for each t in T. Thus it is sufficient to
prove (2.8) for t in CT, the complement of Γ. Since CΓ is an open set
of reals, it can be represented as a denumerable union of disjoint open
intervals. Therefore it suffices to prove (2.8) for a generic open interval,
a <t <b say, forming this union.

We have

(2.9) || Pλv{t) || < 2 || Rκv(t) || , a < t < b ,

and

(2.10) || Pλv(a) II ^ II Rχv{a) || .

Since the space F is finite dimensional, D is a bounded operator (the
bound for D may depend on the dimension of F), and this implies that
the inequality (2.6) can have only one solution with prescribed initial
value v(0). Thus v(t) can never vanish since v(0) =£0. It follows now
from (2.9) that Rλv{t) is nonzero in a < t < b, so that we can form the
function

(2.11) f(t) = -i£

Differentiating f(t), we find that

ll^λVll4-^ =4\\Rλv\
(2.12) dt

Since v(t) satisfies the inequality (2.6) and P λ and Rλ are projections,
we can write

(2.13) P A i j - D(Pλv) + Qx

dt

and
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(2.14) Pλ^L = D(Bλv) + Q2 ,
at

where

(2.15) I I Q « I I ^ Φ ( t ) I M I ,

It follows from (2.13) and (2.15) that

Re(pxv, P λ - ^ ) s> (Pκυ, DPxv) - φ(t) \\ v ||2 .

Applying (2.3) to the first term on the right, we obtain

(2.16) Re(pxv, P k Ά ^ λ || Pxv ||2 - φ(t) || v ||2 .
v at /

Similarly, we have

(2.17) Re(Rλv, Rλ^f) ^ X \\ Rkv ||2 + φ(t) \\v\\*.
\ dt /

Entering the estimates (2.16) and (2.17) into the right side of (2.12),
we find that

(2.18) \\Ekv\\^
dt

Here we have made use of the inequalities || Pkv \\ ^ \\v\\ and || Rkv \\ S
\\v\\. I t follows from (2.9) t h a t

This inequality and (2.18) imply that

&- ^ -200φ(t) ,
dt

and therefore

(2.19) f(t) ^ f(a) - 2Oθ[φ(V)d(rj) .
J

Now, according to (2.10) and (2.11), f(a) >̂ 1. Therefore if we make
use of (2.5), we conclude from (2.19) that

1 _ 200/9 £ * ,
\\RMt)\\

provided that 800jθ0 = 3. This completes the proof of the lemma.

LEMMA 2. Let v(t) satisfy the conditions of Lemma 1. If



ASYMPTOTIC DECAY OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES 1239

(2.20) π = λ - 200p(tn+1 - tj'1 ,

then, for all p ^ p0,

(2.21) || Pπv(tn+1) || ^ || Λ,rV(ίn+i) II

Proof. First, assume that

(2.22) || Pλv(t) | | ^ 2 | | Λxv(ί) || , tn < ί < tnH .

Setting

(6.6O) g\t) -—

I I 1

we obtain

(2.24) π dt π "ΛWVK"'~K dt

As in the proof of Lemma 1, we have

(2.25) Refav, Rπ^g) £ π \\ Rπv ||
2 + φ(t) \\ v

Inserting the estimates (2.16) and (2.25) into the right side of (2.24), we
conclude that

(2.26) || Rπv | | 4 4 f ^ 4(λ - π) || Rπv | | 2 1 | Pλv ||
2 - 8φ(t) \\ v ||2 .

at

Since || Pπv \\ ̂  || Pλv ||, (2.22) implies that \\v \\ g 5 || Rπv ||2, which, when
inserted into (2.21), yields

(2.27) 4 τ = 2 0 0 ^ ( ^ + 1 ~ O" 1, 1, 1^ 1 7 ' ! ! - 200φ(t) .
at \\ιcλv\\

Here we have employed the inequality || Rπv || ^ || Rλv | |. By Lemma 1,
4:\\Pλv\\2^\\Rλv ||2, so that we obtain from (2.27)

(2.28) 4 f = 20°Λ(ί +i ~ U- 1 - 200ψ(ί) .
at

Finally, when we integrate (2.28) between tn and tn+1 and apply (2.7)
and (2.23) to the result, we obtain the desired inequality (2.21).

Now assume that there is a value of t < tn+1 such that 11P^ 11 > 211 JBΛi; 11
Let t be the last such value of t. If t = ίw+1 there is nothing to prove,
so we assume that t < tn+ι. In this situation we have that
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\\PMt)\\ ^2\\Rπv(t)\\ , t<t<tn+1 ,

and

The reasoning emplyed to prove Lemma 1 can now be used to establish
the inequality

^ t^t£ tn+1,

which certainly implies (2.21).
From the sequence {tn} we form the series

o = Σ (tn+1 - ί . )" 1 .
n = 0

Our assumption that φ(t) belongs to Lp(0, °°), for some p in the interval
1 ^ p ^ 2, implies that σ converges. This is clear when p — 1 since in
this case the series has only a finite number of nonzero terms. Assume
that 1 < p ^ 2. Applying Holder's inequality to (2.5), we obtain the
nequality

G tn + i V/*7

Φp(v)dy) (tn+1-tnγ«,
where p~ι + q'1 = 1. Therefore

which, since q ^ p, implies that σ converges.
Also, we note here that our assumption that φ(t) belongs to Lp(0, oo),

for some p in the interval 1 ^ p g 2, implies that there exist constants
Cλ and C2 such that

(2.29) φ{η)dη ^ d ί + C2 .
Jo

From now on we shall assume that p has the fixed value p0.

LEMMA 3. Let v(t) satisfy the conditions of Lemma 1. //

(2.30) IIP

then

(2.31) || v(t) || ^ \e-°* \\ v(0) \\ e^ , 0 ^ t

μ = χ — 200poσ — 3 d .

Proof. Set λ0 = λ - 200/VJ. We assert that
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(2.32) 2 || PλQv(t) || ^ || RλQv(t) || , 0 ^ < ^ .

Let t be arbitrary. Then for some n, tn ^ t ^ tn+1. It follows from
(2.30), Lemma 1 and Lemma 2 that

(2.33) 2 || Pπv(t) II ^ II RMt) II , tn£t£ ίn+1

Hence the inequality

implies (2.32) for this particular value of t.
It follows from (2.32) that

(2.34) || v(t) | | ^ 3 | | Pλ(v{t) || , O ^ K o o .

Set z(t) = PKQv(t). Then by (2.34) z(t) is a solution of the differential
inequality

(2.35)

Differentiating | | z | | 2 , and taking (2.35) into account, we get

(2.36) — || « ||2 = 2Re(z, ~ ^ 2i?β(^, Dz)
dt \ dt /

Since «(ί) = PλQv(t), it follows from (2.3) and (2.36) that

(2.37) A | | z | | ^
dt

Consequently, if we integrate (2.37), we obtain

II V(t) ||2 ^ II z(t) ||2 ^ II z(0) | | 2 e x p

which is equivalent to (2.31).

To pass from the finite to the infinite dimentional case, we have to
show that the cut-off parameter λ can be selected independently of the
dimension of the space F.

LEMMA 4. Let v(t) satisfy the conditions of Lemma 1. Then there
exists a λ, depending only on \\v(0)\\, \\v(l)\\ and φ(t), such that

(2.38) 1^^(1)11^11^^(1)11 .

Proof. Define w(t) = v(l — t). Then w(t) is a solution of the dif-
ferential inequality
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(2.39) \\^!ί + Dw\\^φ(t)\\w\\ ,

II at l|

If for some λ

| | P λ v ( l ) | | <\\RM1)\\ ,

then

(2.40) \\P^w(0)\\>\\R-λw(0)\\ .

Applying Lemma 3 to (2.39) and (2.40), we find that

where

m = - λ - 200^*7 - 3 d .

Hence

(2.41) λ ^ log ΓlM2IlLe^l - 200ft - 3C, .
L || v(l)|| J

Thus if λ is chosen smaller than the right side of (2.41), then the desired
inequality (2.38) holds.

3. Proof of Theorem 1. Let k be an arbitrary positive integer.
Using the continuity of the derivative of v(t), one can show that for
any ε > 0 there exists a 8 = δ(s, k) > 0 such that

(3.1) II A «(* + ft> *(*> II
II Z h II

for I fe I < δ and 1t | ^ k.
We subdivide the interval 0 ^ t ^ k into equal subintervals of length

J, where Δ < 8, and

(3.2) | | A u ( ί + Λ)-Aw(ί) | | < ε ,

for I h I < J . We assume that the point t — 1 is included in the sub-
division.

Let G be the subspace of H generated by w(0), u(Δ), u(2d), » ,tt(fc).
Let AQ = EA, where E is the projection of H onto the subspace G.
Clearly, the operator Ao restricted to the subspace G is symmetric.

For any subdivision point jΔ, we have

(3.3) u(U + 1)4) -
Δ

where M is the infimum of φ{t) || u(t) || for 0 ^ t g k. Let t 0̂(ί) be equal
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to u(t) at the subdivision points and be linear in between. Note that
uQ(t) has its values in the finite-dimensional subspace G of H.

It follows from (3.2) and (3.3) that

(3.4) || D+u0(t) - AQuQ(t) || ̂  ( l + -ff

where D+ denotes right differentiation, and jΔ <£ t <̂  (j + 1)Δ. By tak-
ing Δ sufficiently small and taking into account the continuity of φ(t),
we obtain

(3.5) || D+u0 - Aouo || ^ 2φ(t) \\uo\\ , O^t^k .

By Lemma 4, there is a λ = λ(|| %(0) ||, || ^(1) ||, 2φ(t)) such that

(3.6) \\PsflΦ)\\^\\BsMl)\\

Now we observe that the lemmas of the preceding section remain
valid when v(t) has a right derivative everywhere and is continuously
differentiate, except at a finite number of points. Once this observation
is made, we can conclude from (3.5), (3.6) and Lemma 3 that

where

Hence

\\uQ(t)\\ ^ ill

) = λ

| u(l) II exp

— 400iθ0σ -

l ύ t ^ k.

Letting Δ—>0, we conclude that

l ^ ί ^ fe,

which is easily seen to imply the inequality (2.2) of Theorem 1.
In the proof of Theorem 1 we tacitly assumed that u(t) never vanishes.

The proof of this fact is easy. For let t0 denote the first value of t for
which u(t) is zero. Since u(0) Φ 0, t0 > 0. According to Theorem 1, we
have || u(t) || ^ Keμ\ for 0 ̂  t < t0, which shows that u(t) cannot possibly
vanish at ί0.

4 An A priori inequality* In this section we derive an a priori
inequality for a class of functions with a prescribed rate of decay at
infinity.

LEMMA 5. Let ψ(t) belong to L2(0, α), for every a > 0, and define

(4.1) β(t) = \\\t -

Jo
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Let U{t) be a strongly continuously differentiate mapping from 0 ^
t < oo with values in H such that AU(t) is continuous. If the support
of U(t) is contained iw 0 < £ ̂  K °° and

(4.2) lim || U(t) || exp β(t) = 0 ,

for every λ > 0, then

(4.3) x\θ°e2βitψ(t) || U(t) \\2dt ̂  [°°e2βU)II^L - Au\\*dt ,

Jo Jo II dt ||
provided that the left side is finite.

Proof. We may assume that U(t) vanishes for all sufficiently large
values of t. For in the general case we can approximate U by the se-
quence Un(t) = ξn(t)U(t),ξn(t) being a C°° function equal to one for
t ^ n, zero for t ^ n + 1 and 0 ^ fn ^ 1 in between. As ^ —> oo, the
inequality (4.3) for Un goes over into (4.3) for U.

Now consider the integral

I = ( > >ll4£-Al7||\tt.
| dt

If we make the transformation U(t) = e~βW V(t), then

( 4 > 4 ) T Jo
dV AV dβ

| dt

It follows from the elementary inequality

(α - &)2 ̂  -2ab

and (4.4) that

dt.

(4.5) / 2: _2("WAL, M F + A v)dt .
Jo V dt dt I

We have

\m(dV i§-V)dt = ( ^ ( F ^
(4 g\ Jo \ cϊί αί / JO αί V dt

The first integral on the right vanishes since F(ί) has compact support.
Hence

(4.7) _2Γifc(4^, ^
J V dt dt
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In view of (4.5) and (4.7) it is sufficient to prove that

(4.8) Re(l£-,AV)dt = O.
Jo V dt /

Taking into account the symmetry of A, we have that

(4.9) (*Σ.,AV) = 4-(V,AV) - (^-,
dt \ dt

the bar denoting complex conjugation. Therefore

from which (4.8) follows directly by integration. This completes the
proof of the lemma.

5 A special instance of Theorem 1. As a first application of
Lemma 5, we give a direct proof of a slightly weaker version of Theorem
1 in the case that φ(t) belongs to L2(0, oo).

THEOREM 2. Let u(t) be a solution of the abstract differential in-
equality

(5.1) h ϊ Γ "
II dt

where φ(t) belongs to L\0, oo). If

(5.2) l i m | | ^ ( ί ) | | e λ C = 0

for every λ > 0, then u has property S, i.e., it vanishes identically for
0 ^ t < oo.

Proof. Since φ e L2(0, oo), it follows from (4.1) that (we take f = φ)

Therefore (5.2) implies that

(5.3)

for every λ > 0. Let ζ(t) be a C°° function equal to one for 0 < 2ε g t,
equal to zero for 0 ^ t ^ ε and 0 ^ ζ ^ 1 in between. Set U(t) = ζ(t)u(t).
Because of (5.3) and the fact that
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all of the conditions of Lemma 5 are met, and therefore

S f2S II JTT | |2

φ2(t)e^{t) | | u(t) \\2dt ^ e2βU) \\^- - AU\\ dt
2ε Jε | | dt | |

+ \~f(t)\\u(t)\\*dt.
J 2S

If λ ^ 2 then

(5.4) \°°φ\t)emt) || u(t) \\2dt ^ ΓVβ(£) 1 1 - ^ - AC/IΓdί .
J3ε Jε | | dt | |

Using the monotonic character of β{t), we get from (5.5) that

(5.5) [ > ( ί ) || u(t) \\*dt ^ exp [β(2e) - β(3ε)]\2S II *E- - Aϋ\\dt .

Since β(2ε) — β(Sε) —* -co as λ—* oo, it follows from (5.5) that

\~Φ*(t)\\u(t)\\*dt = O.
J3ε

Therefore w(t) = 0 for t Ξg 3ε. Since ε is arbitrary, u{t) vanishes identi-
cally for 0 ^ t < oo.

In much the same way we can prove the following result for bounded
Φ.

THEOREM 3. Let u{t) be a solution of the abstract differential in-
equality (5.1), where φ(t) ^ const. If

lim||u(OI|exp(λί2) = 0
ί-»oo

for every λ > 0, then u(t) vanishes identically.
More generally, we have the

THEOREM 4. Let u(t) be a solution of the abstract differential in-
equality (5.1). Assume that φ(t) belong to L2(0, a) for every a > 0, and

Φ\t) ^ exp

for all sufficiently large t and λ. //

lim||%(ί)||exp/3(ί) = 0 ,

for every λ > 0, then u(t) vanishes identically.

6 Parabolic differential inequalities• Let G be a bounded domain
in the real Euclidean n-space Rn. For two real functions u(x) and v(x)



ASYMPTOTIC DECAY OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES 1247

belonging to L2(G) we denote by

(u, v) — \ u(x)v(x)dx
JΘ

their real scalar product and by || u ||0 = (u, u)112 the associated norm.
Let H?(G) denote the closure of C0°°(G), the C°° functions on G with com-
pact support in G, relative to the norm

II u IP = ί | t φ ) | ' + Σ
JίΛ ΐ=l

Consider the differential operator

(6.1) L= £ J-Oίa;)-^-),

where aij(x) = aji(x). We assume t h a t there exist positive constants m
and M such that , for all x in G and all real vectors ξ = (ξlf ζ2, •••, ξn),

(6.2) m Σ ^ Σ α"(a?)f ̂  ^ M Σ ζ\ .

Thus L is a real elliptic differential operator.
If u e ί/;o(G) we say that Lu e L\G) when {ai3(x)}(duldxj) is differen-

tiate with respect to x{ (in the sense of distributions) and

dχ j

It is not difficult to show that

(6.3) (Lu, v) = (u, Lv) ,

for u and v in H?(G) and Lu and Z/y in L2(G), the common value of (6.3)
is

(6.4) (Lu, v) = - \ ( Σ αίj(α0 — — W .
Jσ\«.j=i θa?i toy/

Thus the operator L is formally self-adjoint.

[ ft "I

M ψ2(y)dη I, and introduce the function
Jo J

(6.5) σ(ί) = x[r(rj)\Γ~\ζ)φ\ζ)dζdη .
Jo Jo

The function σ(t) is non-decreasing provided that γ and λ are nonnegative.
We also note that

(6.6)
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If the functions φ(t) and f(ί)eL2(0, oo), there exists a constant ΓOf

depending on γ, such that

(6.7) σ(t) ̂  XΓot .

We introduce the norm

du
u y

0i=l
dx ,

which is equivalent to the norm defined above for i?i°(G).

LEMMA 6. Let Φ(t) and ψ(t) belong to L2(0, oo). Let Z(t) be a
strongly continuously differentiate mapping from 0 ̂  t < oo with
values in H?{G) such that LZ(t) e L2(G) is continuous. If the support
of Z(t) is contained in 0 < t0 fg t < oo and

(6.8) lim
t-tm

for every λ > 0, then

ί V - W " LZ-^- \tdt ^ λί™Γ-\tW°MΦXt) || Z\\ldt
( 6 - 9 ) J° to ||» Jo

\ ° ° ψ ( t ) \\Z\\\dt .

Proof. The integrals on the right side of (6.9) are finite because
of (6.7) and (6.8). As in Lemma 5, we may assume that Z(t) is identi-
cally zero for all sufficiently large values of t. Set Z(t) — e~σU) V(t). Then
if J denotes the integral on the left side of (6.9), we have

(6.10) J ̂  -2\Γ-\t)(^-y LV+ V^
Jo \ dt dt

Integrating by parts and using the fact that V(t) has compact support,
we find that

(6.11) _ 2 J>- 1 ( ί ) ( i^ , V^L)dt = X^Γ-\t)e^ψ(t) \\ Z \\ldt.

In proving (6.11) we have made use of (6.6).
Since L is real and symmetric, we have

(6.12) _2(>-1(ί)(4f, Lv)dt = -\~Γ-\t)-^-(V, LV)dt .
Jo \ at J Jo at

Another integration by parts yields

(6.13) - 2 ( > - 1 ( ί ) ( 4 ^ - , Lv)dt = - 7 ( > - i ( ί ) ^ ) ( F , LV)dt .
Jo \ at / Jo
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In view of (6.2) and (6.4) we have (V, LV) ^ - m || V\\\, so that (6.13)
implies that

(6.14) _ 2 ( > - 1 ( ί ) f - ^ , Lv)dt ^ γm \~ Γ-\t)e2σ{tψ(t) \\ Z\\\dt .
Jo \ at / Joat

Combining (6.10), (6.11) and (6.14), we get (6.9).

THEOREM 5. Let Φ(t) and ψ(t) belong to L2(0, oo)% Let u(t) be a
strongly continuously differentiable function from 0 ^ t < oo with values
in H?(G) such that Lu(t) e L\G) is continuous. If u(t) satisfies the dif-
ferential inequality

(6.5) -^-\\ =S φ\t) || u \\l + ψ\t) \\u
dtdt

and

for every λ > 0, then u vanishes identically.

Theorem 5 follows from Lemma 6 in much the same way that Theorem
2 follows from Lemma 5, and for this reason the proof will be omitted.

If in Theorem 5 we only assume that Φ(t) is bounded, then we can
deduce from Lemma 6 that only the trivial solution of (6.15) can vanish
faster than exp(—λt2), for every λ > 0.
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SELF-INTERSECTION OF A SPHERE ON A

COMPLEX QUADRIC

I. FARY

1. The real part Sn of a quadric V in complex, affine (n + l)-space
is a sphere. The self-intersection of Sn in F is the same as the self-
intersection of a "vanishing cycle/' introduced by Lefschetz, and plays
a certain role in [4], [5]. We will compute here this self-intersect! on
number, using elementary tools.

Let us introduce some notations. Pn+1 denotes the complex projective
space of algebraic dimension n + 1, hence of topological dimension

dim Pn+1 = 2n + 2 .

To each projective sub-space Pk of Pn+1 a positive orientation can be
given, thus it can be considered as a cycle p2k. Then we agree that

(1) ifk + l = n]+ 1, then (p2k, pn) - 1 in Pn+1

be true for the intersection numbers of cycles. This is the usual con-
vention, the one in [1], for example; in [7] another convention is
adopted.

Let x19 " ,xn+2 be a fixed system of projective coordinates in P n + 1 .
Then

(2) Qn : x\ + + xl+2 = 0

is a non-singular quadric; dim Qn = 2n. The points of Pn+1 whose last
coordinate is non-zero form a complex affine space Cn+1, and

V = Qn ΓΊ Cn+1 - [x: x e Qn, xn+2 Φ 0]

is a non-singular affine quadric. If zeCn+1, we denote by zlf « , ^ + 2

those coordinates for which zn+2 — i where i2 = — 1; thus zlf ,zn+1

are affine coordinates in Cn+1. Then

V: zl+ . . . +zl+1 = l (zeCn+1)

Sn: z\+ + zl+1 = 1, ^ , 2:w+i reαte

are the equations of an affine quadric and its real part respectively;
this real part Sn is, of course, a sphere. We consider Sn with an
arbitrarily chosen and fixed orientation as a cycle s. It is well known
(see, for example, [2], p. 35, (g)) that

Received September 12, 1960.
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(3) the homology class s, of the cycle whose carrier is Sn

f generates

Hn(V;Z),

where Z denotes the ring of integers.
As dim V = 2 dim Sn, the self intersection number

(4) (s, s) = (Sn Sn) , (in V) ,

of s in V, is well defined; we may write (Sn, Sn) for this self intersec-
tion number, because (s, s) does not depend on the orientation of Sn,
used in (3).

2. M. F. Atiyah communicated to me his computation of the in-
tersection number (4) for n = 2, showing that the sign in [2], p. 35
(10) is not the right one.1 The determination of the sign of (4) given
below is a generalization to n dimensions of the construction of Atiyah.
In [2] we used only the fact that (4) is not zero, if n is even, hence other
results of that paper are not invalidated by the false sign in (10), p. 35. The
mistaken sign is ''classical." Wrong sign appears in [4], p. 93, Theoreme
sur les ΓΛ_X de Cu, I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104,
Theorem 45 (although in [7] not the convention (1) is used, the alter-
nation of the sign in question is independent of any convention). After
the completion of the present paper [6] appeared, where the classical
mistake in sign is corrected (see (11.3) on p. 161). The results of [1]
are in agreement with the sign (5) below.

3 Using the notations and conventions introduced above, we will
prove the following theorem.

THEOREM. Let s be the homology class of the oriented sphere Sn

in Hn(Qn; Z) where n — 2h is even. Let us denote by (s, s) the self-
intersection number of s computed with the convention (1). Then

(5) (β, 8) =

—2 , if h — — is odd
Δ

n+2 , if h = — is even

holds true.

1 I take the opportunity to correct another mistake in [2], also noticed by Atiyah. In
Proposition 2, p. 27, we have to suppose that the singularity in question is conical. In [2],
Proposition 2 is stated without proof; Atiyah gave an example showing that the statement
does not hold true, if the singularity is not conical, and gave a proof with the correct
hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus
other results of [2] are not affected by the incomplete formulation of that Proposition.
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4. We prepare the proof of this theorem; for the first part of
the proof, see [1]. (See also [3], pp. 230-232.) In order to describe
easily linear sub-spaces of Qn, we introduce new protective coordinates
in Pw+1:

uά = x2j-x + ix2j .
_ . J = l, •••,&+ 1 ( ι 2 = — 1) .

Vj — %2j—1 'Z'^i

Let us notice that

(6) Uj = Vj = 0 if and only if x2j-1 = x2j = 0 .

The equation of Qn is

u1v1 + + uh+1vh+1 = 0 ,

in the new coordinates.

We consider the following linear sub-spaces of Qn:

(7) A : Uj = 0 , j = l, . . . f λ , λ + l

(8) B : % = 0 , ί = 1,-- , λ ; vΛ+1 = 0

(9) C : v, = 0 , i = l , - , H l .

Let us remark that,

(10) i n C = Φ, B f] C is just one point,

by (6).

LEMMA 1. Let X be one of the projective spaces A, B, C. If, in
the system of equations defining X, we replace an even number of
equations uά = 0 by the corresponding v3- — 0, or vice versa, we define
a new linear sub-space of Qn belonging to the same continuous system
as X. Similarly, without leaving the continuous system containing
Bf we may replace uh = 0, vh+1 = 0 in (8) by vh = 0 and uh+1 = 0.

Proof. Let us suppose that we want to replace vx = 0, v2 = 0 in
(9) by uλ = 0, ^ 2 = 0. Let us consider the linear space

av2 + βut = 0 ,
v3 = 0, •••, vΛ+1 = 0 ,

—av1 + /3tra = 0 ,

defined for every {a, β) Φ (0, 0). This projective space is clearly con-
tained in Qn. For (1, 0) we have C and for (0,1) the desired replace-
ment. The last statement of the lemma is proved similarly using the system

auh + βuΛ+1 = 0 ,

-βvΛ + avh+1 = 0 .
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Let us consider now A, B, C as cycles of Qn, and let us denote by
a, b, c their respective homology classes in Hn(Qn; Z).

LEMMA 2. / / h is odd, then c — a. If h is even, then c = b.

Proof. If h is odd, the h + 1 equations of (9) can be replaced by
the equations % = 0, j = 1, , h + 1. Hence A and C belong to the
same continuous system. If h is even, we can replace the first h
equations defining C by u5 ~ 0, j = 1, , h. Hence C and B belong
to the same continuous system.

LEMMA 3. As to the intersection numbers, we have

(11) if h is odd, then (a, a) = 0, (b, b) = 0, (a, b) — 1 ,

(12) if h is even, then {a, a) = 1, (6, b) = 1, {a, 6) — 0 .

Proof. (1) Let h be odd. By Lemma 2 and the first equation of
(10), we have (a, a) = 0. Similarly, the second equation of (10) and
Lemma 2 prove (a, b) = 1. In order to prove (b, b) = 0, we consider
the space

We claim that B and Br are in the same continuous system. In order
to prove this statement, we use Lemma 1 twice. First, we replace the
last two equations of (8) by vh = 0, and uh+1 = 0. Second, in the
system obtained by the first step, we replace the first h — 1 equations
by Vj = 0. Now B Π Br = φ, and this proves (b, b) = 0.

(2) Let h be even. The proof of (12) is similar to the previous
one. The last two equations of (12) are immediate from (10) and
Lemma 2. Using Lemma 1, we can find presently a B", such that
B n B" be just one point.

LEMMA 4. Using the previous notations s, a, b, for homology
classes,

(13) β = ±(α - b) ,

the sign depending on the chosen orientation of Sn.

Proof. Let us denote by / the hyperplane xn+2 = 0, Then, clearly,.

An I=BΠ I.

We denote by J this intersection (J = A Π B). Let us consider a pencil
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of ά-planes, 2k + dim A = 2n + 2, in general position. If JVis a neighbor-
hood of J in B, the fc-planes of the pencil project N into a neighborhood M
of J in A. Given now a Riemann metric of Pn + 1, if JV is a small
enough neighborhood of J, the corresponding points of N, M determine
unique geodesic segments. We consider now B as a cycle, whose sim-
plexes are so small that those intersecting J are contained in N. Using
the geodesic segments introduced above which start at points of the
simplexes of B intersecting J, it is easy to construct a chain E of Qn,
such that

(14) A - B + dE

he a sum of simplexes of V = Qn — I. Hence, s being a generator of
Hn(V; Z), (14) will be homologous to a multiple of s. Thus a — b = ms
for some integer m. Now (a — b,a) — m(s, a) is ± 1 by Lemma 3,
hence m = ± 1 .

Proof of the Theorem. (1) Let us suppose that h is odd. We
use (13) and (11): (s, s) = (α — 6, α - 6) = (α, α) - (6, α) - (α, 6) + (b, b)
= - ( δ , α ) - ( α , δ ) = - 2 .

(2) Let us suppose that fe is even. This time we use (12): (s, 5)
— (α, α) + (6, 6) = +2. Hence the proof of (5) is complete.
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GROUPS WHICH HAVE A FAITHFUL REPRESENTATION

OF DEGREE LESS THAN [p - 1/2)

WALTER FEIT AND JOHN G. THOMPSON

1. Introduction, Let G be a finite group which has a faithful
representation over the complex numbers of degree n. H. F. Blichfeldt
has shown that if p is a prime such that p > (2n + l)(n — 1), then the
Sylow p-group of G is an abelian normal subgroup of G [1]. The pur-
pose of this paper is to prove the following refinement of Blichfeldt's
result.

THEOREM 1. Let p be a prime. If the finite group G has a faithful
representation of degree n over the complex numbers and if p > 2n + 1,
then the Sylow p-subgroup of G is an abelian normal subgroup of G.

Using the powerful methods of the theory of modular characters
which he developed, R. Brauer was able to prove Theorem 1 in case p2

does not divide the order of G [2]. In case G is a solvable group,
N. Ito proved Theorem 1 [4]. We will use these results in our proof.

Since the group SL{2, p) has a representation of degree n = (p — l)/2,
the inequality in Theorem 1 is the best possible.

It is easily seen that the following result is equivalent to Theorem 1.

THEOREM 2. Let A, B be n by n matrices over the complex numbers.
If Ar = I = Bs, where every prime divisor of rs is strictly greater than
2n + 1, then either AB = BA or the group generated by A and B is
infinite.

For any subset S of a group G, CG(S), NG(S), \S\ will mean respec-
tively the centralizer, normalizer and number of elements in S. For any
complex valued functions ξ, ξ on G we define

I Gr I

and || f||| = (f, ζ)G. Whenever it is clear from the context which group
is involved, the subscript G will be omitted. H<\G will mean that H
is a normal subgroup of G. For any two subsets A, B of G, A — B will
denote the set of all elements in A which are not in B. If a subgroup
of a group is the kernel of a representation, then we will also say that
it is the kernel of the character of the given representation. All groups
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considered are assumed to be finite.

2. Proof of Theorem l We will first prove the following prelimi-
nary result.

LEMMA 1. Assume that the Sylow p-group P of N is a normal
subgroup of N. If x is any element of N such that CN(x) Π P — {1},
then X(x) = 0 for any irreducible character λ of N which does not
contain P in its kernel.

Proof. Since | CN{x) \ is not divisible by p, it is easily seen that
CN{x) is mapped isomorphically into CNlP{x), where x denotes the image
of x in NjP under the natural projection. Let μl9 μ2, * be all the
irreducible characters of N which contain P in their kernel and let
\, λ2, be all the other irreducible characters of N. The orthogonality
relations yield that

Σl ) I2 = I CNlPβ) I ̂  I CN(χ) I = Σ I μ<(χ) I2 + Σ I H * ) I2

i i

This implies the required result.
From now assume that G is a counter example to Theorem 1 of

minimal order. We will show that p2 does not divide | G | , then Brauer's
theorem may be applied to complete the proof. The proof is given in
a series of short steps.

Clearly every subgroup of G satisfies the assumption of Theorem 1,
hence we have

(I) The Sylow p-group of any proper subgroup H of G is an abelian

normal subgroup of H.

Let P be a fixed Sylow p-group of G. Let Z be the center of G.

(II) P is abelian.

As P has a faithful representation of degree n < p, each irreducible
constituent of this representation has degree one. Therefore in com-
pletely reduced form, the representation of P consists of diagonal matri-
ces. Consequently these matrices form an abelian group which is iso-
morphic to P.

(III) G contains no proper normal subgroup whose index in G is a
power of p.

Suppose this is false. Let i ϊ b e a normal subgroup of G of minimum
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order such that [G : H] is a power of p. Let Po be a Sylow p-group of
H. By (I) Po <\ H, hence Po < G. Thus CG(P0) < G. If Cβ(P0) =£ G, then
by (I) and (II), P < CQ(P0), thus P < ] G contrary to assumption. There-
fore CG(P0) = G. Burnside's Theorem ([3], p. 203) implies that Hcontains
a normal ^-complement which must necessarily be normal in G. The
minimal nature of H now yields that p does not divide \ H\.

If q is any prime dividing \H\, then it is a well known consequence
of the Sylow theorems that it is possible to find a Sylow g-group Q of
H such that P gΞ N(Q). Hence PQ is a solvable group which satisfies
the hypotheses of Theorem 1. Ito's Theorem [4] now implies that P<\ PQ,
thus Q S N(P). As g was an arbitrary prime dividing \H\, we get that
\H\ divides |JV(P)|. Consequently N(P) = G, contrary to assumption.

(IV) Z is the unique maximal normal subgroup of G. GjZ is a non-
cyclic simple group. \Z\ is not divisible by p.

Let H be a maximal normal subgroup of G, hence GjH is simple.
Let Po be a Sylow p-group of H. Then by (I) Po < iϊ, hence Po < G,
thus C(P0) < G. If C(P0) Φ G, then by (I) and (II) P < C(P0), hence
P <\G contrary to assumption. Therefore C(P0) = G. If Po ^ {1}, then
it is a simple consequence of Griin's Theorem ([3], p. 214) that G con-
tains a proper normal subgroup whose index is a power p. This contra-
dicts (III). Hence Po = {1} and p does not divide \H\.

By (III) PHΦ G, hence by (I) P <] Pff. Consequently PH=Px H,
and P s C(H) < G. If C(ίΓ) ^ G, then (I) yields that P < C(ίί). Hence
once again P <| G, contrary to assumption. Consequently C(H) = G.
Therefore HQZ. As G is not solvable, neither is G/H. Now the
maximal nature of H yields that H — Z and suffices to complete the
proof.

(V) P (Ί xPx-1 = {1} unless x is in N(P).

Let D — P[\ xPx~x be a maximal intersection of Sylow p-groups of
G. Then P i s not normal in N(D). Hence by (I) N(D) = G, or D<\G.
However (IV) now implies that D <ΞΞ Z. Hence (IV) also yields that
D = {1} as was to be shown.

Define the subset No of N(P) by

N0 = {x\xe N(P), C(x) ΠPφ {1}} .

Clearly {P, Z} g JV0.

(VI) iV(iV0) - N(P). (No -Z)Π x(N0 - Z)χ-χ is empty unless x e N(P).

Clearly N(P) g N(N0). Since P consists of all elements in No whose
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order is a power of p, it follows that N(N0) g N(P).
Suppose ye(N0 — Z)Π x(N0 — Z)x~\ Then y and χ-*yx are both

contained in (No - Z). Let P o = C(y) Γi P, P1 = Cix^yx) n P. By as-
sumption Po =£ {1} φ Pχ It follows from the definitions that Po and xPxx~x

are both contained in C(y). Since ?/ is not in Z, C(y) Φ G. Hence (I)
yields that Po and xPxx~x generate a p-group. Thus by (II) xPλχ~ι £ C(P0)»
Now (V) implies that xP^'1 g -W(P). Consequently z P ^ - 1 g P. By (V),
this yields that x e N(P) as was to be shown.

From now on we will use the following notation:

I-Pi = P e , \z\ = z, \N(P)\=yzt.

Let χ0 = l,χlf be all the irreducible characters of G. Define aif βi9 bt
by

where α^ is a sum of irreducible characters of N(P), none of which
contain P in their kernel and βt is a character of N(P) which contains
P in its kernel.

(VII) If i Φ 0, then b, < (1/p6'2) Z i ( l ) .

By (VI) (No — Z) has | G \/pezt distinct conjugates and no two of them
have any elements in common. Since χt is a class function on G, this
yields that

i(x) I2 + ΣNo I ai(x)

If x e Z, then | χ^x) |2 = | χ,(l) |2. As P s iV0, we get that

1 > - 7 7 [- I Zi(l) l2^ + ^ β { | ocM I2 + cCiWβTβ) + ά^B)A(a;)} + J
P %v

Since P is in the kernel of βi9 we get that | βi(x) | = 64 for a? e
Lemma 1 implies that a vanishes on N(P) — iV0. Hence

a, ||J,(P) + (ai9 A

By definition fe, ft) = 0, hence

- , •- I I -'I UJ.V KJΓ I — • ,

pet t

By (IV) the normal subgroup generated by P is all of G, hence α< Φ 0,
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Therefore | | ^ ]|^(jP) ^ 1. This finally yields that

\Xi(l)\2

 > Vi
~&t~> t '

which is equivalent to the statement to be proved.

(VIII) If Γ is the character of G induced by the trivial character 1P

of P, then (Γ, χ<) = 6,.

If λ is an irreducible character of N(P) which does not contain P
in its kernel, then λ is not a constituent of the character of N(P)
induced by 1P. Hence by the Frobenius reciprocity theorem (λ,P, 1P)P = 0.
Consequently (ailPf 1P)P = 0. The Frobenius reciprocity theorem now
implies that

iXu Π = (Xi\p, 1P)F = fair, Ip) = δ*

From now on let χ be an irreducible character of minimum degree
greater than one. Define the integers a{ by

a* = (χ<, χχ) .

(IX) χ(l) - 1 ^ Σ ^ α A

By (VIII)

aobo + Σdibi = (Γ, χχ) - ^f- + -f- ΣP-{1]ztχχ(x)

By (II), χlP is a sum of χ(l) linear characters of P. Consequently

As χ is irreducible, α0 = 1. Clearly b0 = 1. This yields the desired ine-
quality.

We will now complete the proof of Theorem 1.
It follows from (IX) that

(VII) yields that

Σ
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The definition of the integers a{ implies that

Combining these inequalities we get that

-K

or

By assumption χ(l) < (p — l)/2, hence

This implies that e < 2. Thus β ̂  1.
R. Brauer's theorem [2] now yields that P <\G contrary to as-

sumption. This completes the proof of Theorem 1.
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MEAN CROSS-SECTION MEASURES OF HARMONIC

MEANS OF CONVEX BODIES

WILLIAM J. FIREY

l In [2] the notion of p-dot means of two convex bodies in
Euclidean w-space was introduced and certain properties of these means
investigated. For p = 1, the mean is more appropriately called the
harmonic mean; here we restrict the discussion to this case. The har-
monic mean of two convex bodies KQ and Ku which will always be
assumed to share a common interior point Q, is defined as follows. Let
K denote the polar reciprocal of K with respect to the unit sphere E
centred at Q; let (1 - ΰ)K0 + #K19 with 0 ^ & £ 1, be the usual arith-
metic or Minkowski mean of Ko and Klm The harmonic mean of Ko, Kx

is the convex body [(1 — ϋ)KQ + &Ki]A. In more analytic terms, if Fi(x)
are the distance functions with respect to Q of Ki9 for i = 0,1, then
the body whose distance function with respect to Q is (1 — &)F0(x) + ϋFx(x)
is the harmonic mean of Ko and JKi.

In the paper mentioned, a dual Brunn-Minkowski theorem was es-
tablished, namely

where V(K) means the volume of K. There is equality if and only if
Ko and Kx are homothetic with the centre of magnification at Q.

Here we develop a more inclusive theorem regarding the behaviour
of each mean cross-section measure, ("Quermassintegral") WV(K), v =
0,1, , n - 1, cf. [1]. The result is

The cases of equality are just those of the dual Brunn-Minkowski theorem,
{v = 0).

2 We first list some preliminary items used in the proof of (2).
We shall use Minkowski's inequality in the form

£ [(1 -

Here the functions f{ are assumed to be positive and continuous over
the closed and bounded domain of integration common to all the integrals,

Received September 29, 1960.
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and, for our puposes, p satisfies — 1 ^ p < 0. There is equality if and
only if fo(x) = λ/^cc) for some constant λ. See [3], Theorem 201, coupled
with the remark preceding Theorem 200.

Our second tool, which we shall refer to as the projection lemma,
was established in [2]. Let K* denote the projection of K onto a fixed,
m-dimensional, linear subspace Em through Q for 1 ^ m < n. We have

Since Em contains Q and the polar reciprocation is with respect to sphere
E centred at Q, in forming K* the order of operations is immaterial.
This result is proved by a polar reciprocation argument from

n Em) + ϋ{κx n Em) g; [(i - &)κ0 + # £ j n Em.

There is equality in either inclusion if Ko and Kλ are homothetic with
centre of magnification at Q.

The dual Brunn-Minkowski theorem (1) will be used.
Finally we shall make use of Kubota's formula and some of its

consequences. This material is covered in [1]. An (n — v) dimensional
cross-section measure ("Quermass") of K is the (n — v) dimensional
volume of that convex body which is the vertical projection of K onto
an j&n_v The mean cross-section measures are usually defined as the
coefficients in Steiner's polynomial which describes V(K + XE), that is

(5) V(K + XE) = Σ (I) WV(K)K .
V = 0 \ " /

If we denote the (v — l) t h mean cross-section measure of the projec-
tion of K onto that En-X through Q which is orthogonal to the vector
v*! by Wl-^K, u^, then Kubota's formula is

Here the integration with respect to the direction uλ is extended over
the surface Ωn of E, dωn is the element of surface area on Ωn and κn^
is the volume of the n — 1 dimensional unit sphere.

Kubota's formula can be applied to the mean cross-section measure
Wi-^K, ux) for fixed ux\

fCn-2
, ulf

where W"-2 is the (v — 2)th mean cross-section measure of the projection
of K onto the £7W_2 through Q orthogonal to uλ and u2 with u2 orthogonal
to ult After v such steps we have as the extended form of Kubota's
formula:
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Each vector up is orthogonal to uq for q <p and W^\K, ulf u2, •• ,^ v)
is the Oth mean cross-section measure of the projection of K onto that
En-V through Q which is the orthogonal complement of the subspace
spanned by ulf u2J , uv.

Steiner's formula (5) with λ = 0 shows that W0(K) is the volume
of K and so W0

M is an (n — v) dimensional cross-section measure of K.
Thus, to within a numerical factor depending on n and v, W^(K) is the
arithmetic mean of the (n — v) dimensional cross-section measures.

In § 3 we shall use the following abbreviations: for dωΛ_v dωn-1dω%

we write dώ with sign of integration and omit reference to the domains
of integration; for one l//rn_1yrri_2- Λ;n_v we write k; finally for W^(Kt u19

U2> ">Uv) we write σ(K*). In this notation the extended Kubota
formula reads

W{K) - k\σ(K*)dω .

3 We now prove (2). By the extended form of Kubota's formula

( 6 ) L J J

in virtue of the projection lemma and the set monotonicity of σ i.e.,
σ(K*) ^ σ(K*) if K* g X* with equality in the latter relation implying
that in the former. We now apply (1), in £r

ί l_v, to the integrand to
obtain

Here we take advantage of the fact that

(Kr = (κ*y.

This gives

( 7 )

There is equality if and only if all the projections Ko* and K* are
liomothetic with the centre of magnification at Q. This condition is
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sufficient for equality in (6); it is necessary and sufficient for (7).
We now use Minkowski's inequality (3) with p = —1/n—v. This

yields

The necessary and sufficient conditions for equality in (7) are sufficient
for equality in (3) since Ko = \K± implies σ(K?) = Xn-"σ(K?). This
establishes (2).
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THE WAVE EQUATION FOR DIFFERENTIAL FORMS

AVNER FRIEDMAN

1. The Problem. Let M be a compact C°° Riemannian manifold of
dimension N, having a positive definite metric. The operator j = dS +
Sd (see [13] for notation) maps p-forms (0 ^ p ^ N) into p-forms and
it reduces, when p = 0, to minus the Laplace-Beltrami operator. Let
c(P) be a C°° function which is nonpositive for PeM, and consider the
Cauchy problem of solving the system

(1.2) «(P, 0) = »(P), A »(ί>, 0) = k(P) ,
at

where /, gy h are C°° forms of degree p. The main purpose of the
present paper is to solve the system (1.1), (1.2) by the method of Fourier.

The Cauchy problem for second order self-adjoint hyperbolic equations
was solved by Fourier's method by Ladyzhenskaya [8] and more recently
(with some improvements) by V. A. IΓin [6]. In [8], other methods are
also described, namely: finite differences, Laplace transforms, and analytic
approximations using a priori inequalities. Higher order hyperbolic equa-
tions were treated by Petrowski [12], Leray [9] and Garding [5],

The Fourier method can be based on the fact that the series

π QΪ v 1 φn(χ)I2

 v 1 dφn(χ)ldχI2

 v \P<PAx)ldx*\%

are uniformly convergent. Here {φn} and {Xn} are the sequences of
eigenfunctions and eigenvalues of the elliptic operator appearing in the
hyperbolic equation. In [6] the convergence of (1.3) is proved for a =
[iV/2] + 1. Our proof of the analogous result for eigenforms is different
from that of [6] and yields a better (and sharp) value for α, namely,
a = N/2 + e for any ε > 0. It is based on asymptotic formulas which
we derive for Σ \d3φn(x)ldx3\2 as λ—> CXD.

In § 2 we recall various definitions and introduce the fundamental
solution for L + djdt which was constructed by Gaffney [4] in the case
c(P) = 0. In § 3 we derive some properties of the fundamental solution.
These properties are used in § 4 to derive the asymptotic formulas for
Σ I d3φn(x)ldxj I2, by which the convergence of the series in (1.3) for any

a > N/2 follows. In § 5 we solve the problem (1.1), (1.2); first for/, g, h

Received January 13, 1961. Prepared under Contract Nonr 710 (16) (NR 044 004) between
the Office of Naval Research and the University of Minnesota.
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infinitely differentiate and then under much weaker differentiability
assumptions with regard to M, c, f, g, h. In § 6 we briefly treat the
Cauchy problem for the parabolic system

(1.4) Lu + θ^

(1.5) u(P, 0) = g(P) .

2. Preliminaries* The first one to use fundamental solutions of the
heat equation in the study of the asymptotic distributions of eigenvalues
and eigenfunctions was Minakshisundaram [11]. Gaffney [4] extended
his method to derive asymptotic formulas for eigenvalues and eigenforms.
We shall describe here some well known facts and some of the results
of [4] which we will need later on. Slight modifications will be made
due to the fact that in [4] c = 0.

As is well known, there exists a sequence of eigenvalues {λj (0 ^
\ ^ ^ λA —* oo as k —* oo) and a sequence of the corresponding eigen-
forms {ωn} of degree p (0 g p S N, p is fixed throughout the paper) of
L, that is, Lωn = Xnωn, such that the eigenforms form a complete
orthonormal set in L\{M) (square integrable p-forms on M). The co^p)
are C°° forms. The fundamental solution Θ(P, Q, t) of

(2.1) (L + JL)a> = 0

is a double p-form which is twice differentiable in Q, once differentiable
in t, satisfies (2.1) in (Q, t), Q e M, t > 0, (for any fixed P) and, for any
PeM,

(2.2) lim ( Θ(P, Q, t) * a(Q) = a{P)

for any U p-form a which is continuous at P. As in [4] one easily
derives the expansion (provided Θ is known to exist)

(2.3) θ(P, Q,t) = ± ωi(P)ωi(Q)e'λit

t=l

where the series on the right is pointwise convergent for all P,QeM,
t > 0 (that is, the series of each component is pointwise convergent).

A p-form a can be written locally as

a = Σ A, t dx*1 dx1* = Σ'A^x1

where ' indicates summation on / = (iu , ip) with ix < < ίp. The
absolute value of a at P is given by
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where x is the local coordinate of P. Similarly, for a double p-form
having local representation a(P, Q) = Σ'Auix, y)dxΣdyJ where y is the
local coordinate of Q, we define the absolute value by

I a(P, Q) I - [Σ; AZJ(X, y)A»(x, y)Γ .

The right "half-norm" is defined by

\<*\\(P) = [\M\<*(P,Q)\*dVQJ* .

Given two double #-forms a and β, a new double p-ίorm is defined
by

[a, β] = [a, β](P, Q) = ί a{P, W) * β(Q, W) .

One then verifies:

(2.4) \l«,β](P,Q)\£\<*\\(P)\β\\(Q).

The following inequalities are immediate:

(2.5) \ a + β \ t g \ a \ + \ β \ , \ a + β\\ £ \ a \ \ + \β\\ ,

where a, β are any double p-forms.
In order to construct Θ, one first constructs a parametrix. Gaffney

[4] constructs a parametrix by generalizing the method of MinaksM-
sandaram [11], making use of some calculation of Kodaira [7]. Given
a point P, let y = {yι) be normal coordinates about P (with coordinates
#*'). A p-form can be written as a vector X with {ζ) components and then

(2.6) AX = -ΣgVθβjX + ΣA%X + BX

where {gi}) is the metric tensor, (gis) is the inverse matrix, d{ = d\dx\
and A\ B are matrices depending on the gi5 and their first two deriva-
tives. If X = f(r2) W(x, y) where r is the geodesic distance from x to
y (each component of X is now a vector so that W is a square matrix),
then

(2.7) Ay[f{r2) W] - /(r2)j y W - /'(r2)Ϊ2N - 4K + 4r M W - 4r2/"(r2) if,

where K = if(a;, ι/) is a C°° matrix which vanishes for y = x.
There exists a C°° matrix Jkf satisfying

(2.8) r^-M=KM (x fixed), Jlf(a?, a?) = /
dr
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where J is the identity matrix. Using (2.8), (2.7) is simplified to

(2.9) M-'jyifMW) = f(M-xAM)y W - f'UίN + 4r —} W - 4r2/" W .

(2.9) will now be applied with

f(r\ t) = —1—e-^ (t > 0 fixed) .
(4τrί;

Setting

m

one then gets

JS. = fM Σ \{M-'AM)U^ + UϊN + 4r f) Ujb> - £- uA .
i=o I 4ί \ 0r/ 4ί2 J

Calculating also dH^ldt, one then obtains

, + A)fL = /Jlf Σ {(M-W + β) ϋ, + (r ± + i + l

which leads to the successive definitions:

(2.10) U,= -—. [(M-'JM + c)Uj-rdr (1 ^ j < «), where Z7, = / .
T ' Jo

We conclude that, for any m ^ 0,

(2.11) (L, + | ) f f m = ^ ^

Hm is a local parametrix. Note that when P, Q vary in a sufficiently
small neighborhood V (contained in one coordinate patch), Hm is defined
and is C°° in (P, Q, t) iΐ t > 0. Let ηs(r) be a C°° function of r which
is equal to 1 for r < ε and is equal to 0 for r > 2ε. If ε is sufficiently
small then the support of Ύ]z{r)Hm(P, Q, t) (where r is the distance from
P to Q) as a form in Q lies in V, provided PeW, where W is a given
open subset of V, W c F. We can cover the manifold M by a finite
number of sets W, call then TΓ*. Let the Hm corresponding to (the
corresponding) Vt be denoted by Hi. If {αj is a C°° partition of unity
subordinate to {TFJ, then the support of 0Ci(P)ηB(r)Hi(P,Qft) as a form
of (P, Q) lies in W{ x F< and hence this form is C°° in (P, Q, ί) if ί > 0.

The global parametrix is given by

(2.12) θm(P, Q, t) = ΣamMrWi&P, Q, t) .
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The fundamental solution should then formally be

(2.13) Θ(P, Q, t) = Θm{P, Q, t) + \\ym(P, U, t), Θm(Q, U, t - τ)]dτ
Jo

where τm is defined by

(2.14) γm(P, Q, ί) = Σ ( - l ) ^ ( P , Q, t)
l

(2.15) SUP, Q, t) = \\S£\P, U, τ), δ ,(Q, U, t - τ)]dτ,
Jo

Using (2.4) and the inequality

(2.16) I j α(P f Q, τ)dτ J α | dτ ,

Gaffney establishes the uniform convergence of the right side of (2.14)
and then proves that Θ, as defined in (2.13), is a fundamental solution,
for any m ^ 0, written in matrix form. We shall use the matrix notation
of Θ and the usual double form notation for Θ interchangably; the same
for Θm.

3. Properties of the fundamental solution. We denote by dh

PΘ(P, Q, t)
an hth derivative of Θ with respect to the coordinates of P, in a given
coordinate system. If h = (hlf , hN), set | h \ = hx + + hN. From
the formulas defining Θ it is clear that dh

PΘ{Py Q, t) exists and is continu-
ous (in fact C~) in P,QeM and t > 0. Let

(3.1) dPΘ{P, Q, t) ~ Σ BAP, t)ωt(Q)
i = l

be the Fourier expansion of dhβ, for (P, t) fixed. Then (recalling (2.3))

(3.2) 5,(P, t) = ( dPΘ{Py U, t) * ωi(U) = dh

P\ Θ(P, U, t) * ωt(U)

where dP is abbreviated by dh when there is no confusion.
By the (easily verified) ParsevaΓs equality we get

(3.3) ψ(P, Q, t) = [ ^ ( p , U,^-), 9 ^ ( Q , C7,1-)]

= Σ dh

Pωi(P)dh

Qωi(Q)e-λίt

and the series is pointwise convergent for P, Q e M, t > 0.
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We need the following notations. Let a be a double p-form. If it
is locally represented by ΣΆIJdxIdyJ, then we set

[a(P, P)] = ΣΆi .

If β is also a double p-form, then we define [[a(P, U), β{P, U)]σ] to be
[y(P, P)] where y(P, Q) = [a(P, U), β(Q, U)].

Using (2.13) and the definition of -f in (3.3) we have

(3.4) Σ I PωtP) I2 e-^ = [ψ(P, P, t)]
l

, W, τ), θm(ϋ, W,±-

= J,{P, t) + 2 J2{P, t) + J3(P, t) .

We proceed to estimate the J{. We shall make use of the inequality
[4]

(3.5) [a(P

and of the inequality [1]

T(3 6) [T exP{-Ms-s 1V(*-Γ)} exp{-λμ-y|Vr}

< const.
v—l—jv/2

where d^ = dz1 d^^ and λ > 0, μ < JV/2 + 1, v < N/2 + 1. The follow-
ing, easily verified, inequality will also be used:

(3.7) Γ e x p { - λ \ x - z \ηt) e x p { - λ \z-y \2/t}dz
J — o o

^ const. exv{-μ\x-y \2lt}tN'2

where dz = dz1 -•• dzN and λ > μ > 0. We shall denote by A3 constants
which (unless otherwise stated) may depend only on h and on the mani-
fold M.

Using (3.6) one can prove by induction on ί that

(3.8) I PpSUP, U,t)\^ ^Lltίc+i-^i/w-i-wβ-π/βί β
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The case ί = 1 follows by (2.11), (2.12). (In deriving (3.8) we also use
the elementally inequality λe~αλ ^ const. e~δλ for all λ > 0, where a, S
are constants and a > δ Ξ> 0.) In (3.8) it is understood that t° (if it
occurs) must be replaced by -logί. From now on we take m such that

m + i -IM >o .

Using the definition (2.14) we then conclude from (3.8) that

(3.9) I dh

P7m(P, Q , t ) \ ^ A 2 e - r 2 l δ t t m

Next, from the definition of Θm one derives

(3.10) I d h

P θ m ( P , Q , t ) \ ^ A 3 e - r 2 l H t

Combining (3.9) and (3.10) (h = 0) and applying (3.6), we get

(3.11) I ΓT^>Ύm(P, W, τ), θJϋ, W,— - τX\dτ ^ A4e-2r2/5ίr+1

Using (3.10), (3.11) one easily derives, applying (3.7),

(3.12) J2(P, t) ^ Abt
m+1->hl~NI2 .

Similary one gets

(3.13) J 3 ( P , ί ) ^ A6t
2{m+1)-]h>-»12 .

Evaluation of JX{P, t). From the construction of Θm it follows that
for every sufficiently small neighborhood V we may take it to be of the
form

(3.14) Θm(P, U, t) = Hm(P, U, t) + Rm(P, U, t) for all PeV

where Hm is constructed in § 2 and where, for some ar > 0,

(3.15) Idh

FRm(P, U,t)\£ A7e-«Ίtt^Nl2 S Ajfi

for any ζ > 0. A8 depends also on ξ. Next,

(3.16) dh

PHm(P, tf, t) = Σ t ' Σ
j=o i v | = o

where (fy = (M .. . (^j. It is easily seen that

(3.17) dPf(r2, ί) = Σ H

where y\ xι are the coordinates of U, P respectively, and i/vμ(z) is a
polynomial in z = (z\ , zN) with C°° coefficients which, for Hn, are
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functions of x only. Substituting (3.17) into (3.16) and recalling that
M(P, U)v2 becomes (Si) at P = U, we obtain

(3.18) dh

PHm(P, U, t) = HhllLz^L)f(r\ «)«-'*'" Y + Sh(P, U, t)

where Y is the matrix (Si) and

(3.19) I Sh(P, U,t)\

Combining (3.14), (3.15), (3.18), (3.19) we conclude that

(3.20) dh

Pθm(P, U, t) = HjV^S)f(r\ t)t'»"*Y + TΛ(P, U, t)

and

I TΛ(P, U,t)\^ Alot
(1-IΛI-")/a .

Using the definition of Jl9 and substituting (3.20) in the part of the
integral [dh

Pθm(P, U9t/2)9 dh

Fθm(P, U,tl2)]σ taken over a coordinate patch
Fo containing V: yi — xι = ξ1]/ t , we find that

(3.21) Jλ(P, t) - (Ch(P) + B0{P, «))«-'*'-*/»

where Ch(P) is a continuous function of P, and | B0(P, t) \ ̂  Auτ/ t for
Pe V, 0 < t ^ 6, for any 6 > 0. -An depends on b.

Combining the evaluation of Jt with (3.12), (3.13), we obtain from
(3.4),

(3.22) Σ I dha>i(P) Γ β~λiί = Ch(P)t-]hl-NI2 + Dh(P, t)f^'{N-^1

where Dh(P,t) is a uniformly continuous function of (P,t),Pe V and
0 < ί g 6 for any b > 0. Thus

(3.23) I J9Λ(P, ί) I ̂  A12

where An depends on b.
Note that the Aίf in particular Al2, are independent of P which

varies in V.

4* Asymptotic formulas. To derive asymptotic formulas from the
equation (3.22) we use a Tauberian theorem due to Karamata, specialized
to Dirichlet series [14; p. 192], It states:

Let ak ^ 0 and 0 ^ λx g λ2 5g g λn ^ , and assume that the
oo

Dirichlet series f(t) = 2 ake~λkt converges for t > 0 and satisfies
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f(t)~φ<L8 ί\0 ( 7 ^ 0 ) .

Then the function a(x) = ^ ak satisfies

Axy

a(x) ~ as x —> oo .

Γ(Ύ + 1)

Applying it to (3.22) (using (3.23)), we get

(4.1) Σ I β*ω*(P) I2 = ^ . . . y f l λ Γ / o / ' f t l W [ l + o(l)] (λ -> oo)
λ^λ Γ( I fe I + 1 + N/2)

and o(l) —» 0 as λ —> oo, uniformly in P e F .
Let λx = = λg_! = 0, λg > 0. Using the asymptotic formula (4.1)

we shall prove:

THEOREM 1. For any h and for any e > 0, the series

(4.2) £

is uniformly convergent in Pe M.

Proof. We introduce the function

JB(P,λ)= Σ

Then, we can write the series (4.2) in the form

Integrating by parts we get

Since, by (4.1), B{P, λ) £ AldX
lhl+NI2 and since B(P, λ') = 0, the first

term in (4.3) vanishes. The integral in (4.3) converges uniformly in P
in view of the bound on B(P,X) just given. The proof of Theorem 1 is
thereby completed.

5. Solution of the system (1.1), (1.2). We first derive the formal
solution. Substituting

(5.1) g(P) = £ ff.α).(P), h(P) = £ Kω.(P), f(P, ί) = Σ L(t)ωn(P)
1 l l
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(5.2) v(P, t) = Σ vn(t)ωn(P)
n — l

into (1.1), (1.2) we arrive at the equations

(5.3) <'(ί) + Xnvn(t) = fn(t)

(5.4) vn(0) = gn, <(0) = K .

If λn = 0 the solution is

vn(t) = gn + hnt + [f(τ)(t - τ)dτ .
Jo

If Xn > 0 the solution is

vn(t) = gn cos T/X t + —β=z sin τ/λn ί + — = \ fn(τ) sin τ/λn (t - τ)dτ .

Hence, the formal solution of (1.1), (1.2) is

(5.5) v(P, t) = Σ βf,(»,(P) cos Λ/K t + Σ>Kωn(P)t

Σ - ^ ^ p ) s i n Vτ*t + Σω.ί^Γ/.^X* - τ)dτ

+ Σ -^=β».(P)(V.(τ) sin l / λ : (t - τ)dτ .

To prove that the formal solution is a genuine one we observe that
if λn > 0

(5.6) gn = \ g(Q)*ωn(Q) = \ \ L™g{Q)*ωn{Q)

for any positive integer m. Applying BesseΓs inequality, we get

(5.7) Σ λϊ Λ S \ L™g{Q)*L™g{Q) = || L™g | | 2 .

Similarly,

(5.8) Σ λf/t2

π ^ || L-fc ||2, Σ Km(Mt)Y S || L-/( , t) ||2 .

It will be enough to show that the part of the first series on the
right side of (5.5), where summation is on Xn > 0, when differentiated
term-by-term twice with respect to P is uniformly convergent in P e ikf,
0 ^ ί g 6, for any 6 > 0. Now the series obtained is majorized by

Σ\gn
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Hence that series is uniformly convergent if k > ΛΓ/2 + 1.
It is clear that each series in (5.5) can actually be differentiated

term-by-term any number of times and the resulting series is uniformly
convergent.

By a solution of (1.1), (1.2) we mean a p-form which is (a) twice
continuously differentiable in (P, t) for P e M, t > 0 (6) once continuously
differentiate in t for P e M, t ^ 0 and (c) satisfies (1.1), (1.2).

The uniqueness of the solution can be proved as for the classical
wave equation. Assuming # = 0, h = Q, f = 0 and using the rule

\du*ω = \u*δω one finds that if u is a solution then

— \ [ut*ut + δu*δu + du*du — cu*u] = 0 .
dt JM

Since the integral vanishes for t = 0, it vanishes for all t > 0. Since
the integrand is nonnegative, ut*ut = 0, which implies ut = 0 and hence,
u = 0.

We have thus completed the proof of the following theorem.

THEOREM 2. Let g,h be C°° p-forms and let fbe a C°° p-form such
that dpf is continuous in (P, t), for any λ. Then the Cauchy problem
(1.1), (1.2) has one and only one solution. The solution is a C°° p-form
and is given by (5.5).

The assumption that the manifold M is C°° can be weakened. Indeed,
the theory of differential forms used above remains valid under the
assumption that the metric tensor is C5 (Gaffney [3]; see also Friedrichs
[2]). The assumptions on /, g, h can also be weakened without any
modification of the preceding proof of Theorem 2.

We need the assumptions:
(A) The metric tensor g{J belongs to C[ΛΓ/2]+2 and to C5, and c belongs
to C[*/2]+1 (recall that c g 0).
(B) The form g belongs to C [ΛΓ/2]+3 and Lί{N+4mg belongs to C\
(C) The form h belongs to C W 2 3 + 2 and LίiN+2)/2% belongs to C1.
(D) The form / and its first [N/2] + 2 p-derivatives are continuous for
PeM, 0 ^ t ^ b (for any 6 > 0); LC(*+2)/2]/ and its first p-derivatives
are continuous for PeM, 0 ^ t <£ 6.

THEOREM 2'. Under the assumptions (A) — (D), there exists one
and only one solution of the Cauchy problem (1.1), (1.2). It is given
by (5.5).

The assertion of Theorem 2' remains valid if we further weaken
the assumptions (A) — (D) by replacing the classes of continuous deriva-
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tives Cq by classes of "strong" derivatives Wξ (see [6]), assuming that

6. The heat equation. The method of § 5 can easily be extended
to solve the system (1.4), (1.5). The formal solution is

(6.1) u{Pf t) = Σ gnωn(P)e-*»> + Σ ωn{P)\
n=l n = l JO

We shall need the assumptions:
(A') gi3 belong to CίNI21+1 and to C5, and e belongs to CίNI*\
(B') The form g belongs to C W 2 ] + 1 and LίNl*g belongs to C\

THEOREM 3. Under the assumption (A'), (B'), (D) there exists a
unique solution of the system (1.4), (1.5). It is given by (6.1).

REMARK 1. The assumption c ̂  0 is not needed for the validity of
Theorem 3 since it can be achieved by a transformation u = eatu for
any constant a ^ c.

REMARK 2. Assuming c ^ 0 , / ^ 0 , w e can rewrite (6.1) as an operator
equation

(6.2) Tt = H-

where {μfc} is the sequence {λ̂ } taken without multiplicities, Hk is the
projection into the space of eigenforms corresponding to μkf H corre-
sponds to μ0 = 0, and Tt is the operator which maps g into the solution
u, that is, u{P, t) = Ttg(P). Formula (6.2) was derived, in a different
way (for c ~ 0) by Milgram and Rosenbloom [10].
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BASES OF TENSOR PRODUCTS OF BANACH SPACES

B. R. GELBAUM AND J. GIL DE LAMADRID

l Introduction* In this note we use the conventions and notations
of Schatten [4] with the exception that we use Br to indicate the dual
(conjugate) space of a Banach space B and ζx, xfy as the action of an
element x and a functional xτ on each other. Schatten defines the tensor
product Bi ® aB2 as the completion of the algebraic tensor product Bx ® B2

of two Banach spaces Bx and B2, on which the cross norm a has been
imposed. We discuss the proposition, "If Bx and B2 have Schauder
bases, then B1<^} aB2 has a Schauder basis/' We prove this for a = γ
(Bλ 0 yB2 is the trace class of transformations of B[ into B2). We also prove
it for a = λ {Bλ 0 λί?2 is the class of all completely continuous linear
transformations of B[ into B2) in the case in which the bases of Bx and
B2 satisfy an "isometry condition". This condition is not very restrictive.
We know of no instance in which it is not satisfied. Next we show
that unconditional bases of Bλ and B2 do not necessarily yield an uncon-
ditional basis for the tensor product, even in the nicest conceivable in-
finite dimensional case, that in which Bx = B2 = Hubert space, and the
bases are orthonormal and identical.

We recall certain facts about Schauder bases, and set some general
notation that we use throughout the paper. We usually work with a
biorthogonal set Ω — {xif #ί}{ associated with a Banach space B, so that
X — {#;}; is a basis for B with coefficients supplied by the corresponding
sequence of functionals χ' = {#!}». We will have to do with the closed
linear manifold BΩ of Bf generated by the elements of χ'. Since B and
BΩ are in duality it is possible to embed B in (BΩ)' by the same formula
that effects the embedding of B in B'\ We denote by n P m the projec-
tion of B defined by nPmx = Σ*T=n <#> <O&». The double sequence {nPm}%,m

is uniformly bounded. We denote by T' the transpose of any transfor-
mation T. The following lemma, given without proof, is but a trivial
strengthening of [2, p. 18, Theorem 1].

LEMMA 1. Let E be a dense vector subspace of B, Ω a biorthogonal
set of B such that χ c E, the vector space spanned by χ is dense in E
and the sequence {nPm}n,m is uniformly bounded on E. Then Ω defines
a basis for B.

2 The tensor product of two biorthogonal sets* Let Ωx = {xi9 x'^
be a biorthogonal set of Bλ and Ω2 = {yi9 yf^i a biorthogonal set of B2.

Received November 15, 1960. This research was supported in part by NSF research
grant No. NSFG 14137 and in part by NSF research grant No. NSFG 11048.
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The elements x\ 0 y) can be considered as belonging to (B1 0 aB2)' for
any cross norm a [4 p. 43], and {#; <g) ?/,•, x\ 0 ί/J}ί§i is clearly a biorthogonal
set. We enumerate it, not by the diagonal method, i.e., as in the usual
proof that the rationale are denumerable, but as follows: In the table

#2 0 2/i #2 0 2/2 #2 0 2/3

we simply order the elements by listing the entries on the two inner
sides of each successive upper left hand block to obtain xx 0 y19 xx 0 yi9

#2 0 2/2, #2 0 2/l, #1 0 2/3, #2 0 2/3, #3 0 2/3, #3 0 2/2, #3 0 2/l, * * * , #1 0 #*, #2 0

2/fc * #fc 0 2/fc, #fc 0 2/fc-i> ' , #& 0 2/2, #* 0 2/1, . This double sequence
with the given order is called the tensor product of χx — {#<},. and χ2 =
{y3)j and is denoted by χx 0 χ2. Similarly χ{ 0 χ2 denotes the set {#• 0 y'3)iι5

with the corresponding order. The biorthogonal set formed by χλ 0 χ2

and χί 0 χ2 is called the tensor product of Ωx and Ω2 and denoted by
Ωi 0 β2.

THEOREM 1. If Ω1 defines a basis for Bx and Ω2 defines a basis
for B2, then Ωx 0 Ω2 defines a basis for Bλ 0 yB2.

Proof. We show that the vector space spanned by χλ 0 χ2 is dense
in Bλ 0 J52. To see this let nPi be the nPm defined in § 1 for Ωif and
define

(1) Am = x 0 y — Σ <#> #I><2/> 2/;>#* 0 Vj = # 0 2/ — [ i ? ^ ] 0 [iP™2/]
fc.i=i

- # 0 [2/ - iPiif] + [# - xPia?] 0 1 P L y .

Then

(2) Ύ(Am) tϋ ||α?|| ||2/ — iPίy\\ + ll# ~ lPi^ll IliPi^ll .

The right hand side of (2) tends to zero with m~\ This argument extends
by linearity to sums of elements of the form # 0 2/.

Let now Tq be the λPq defined in § 1 corresponding to Ωx (g) Ω2. It
remains to show that {Tq}q is uniformly bounded. It is easy to show
that each Tq has one of the following three forms: xPl 0 J?l, J?l 0
iPn + n+iPn+i 0 iPi, i ^ 0 , + Λ i Hence, it suffices to show that
{nPi 0 / r k r n.m i s uniformly bounded. Let M be a common bound for all
P 1 o nA P 2 TTVvr ŷ y ^ ii a Ti (^ 7?

m d»nU ? Γ r . Γ UL sLuk \£J If t £>! ̂ jAy) X>2

( 3 ) j[nPi ® gP?(Σx <g> i/)] = γ [ ^ ( n P i x ) <8> {qP?y)]
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Since (3) holds for any representation Σxξ&y of a given tensor product
element, we may replace in it the sum 2Ί|ίc | | \\y\\ by Ύ(Σχ(g)y), there-
by proving our assertion. From Lemma 1, we can conclude that Ω10 Ω%
defines a basis for Bλ 0 yB2.

3 The space of completely continuous transformations• We recall that
there is a canonical imbedding of B, with a biorthogonal set Ω defining
a basis of B, into (B°)\ The norm of the image of an element x e B is
less than or equal to \\x\\. We say that Ω satisfies the condition of
isometry if the imbedding is actually an isometery. For such an i2,
(BΩ)Ω = B, isometrically. We state first the following corollary of The-
orem 1.

COROLLARY 1. If Ωk is a biorthogonal set defining a basis for
Bk, & = 1, 2, then Ωλ 0 Ω2 defines a basis for B?^ 0 λBξ*.

Proof. Each x\ (g) y) is an element of I??1 0 Bp which, as a subset
of B[®λB[, can be imbedded isometrically in (J5X (g) γJB2)' [4, p. 47, The-
orem 3.2], What is more, the vector space spanned by {Xi^y%ti is
dense, with respect to λ, in 2?fi 0 I??2, hence in BΩ^(&kB

Ω\ This is
true because

f <g>y - ( Σ <χi, %'>d ® ( Σ <Vi, y
i l i l

and the latter quantity tends to 0. Hence B?Hg γ

Our result is a consequence of this.
The next theorem follows easily from this corollary.

THEOREM 2. / / both Ωλ and Ω2 satisfy the condition of isometry
Ωx 0 Ω2 defines a basis for Bλ 0 kB2.

Proof. If in Corollary 1 we replace Bλ by B^ and B2 by BQ\ we
conclude that Ωx 0 Ω2 defines a basis for (B?ήΩι 0 λ(Bζ*)\ When the
condition of isometry is satisfied the last tensor product can be identified
with Bx 0 λB2, owing to the relations Bk = (2?£*)fl* for fc = 1, 2, and the
universal character of λ, [4, p. 35, Lemma 2.12].

Theorem 2 can be considered as a sharpening of the well known
fact that if Bx and B2 have bases, then every completely continuous
linear transformation of B[ into B2 can be uniformly approximated by
finite dimensional linear transformations. Our theorem goes further to
state that if Ωx and Ω2 satisfy the condition of isometry, the space of
all completely continuous linear transformations of B[ into 2?2 has a
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basis consisting of one-dimensional linear transformations.
The condition of isometry deserves some explanation. It is satisfied

by a large class of bases, which includes every base for which

(5) BΩ = Bf .(1)

The equation ( 5 ) holds always for reflexive spaces. It also holds for
certain bases of non-reflexive spaces.

A non-reflexive example of (5) is exhibited in [2, p. 188, Example
1], involving the usual basis of c0, α?< = {δ}}y, with x\ — {δ}}y e l\ An ex-
ample of the condition of isometry, in the absence (5), is obtained from
this first example, by setting [2, p. 188, Example 2] yx = χ19 and y{ =
Xt - Xi-X + + (- l)*- 1 ^, for i > 1, and yl = xl + x'i+1. For Ω = {yit »{},,
x[eB'\BΩ. Ω satisfies the condition of isometry for, if χec0, then

I I ^ IMI

The conclusion is now a consequence of the following theorem and its
corollary.

THEOREM 3. If for every x'eB', \\λPnXf\\ -* \\x'\\, then Ω satisfies

the condition of isometry.

Proof. Let xoe B and x'o e Bf such t h a t \\x[\\ = 1 and <x0, χ'o} = \\xQ\\.

Then

^ f y =llfl?0|l , Q.E.D.

COROLLARY 2. If IIJPJI ^ 1 for every n, then Ω satisfies the con-
dition of isometry.

Proof. We show the above hypothesis implies the hypothesis of
Theorem 3. To see this, let x'o e B', and ε > 0. There is xoe B so that
||&oll = 1 and <x0, O > ||a?0|| — ε/2 and an integer N> 0 so that

11 ail I ̂  iiiP sίii ^ <^,iP^;> - <*pnχ*, χs> > <χ0, <> - ψ

> l l ^ l l - ε , Q.E.D.

As we have seen, the two biorthogonal sets described above for c0

satisfy the hypothesis of Corollary 1.
An example of the isometry condition in which Br is not separable

is furnished by Schauder's basis for C([0,1]), given by the biorthogonal
system Ω = {xi9 x[)i described in [1, p. 69]. We consider [0,1] imbedded

1 This equation may be described by saying that {x[}i is a retrobasis for B\ [2, p. 188,
Definition 1].
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in B' and treat its points as functionals. The space BΩ of this example
contains the set D of all dyadic fractions. Consequently Ω satisfies the
condition of isometry, since, for feB, \\f\\ = supdeD\f(d)\.

We know of no biorthogonal set defining a basis which does not
satisfy the condition of isometry. Neither do we know if B1 0 aB2 has
a basis for an arbitrary cross norm a, even if Bλ and B2 have bases.
It is clear that for any element of i?i 0 B21 the formal expansion of
Theorem 1 converges to that element with respect to a, since it does
with respect to γ i> a. The difficulty lies in establishing that the set
{pP\ 0 rPl}p,q is uniformly bounded with respect to a.

r,s

4. Hubert spaces and unconditional bases* The problem of approxima-
tion of compact operators by finite dimensional operators in a Banach
space, can, after elaborate rearrangement, lead to the following question:
Can there exist a matrix C = (c { i )" i = 1 satisfying the following conditions:

CO

(a) For some a{ ^ 0, Σ α i < °°» lc.vl < aiah

(b) C2 = 0

(c) Σί« = l?
t = l

Of course, (b) and (c) are incompatible if C is in the trace class. Thus
there arises the question: Does (a) imply that C is in the trace class?
To this we can give a definite negative answer via the following theorems.

Therem 4. Let Ω = {xi9 x
fi\if x{ = {8)}jf x\ = {8)}3- be the canonical

orthonormal basis in l2. Then Ω 0 Ω defines an unconditional basis
in l2 0 yl2 if and only of condition (a) implies C is in the trace class.

Proof. Let fl®i3 define an unconditional basis for l2 0 yl2. Then
we note that (a) may be rephrased by stating: ci3- = ε ^ α ^ , |ε ί y | ̂  1.
Since l2 0 yl2 is precisely the trace class of operators [4] it follows that
Σu=i εΐ; didj(Xi ® Xj) exists in l2 0 yl2 and is therefore in the trace class.

On the other hand, if (a) implies that C is in the trace class, then
for a ® a in l2 (g) γl2 (a = (alf α2, •))» α 0 α = ΣΓi=iα<αy(»< 0 #,•). If
JS = (εjjaidj) is in the trace class, then B has an expansion ^T,j=ieijaiaj
(Xi 0 ojj ), which shows fl^fl defines an unconditional basis for l2 0 yl2.

THEOREM 5. Ω 0 £? does ?ιoί define an unconditional basis for

Proof. Let Ax = (α^) be a 2 x 2 matrix with α u = α12 = α22 == — α21 = 1,
and An the 2n x 2n matrix (A^) i,j = l,2, with An = A12 = A22 = — An

= An_x. Let B be the direct sum of the matrices {l/2n/2An}n. Then a
direct computation reveals that B is unitary. Let I? = (δfi), and let
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C = (\bij\). If β ® f l were an unconditional basis for Z2 (g) yίa, then for
i?, regarded as a member of (l2 ® γZ2)' [4, p. 47, Theorem 3.2] and
arbitrary uζ&v in i2 0 yϊ2> ΣΠ ^ i ^ X ^ #%> would converge uncondi-
tionally, i.e. ΣΓi=i^Λl^iil would converge. In particular, let u — v,
where u is given by the vector: ΣΓ=i(l/w)a?n, (τ/2*)a?n = (0,0, ••• 0,.

1,1, , 1, 0, 0, •)• A simple verification shows that u exists in ίa

On the other hand, more calculation shows ΣΓi=i|ί>iil^i% = °°. The
contradiction implies the theorem.

Theorem 5 remains valid when y is replaced by λ, since l2 ® yl2 =
(ί2 Θ xkYf and unconditionality of ί2 (g) £? in Z2 (g) λϊ2 implies the same in

NOTE. We owe to the referee the remark that a space B with a
biorthogonal set £? which defines a basis for B can always be renormed,
preserving the topology of B [1, Theorem 1, p. 67], in such a way that
£ satisfies the condition of isometry (section 3) with respect to the
resulting norm of B and the corresponding norm of B'. This makes-
possible the following completely general form of Theorem 2.

THEOREM 2'. If Ω{ defines a basis for Bif for i = 1,2, then Ωλ ® Ω2.
defines a basis for Bλ (g) KB2.

Proof. Renorm B± and B2 as indicated above. Then, if V denotes
the operator norm with respect to the new norms of Bλ and J?2, B1 ® λ'JS2

has a basis defined by £ x ® β 2 (Theorem 2). But A (g) λ-£2 = j ^ <g) λJB^
both point-set-wise and topologically. Hence our conclusion.
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INFINITELY DIVISIBLE PROBABILITIES

ON THE HYPERBOLIC PLANE

R. K. GETOOR

l Introduction* This paper may be regarded from two points of
view. First of all it presents the theory of infinitely divisible radially
symmetric probability measures on the hyperbolic plane and the naturally
associated limit theorems. This point of view provided the motivation
for the present paper and is explained in some detail in § 2 and 3.
However, just as the analagous theory in the Euclidean case may be
viewed as a chapter in the theory of Fourier transforms, so may the
present theory be viewed as a chapter in the theory of Legendre trans-
forms. That is, by using the Harmonic analysis described in §§ 2 and 3
•one can set up a one-to-one correspondence between the radially sym-
metric probability measures, μ, on the hyperbolic plane and certain func-
tions of a complex variable φ{z) in such a way that the convolution of
μλ and μ2 on the hyperbolic plane corresponds to the pointwise product
of their "transforms" φx and φ2. Since μ is radially symmetric it is
completely specified by a distribution function F(X) on λ ^ O and the
correspondence between φ and μ (or F) is given by

(1.1) φ(z)=\~K(z,X)dF(\)
Jo

where K(z, λ) is a certain Legendre function given by (4.9). The convo-
lution of μ1 and μ2, at least in the case where FΊ and F2 have densities,
is written down explicitly in (3.9).

This second point of view is adopted for the most part beginning
in § 4 and so the majority of the paper (sections 4-10) deals with certain
problems in the theory of the Legendre transform (1.1). The tools we
use are those of classical analysis, but the problems treated are motivated
by probability theory. The main results of the paper are contained in §§ 7
and 8. In § 10 Gaussian and stable distributions are defined within the
present context. Finally in § 11 we indicate the extensions of these
ideas to a wider class of Legendre transforms which includes the theory
of radially symmetric probability measures on the higher dimensional
hyperbolic spaces as special cases.

We would like to thank Professor H. P. McKean who first introduced
us to the material in § 2, and who expressed interest and encouragement
when the present paper was in its formative stages.

Received January 10, 1961. This research was supported, in part, by the National
Science Foundation.
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2 General Remarks^ The present section is devoted to a general
situation that we will specialize to the hyperbolic plane in the next
section. We follow, more or less, the expository article of Godement
[4], Let G be a locally compact second countable topological group and
let K be a compact subgroup. Let x, y, z denote elements of G and u9

v elements of K. We define two equivalence relations on G as follows:

(2.1) χ~y φ=φ xy-1 e K

(2.2) x f** y 4=#> there exist u, v e K such that x = uyv .

Thus H = G/~ is the space of right cosets and R = G/^ is the space
of double cosets. We give H and R the usual quotient space topology.
Let dx be right invariant Haar measure on G, then dx induces measures
dh and dr on H and R which are invariant under the (right) action of
G. In order to avoid notational complications it will be convenient to
regard all functions as being defined on G. Thus the statement fe L^R)

will mean f(x) = f(y) if x ^ y and \ | f(x) | dx < oo with the obvious

conventions for functions defined almost everywhere. Thus we have

(2.3) LP{R) c LP(H) c L,(G)

for each p > 0.
If / and g are in LX(G) we define their convolution

(2.4) f*g.(χ) = \f{χy~1)g{y)dy .

It is well known that LX{G) is a Banach algebra and it is immediate
that LX{R) and L^H) are closed sub-algebras. The basic assumption of
[4] is that LX{R) be commutative. Selberg [6] has shown that if H is
a symmetric (or more generally, weakly symmetric) space then Lλ(R) is
commutative. For us the following simple sufficient condition (whose
proof is a routine calculation and is therefore omitted) will suffice.

THEOREM 2.11. If x & x~x for all x in G, then L^R) is commutative.
In the remainder of this section we will assume that L^R) is com-

mutative. If a is a multiplicative linear functional on L^R) then

(2.5) a(f) -

where pa is in L^R). It is easy to see that a defined by (2.5) is a
multiplicative linear functional if and only if

(2.6) PΛΦM = ( P«{%uy)du
JK

1 This remark is due to H. P. McKean.
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for almost all x, y. Here du is normalized Haar measure on K. More-
over (2.6) implies that pΛ is equal almost everywhere to a continuous
function and thus the multiplicative linear functionals on Lλ{R) may be
identified with the bounded continuous functions on R satisfying (2.6).
Such functions are called spherical functions on R.

Let CL be the continuous functions on G with compact support. If
/ e Coo we define f(x) — fix'1). A (signed) Radon measure μ on G is said
to be of positive type if

(2.7) //(/*/) ^ 0

for all / G Coo. A continuous function p on G is of positive type if the
measure p(x)dx is. Let R be the totality of all spherical functions on
R which are of positive type. For feL^R) we define

(2.8) f(p) = ^f(x)p(x)dx for p e R ,

then, at least if G is unimodular, one can develop a complete theory of
harmonic analysis including a Plancherel theorem. For details see [4].
Since we won't need this general theory we will terminate our general
discussion at this point.

3, The Hyperbolic Plane* Let D be the interior of the unit disc
in the complex plane, i.e., D = {z : z complex, \z\ < 1}. The set D furnish-
ed with the Riemannian metric

(3.1) ds2 = 4(1 - r2)~2[dx2 + dy2]

where r2 = | z |2 = x2 + y2 will be called the hyperbolic plane. The geo-
desic joining zλ and z2 is the unique circle through them cutting the
circle | z | = 1 orthogonally. The hyperbolic distance ξ(zl9 z2) between zx

and z2 is given by

(3.2) thζ/2 = \z1-zi\-\l ~zxz2Y
x

where ' W denotes the hyperbolic tangent, similarly "cfe" and "sfe" will
denote the hyperbolic cosine and sine. See [2] for a discussion of the
hyperbolic plane including the above facts.

If u and b are complex numbers with | n \ = 1 and | 6 | < 1 we define
the hyperbolic motion (u, b) as follows:

(3.3) (u, b):z^u(z- 6)(1 - bz)-1 .

It is easy to check that (3.3) maps D onto D and preserves the hyper-
bolic distance (3.2). Let G be the totality of all such motions with the
obvious topology. Clearly G is a topological group satisfying the hy-
potheses of §2. The multiplication in G is composition, i.e.,
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and

(3.5) (w, δ)"1 = (U, -ub) .

Let K be the compact subgroup consisting of motions (u,0), then
K is just the circle group. It is straight forward to check that the
equivalence relations defined in (2.1) and (2.2) become

(3.6) (ulf bj ~ (u19 b2) # = φ bx = b2

(3.7) (Wi,6i)«(w a,6,)4=#|6il = | 6 a |

Thus H can be identified with D and ϋ! with the half-open segment
0 £ r < 1. Moreover Haar measure in G can be chosen so that the
invariant measure induced in H — D is just that associated with the
Riemannian metric (3.1).

It is convenient to introduce geodesic polar coordinates (ζ, θ) in D
with pole at s = 0. Here ξ is the hyperbolic distance and the coordinates
of the point z — reiθ with 0 ^ θ < 2π are (log 1 + r/1 — r, 0). In terms
of these coordinates we have ds2 = ci£2 + sh2ζdθ2 and the corresponding
volume element is given by

(3.8) shζ dζ dθ .

We now regard R as the half-line 0 ^ ζ < oo and write f(chζ) for the
generic function defined on R. Theorem 2.1, (3.5), and (3.7) imply that
LX{R) is commutative and routine calculations show that if f,ge LX(R),
then their convolution is given by

(3.9) f*g.{chζ) = [\2πf(chX)g[chξchX — shζshX cos θ]shXdθdX
Jo Jo

I f[chζchX —- shζshX cos θ]g(chX)shXdθdX .
o Jo

Moreover the defining equation (2.6) for spherical functions becomes

(3.10) p(chX)p(chζ) = — ^vichXchζ — shXshζ cos θ]dθ .
2τr Jo

From (3.10) one can show that p is a solution of the Legendre differential
equation and since p(l) = 1, it follows that the solutions of (3.10) are
Pv(chξ) where P v denotes the Legendre function of the first kind. See
[3]. Equation (3.10) is then a simple consequence of the usual addition
theorem for Legendre functions [3].

Since the spherical functions are bounded we must have — 1 ^
Re{v) ^ 0. Finally it is not too difficult to see that Py(chζ) is of positive
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type if and only if Re(v) = —1/2. Thus we have identified the spherical
functions and the spherical functions of positive type for the hyperbolic
plane. See also [4].

The fact that the two integrals in (3.9) are equal is, of course, a
consequence of the general theory of § 2. However, one can see this
directly as follows. In the first integral in (3.9) we regard (λ, θ) as
geodesic polar coordinates for the hyperbolic plane D with pole at 0.
Let z0 be the point whose coordinates are (ξ, 0) and let (μy φ) be geodesic
polar coordinates for D with pole at z0 with the same polar axis. Using
(3.2) it is not difficult to see that relationship between the coordinates
(λ, θ) and (μ, φ) of a point z is

(3.11) chμ = chXchζ — shXshζ cos θ

chX = chμchζ + shμshζ cos φ .

Thus regarding the first integral in (3.9) as an integral over the hyper-
bolic plane we see that it is equal to (the volume elements are shXdXdθ
and shμdμdφ, see (3.8))

2π

0 JO
f [chμchζ + shμshζ cos φ]g(chμ)shμdφdμ

and this is obviously equal to the second integral in (3.9). The relation
expressed in (3.11) is just the law of cosines for hyperbolic trigonometry.

4. Preliminaries on Legendre Functions* We intend to study integral
transforms of the form

(4.1) φ(v) = \°°Pv(chX)dF(X)
Jo

where F is a bounded monotone nondecreasing function and Py(chX) is
the usual Legendre function. In this section we gather together some
facts about the kernels P^{chX) that we will need in the sequel.

Combining formula (3) of § 3.2 and formula (22) of § 2.1 of [3] we
see that

(4.2) n ^ λ ) _ ^ 2 j ^ v, ^ c Λ λ + 1

for all complex v provided 0 ^ λ < oo, where F is the usual hyper-
geometric function. In all statements to follow X is a nonnegative real
number. It is immediate from (4.2) that for each fixed X the function
Pv(chX) is an entire function of the complex variable v. Also

(4.3) Pv(l) = 1

PQ(chX) = P^(chX) = 1 .
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From formula (9) of § 3.7 of [3] we have

_ chίv + —\ dt

(4.4) P,(chX) = - ΫA sin vπ\~ \ 2 /

π Jo (chX + ckt)112

provided — 1 < Re(v) < 0 and in particular for real x we have

(4.5) P_1+1,(cAλ) = K U chπx\~ e o s x t d t .
* J (cAλ + cht)112

Using (4.2) above and the standard integral representation for the
hypergeometric function (§ 2.1.3 of [3]) we find that

(4.6)

v-χ(i - ty(i - chx~ 1tXdt
' \ chX + 1 /

provided — 1 < Rev < 0. For v real with — 1 < v < 0 it is immediate
from (4.6) that

(4.7) 0 ^ P,(chX) rg 1

and since Pv(chX) is a continuous function of v the inequality (4.7) must
hold for all v in the interval — 1 ^ v ^ 0. On the other hand using
formula (14) of § 3.7 of [3] we have

I Pv(chX) I ^ — \\chX + shX cos t]Revdt = PRev{chX) ,

π Jo

and combining this with (4.7) we obtain

(4.8) I Pv(chX) I g 1

provided — 1 ^ Rev ^ 0.

Let z = x + iy be a complex variable and define the function
(4.9) K(z, X) - P-i+iz(chX)

for λ ^ 0 and —1/2 ^ y ^ 1/2. For each fixed λ, if(z, λ) is an analytic
function of z in the strip —Ij2<y< 1/2 and is continuous in the closed
strip -1/2 ^ y g 1/2. The properties (4.3) and (4.8) become

(4.io) κ(z, o) = l, κ(- i., λ) = ir(-i, λ ) =

Moreover K(x, X) is given by the right hand side of (4.5).
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5. Uniqueness and Continuity. Let ^ be the collection of all
bounded monotone nondecreasing real valued functions defined on 0 g
λ < oo and normalized so that

(5.1) (i)
(ii) F(X) -> F(μ) as λ \ μ for all μ > 0 .

Note that F(0 + ) need not be zero. Let J% be those F e / " which
satisfy

(5.2) F(oo) = limF(λ) - 1 .
λ->oo

All integrals are to be in the Lebesgue-Stieltjes sense. Integrals over

0 ^ λ < 00 will be written 1 , while integrals over 0 < λ < 00 will be
Jo

foe

written \ .
It {Fn} is a sequence in ^~ and Fe^then we say that Fn con-

verges weakly to F (written Fn —* F) provided

(5.3) \~fdFn - \~fdF
Jo Jo

for all continuous / with compact support. We say that Fn is Bernoulli
convergent to F provided (5.3) holds for all bounded continuous /. It
is obvious that if each Fn e J^o and Fn^>F, then Fejς (Fn=$>F
means Fn is Bernoulli convergent to F.)

If K(z, X) is the kernel defined in (4.9) we define the transform of
Fe jF"by

(5.4) φ(z) - \Γκ(z, X)dF(X) .
Jo

It is immediate that φ is bounded in absolute value and continuous in
the strip -1/2 ̂  y g 1/2, and is analytic in -1/2 < y <l/2. In parti-
cular φ(x) is a real valued even function of x, and F'e j ^ if and only
if φ(—i/2) = 1. Of course, the values of φ on the real axis completely
determine φ in the strip -1/2 ̂  1/ ̂  1/2. We now show that F is
uniquely determined by φ.

THEOREM 5.1 If φ is the transform of F, then φ(x) uniquely de-
termines F.

Proof, It suffices to prove that if F is of bounded variation (not
necessarily monotone) and if the integral in (5.4) vanishes for all x then
F is identically zero. Using the representation (4.5) for K(x, X) we have

(5.5) P/ι(ί)cosα?ίdί = 0 for all x
Jo
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where

(5.6) h(t) = H(cht) = [°°[chX + cht]~idF(X) .
Jo

The interchange of order of integration is justified since

I h(t) I ^ Var(F)[l + cht]~i .

Moreover h is continuous and the above inequality implies h e Lιy hence
(5.5) coupled with the uniqueness theorem for Fourier integrals yields
h(t) = 0 for all t ^ 0. Thus if we define G(u) = F(chr\u)) for u ^ 1
and G{u) — 0 for 0 ^ u < 1 we have

H(t) = ( " ( % + t)~idG(u) = 0
Jo

for all ί ^ 1. But

= π"i\ e-σtσ~ig(σ)dσ
Jo

where 5f(σ) is the Laplace-Stieltjes transform of G. Since iϊ(£) = 0 for

t Ξ> 1 we see that σ~ig(σ) — 0 for almost all <x which in turn implies

that G, and hence F, is zero. Here we have used the uniqueness theorem

[7] for Laplace transforms twice.
In the present work the following rather weak continuity theorem

will suffice.

THEOREM 5.2. (i) If Fn->F and Fn(oo) g M then φn(%) -> φ(χ).
(ii) Let φn be the transform of Fn and suppose <pn(—i\2) = Fn(oo) ^

M, then if φn(x) —• φ(x) there exists an Fe ^ such that Fn-^F and
φ is the trasform of F.

Proof, (i) For each x the function K{x, •) is continuous and (4.5)
implies that it vanishes at infinity. Thus it is immediate that for each
fixed x we have φn(x) —* <p(x).

(ii) Since Fn(<χ>) ^ M the Helly theorem implies the existence of a
subsequence {Fi} weakly convergent to Fr. If φf is the transform of
F' then (i) implies that φ\x) = φ(x) for all x. If the entire sequence
{Fn} does not converge to Ff, then there exists another subsequence
{F"} converging to F" Φ Ff. But as before φ"{x) = φ{x) — φ'(χ) which
contradicts the uniqueness theorem. Thus if we let F = Ff the proof
of (ii) is complete.
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REMARK 1. Since the limit φ in (ii) above is a transform it follows
that φ(z) may be defined as a continuous function on the strip —1/2 ^
y <g 1/2 which is analytic in the open strip. If φ(—ίl2) = limφ%(—i/2),

then Fn(oo) — F(oo) which implies that Fn^F.

REMARK 2. If Fn^ F then since iΓ(z, λ) is continuous and bounded
f or λ ^ 0 and z in the strip — l/2^y^ 1/2, it follows that φn(z) -• 9(2)
uniformly on each compact sub strip — l/2^y^ 1/2 and 0 g 0 g #„.
See, for example, Lemma 1.5.2 (iv) of [1],

6 Closure Properties* Let ^*(^ξ) be the class of all transforms
of functions in J^~(J^). It is then immediate that if φ and ψ are in
^ and α, /? ^ 0 then α ^ + /Sψ e ^ , while if 9>, ψ e &ξ and α: + β = 1,
α ^ 0, /? ^ 0, then α ^ + /9ψ G &*O. Moreover Theorem 5.2 (ii) implies
that if {φn} is a sequence in ^ξ and φn(x)—*φ(x), then φe&>.

The main result of this section is that & and ^ are closed under
pointwise products. The proof of the following theorem is, of course,
motivated by the general discussion of §§ 2 and 3.

THEOREM 6.1. // φλ and φ2 are in &*(&$ then φxφ2 is in &{0o).

Proof. Let φx and φ2 be the transforms of Fλ and F2. We first
consider the case in which Fx and F2 have continuous densities fλ(chX)
and f2(chX) with respect to the measure sJϊλdX. Of course, fj(chX) may
be unbounded near λ = 0. Thus

(6.1) <Pj(x) = [~K(x, X)fj(chX)shXdX j = 1,2
Jo

°°fj(chX)shXdX < 00 fj(chX) ^ 0 3 = 1, 2.
oJo

For the purposes of the present proof it will be convenient to write

(6.2) p(z, chX) = K(z, X) = P.i+i2(chX) .

An immediate consequence of the addition theorem for Legendre func-
tions [3] is that

(6.3) p(z, chX)p(z, chμ) = --L Y*v{z, a(θ))dθ

2π Jo

where

(6.4) a(θ) = chXchμ — shXshμ cos 0 .

Therefore
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-I poo foopJΓ

= — \ f1(chX)shXdX\ \ f2(chμ)p(z, a(θ))shμdθdμ .
2π Jo Jo Jo

If in the inner integrals we make the change of variable described in
the last paragraph of § 3 we find (the manipulations are justified since
f2(chμ) e L^shμdμ) and p is bounded)

Φiizfaiz) = \ P(z, chμ)h(chμ)shμdμ
Jo

where

h(chμ) = —\O°\2πf1(chX)f2(a(θ))shXdθdX .
2π Jo Jo

clearly h Ξg 0 and

^(00)^(00) - φj^- y )<P 2 (~ j

Thus φλφ2 is in ^ , and if 9>lf φ2 are in ^ , then φλψ2 is in f̂.
We now turn to the general case. Let k(X) = e~λ if λ ^ 0 and

k(X) = 0 if X < 0, and put kn(X) = nk(nX). Defining i^(λ) and F2(λ) to
be zero for X < 0, it is clear that

- Γ kn(X - μ)dFi{μ) = ίλfcn(λ -
J—00 JO

are continuous functions of X Ξ> 0. Moreover if we define nFi(X) =

1 nfi(μ)dμ, it follows that nF< e ^ " , and n ^ e Jζ~if F { e ^ Here i =

1°, 2. It is well known [1, Th. 1.5.3] that nF^ F{ as n— 00. If

ngi{chX) = Λ/i(λ) then ^iichX^shX)-1 is the density of nFi with respect

to shXdX. Thus if n ^ is the transform of n F o it follows from what we

proved above that ^Λ(«) = nφx(z)nφ2(z) is in ^ (or ^ 0 ) . But by the

second remark following theorem 5.2 we have n<Pi(z) —> ̂ (2:) everywhere

on the strip —l/2^y^ 1/2. Thus φx(z)φ%{z) = lim ψ>n(2) is in ^ , and

9 i 9 2 ^ ^ if both 9>x and φ2 are since ψw(—ΐ/2) —*Φi(—il2)φ2(—il2). This
completes the proof of Theorem 6.1.

The following theorem gives another interesting closure property of

THEOREM 6.2. Ifφe^y then φ(z) = exp (t[φ(z) — φ(—il2)]) is in
for all t > 0.

Proof. If α = φ(-i/2) - F(oo) ^ 0, then
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Using Theorem 6.1, the fact that & is closed under positive linear
combinations, and Theorem 5.2 it follows that ψe^. (Theorem 5.2 is
applicable since

j.Ίr / 0 \ k

t φl JL)

«=o kl

for all n.) Moreover ψ(—i/2) — 1 and so f e ^ .

7 Limit Theorems* In this section we will consider only the class
^ . We begin by making the following definitions suggested by proba-
bility theory.

DEFINITION 1. φ e 3% is infinitely divisible if for each positive
integer n there exists a ψn e ^ξ such that φ = (ψn)

n.

DEFINITION 2. φ e ^ is a generalized limit if there exist φnk e &>
for w = 1, 2, , and k — 1, 2, , fc% with fc% —> 00 as % —> 00 such that

(7.1) max | ^ 0 * 0 — 11 —> 0
A;

uniformly on each bounded interval 0 ^ x g x0 < 00, and

(7.2) ?>„(&) - Π »̂fc(i») -> <P(x)

for all a;.
In this section we will show that φ is infinitely divisible if and

only if ψ is a generalized limit, and at the same time obtain a canonical
form for such φ. In the course of our discussion we will need the
following two lemmas which we state here for convenience. The proofs
of these lemmas will be given in § 9.

LEMMA 7.1. (i) There exist constants λ0 > 0 and MR < 00 such
that λ~211 — K(z, λ) I g MR provided 0 ^ λ g λ0 and \ z \ g R (of course
z is in the strip —1/2 g y ^ 1/2).

(ii) λ~2[l - K(x, λ)] — 1/4(1/4 + x2) as λ — 0.

LEMMA 7.2. Let HJX) = — I [1 — K(x, X)]dxf then
T Jo

( i ) 0 g iίp g 2 omd iJp(λ) > 0 /or λ > 0
(ii) ^ ( λ ) —> 1 as λ —>• co
(iii) X~ΉT(X) — C(Γ) > 0 as λ -> 0 .
We begin with the simple half of our main result.
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THEOREM 7.1. If φ is infinitely divisible, then φ is a generalized
limit.

Proof. Letting kn = n and φnk = ψn for all k we see that φn (de-
fined in (7.2)) is identical with φ for all n. Thus we need only verify
(7.1). But (4.10) implies that \φ{x)\ ^ 1, and, of course, φ(x) and ψn(x)
are real. Therefore

where ψ(x) =0 or 1 according as φ(x) — 0 or φ(x) Φ 0. But φ(0) > 0
and hence ^(0) = 1. Moreover ψl e £% and thus Theorem 5.2 implies
that ψe^. In particular ψ(x) is continuous and since ψ can only take
on the values 0 and 1 it follows that ψ(x) = 1 for all x. Hence φ(x)
never vanishes and since ψn(x) = exp [1/n log φ(x)] in a neighborhood
(depending on n) of 0 we must have ψn(x) = exp [1/n log φ(x)] for all
x ^ 0. Therefore ψw(#) —> 1 as w —> oo. This completes the proof of
Theorem 7.1.

We now turn our attention to the converse of Theorem 7.1. This
will not be established in full generality until § 8. In working with
Definition 2 we will adopt the convention that Fnk is the element in
^ξ whose transform is φnk, similarly φn is the transform of Fn, φ of F.
We begin with the following result.

THEOREM 7.2. Condition (7.1) of definition (2) is equivalent to

(7.3) max\°°dFnk(X)->0
k Jε

as n —• oo for all ε > 0.

Proof. Suppose (7.3) holds then

max I φnk(x) - 11 ̂  maxΓfl - K(x, X)]dFnk(X)
k k Jo

+ max Γ [ l - K(x, X)]dFnk(X)
k Jε

^ ε2MR + 2 max \°°dFnk(X)
k Jε

provided ε < λ0 and 0 ^ x ^ R where λ0 and MR are defined in Lemma
7.1. Thus (7.1) follows.

Suppose (7.1) holds and (7.3) does not hold, then there exists an
ε > 0 and a subsequence n5 such that

(7.4) max [°dFnjk ^ η > 0 .
* Jε
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Let kj be the value of k at which the maximum in (7.4) is attained
(0 ^ kj ^ knj) and let G3 = Fnjkj. Let ^ be the transform of Gjf then
(7.1) implies that ψj(x) —> 1 which is the transform of i? (unit mass at
the origin). Thus G5-^Έ weakly, but this is clearly a contradiction

S oo

dG5 ^ η > 0.

THEOREM 7.3. If φ is generalized limit then φ(x) = exp [—ψ(x)]
where

(7.5) ψ(x) = Γ [ l - ϋΓ(α, λ)]
Jo

Proof. Theorem 6.1 implies that each φn e ^g. Hence i^(co) = 1 =
i^(oo) and since φn(x)—*φ(x) we see that Fn—>F. Combining these
facts yields Fn=^F. Thus φjz) —> φ(z) uniformly on each strip —1/2 g
?/ ^ 1/2 and 0 ^ x ^ xQ. (Remarks following Theorem 5.2). Also φ{x)
can not vanish near x = 0 since φ e ^ξ. Let ^0 be the first zero of <ρ,
then φn{x) —* 93(05) uniformly on 0 ^ a? ^ α?0. Condition (7.1) implies that
ψnk{x) doesn't vanish for 0 ^ x g x0 and all A; provided that n is suf-
ficiently large (how large depending only on x0). Thus for 0 ^ x < xQ

and n sufficiently large we can write

-logφnk(x) = -logjl - J l l - K(x,\)]dFnk(\)} .

Letting

ank(x) - 1 - 9>nfc(ίc) - Γ [ l - K(x, X)]dFnk(X) ^ 0 ,
Jo

it follows from (7.1) that ank(x) —• 0 uniformly on 0 ^ x ^ x0 uniformly
in k as n —• 00. Hence

(7.6) -log φn(x) = - Σ log ?>.»(*) = Σ Σ (i)^(«»*)J -

and letting n-> 00 we obtain

(7.7) -log φ(x) = lim { Σ ank + Σ Σ (i)-1^,)'}

provided 0 g α? < x0.
Since all the terms involved are nonnegative we have for 0 ^ x < xc

(7.8) 0 g Σ Σ UΓ^nkY ^ max (ank) Σ Σ (i)"1^.*)^
A l 2 *=1i=l
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— 0( — lθgφ(x)) = 0

as n —• co. If we define

and use (7.7) and (7.8) we obtain

(7.9) -logφ;) = lim (°°[1 - K(x,
W-oo JO

provided 0 ^ x <xύ.
We now investigate the behavior of the functions Gn as n —* oo.

It is an immediate consequence of Lemma 7.2 that for each T > 0
there exists a constant A(T) > 0 such that

+ λ2

for all λ ϊ ; 0. Also from (7.6) and the definition of Gn it is clear that

^ ["[1 - K(x, \y\dG.(\)
Jo

for 0 ^ a? < α;0 and n sufficiently large. Moreover since φn(x)
uniformly on 0 ^ a; g #0 and 9>(α?) is continuous and bounded awayjίrom
zero on 0 ^ x ^ l/2x0 it follows that log £>„(&) —> log φ(x) uniformly on
0 ^ x ^ l/2a?0. Thus if 0 < Γ < l/2a?0 and ^ large enough we have

=+
— [TA{T)]AT -logφ(x)dx

Jo

Hence there exists a constant M < oo such that

(7.10) 1 + λ2

Next we will show that given ε > 0 there exists an R (independent of
n) such that

(7.11) ΓdG.(X) ^ ε .
JR

To this end we first note that φn(ίy) —* φ{iy) uniformly an —1/2 ^ y ^ 1/2.
Also (4.2) and (4.9) yield 0 < K{iy, λ) ^ 1 for λ ^ 0 and -1/2 ^ y ^ 1/2
with K(-iβ, λ) = £(i/2, λ,) = 1. Thus 9>Λ(i2/) and ^(i?/) are strictly
positive on —1/2 ^ y ̂  1/2. Since ank(iy) = 1 — φnk{iy) < 1 an argument
similar to the one leading to (7.6) yields



INFINITELY DIVISIBLE PROBABILITIES ON THE HYPERBOLIC PLANE 1301

(7.12) -log φ%(iy) ^ ("[1 - K(iy, λ)]Λ?.(λ)
Jo

Let yj > 0 be given, then since φ(—il2) = 1 we can choose T such that
-1/2 < Γ < l / 2 and

^ I " I Λ Λ . ^ / Λ ' Λ . \ ^ # Λ . ^_χ log φ(iy)dy
2 Γ + 1 J-J

Moreover (4.4) and (4.9) imply K{iy, λ) —> 0 as λ —> 00 for each fixed
with —1/2 < 1/ < 1/2. Thus we can choose iϋ0 so that

2Γ + 1 J-J

for all λ ΞΪ i?0. Since φn{iy) —> <p(ίί/) uniformly on —1/2 ίΞ y 5Ξ Γ and
is bounded away from zero there we can choose n0 so that for n > n,

- 2 log φn(iy)dy g - — — - 1 log φ(iy)dy + η ^

Thus for w > n0 we have

- η)dGn(X) ̂  2 Γ

2 ί ^ j j l - K(iy, X)]dGn(^)dy

2 Γ +

ώGw ^ ^— if % > n0. It is now evident that given ε > 0 one
Ro 1 — 7)

can choose an R so that (7.11) holds (each Gn being monotone nondecreas-
ing and bounded).

Define

(7.13) Ωn{X)
1 + t2

Then each Ωn is in ^ . Using (7.10), the Helly theorem implies the
existence of a subsequence (call it Ωn again) such that Ωn-*Ω with
β e ^ " and β (oo) ^ M. Moreover from (7.11)

\~dΩn(X) ̂  \~dGn(\) g e
JR JR

uniformly in n for R sufficiently large and this easily implies that Ωn

Ω. Therefore

(7.14) Γ[l - K(x, λ)] λ±^L dΩn{\) - Γ[ l - K(%, λ)] 1±2L dΩ(X)
Jo λi J° ΛJ
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where the integrand is defined by continuity, using Lemma 7.1, to be
1/4(1/4 + x2) at λ = 0. Combining (7.9), (7.13), and (7.14) we obtain

(7.15) -log φ(x) = Γ [ l - K(x, λ)] I ± A 2

Jo0 λ

provided 0 ^ x < x0. But x0 was the smallest zero of φ(χ) and thus
—\ogφ(x)~• oo as x ] xQ while the integral in (7.15) remains bounded.
Hence φ(x) never vanishes and (7.15) must hold for all x. Finally defin-
ing ψ(x) = —\ogφ{x) we obtain Theorem 7.3.

THEOREM 7.4. A function ψ has the representation (7.5) if and
only if it can be written in the form

(7.16) ψ(x) = ±(1- + <A + Γ [1 - K{x, X)]dG(X)
4 \ 4 / Jo+

where c ̂  0 and G is monotone nondecreasing, right continuous for X > 0,
G(oo) = 0, and satisfying.

(7.17) Γ λ2cZG(λ) < oo .
Jo+

Proof. If ψ has the representation (7.5) define c = β(0+) ̂  0 and

G(λ) = - Γ ί"2(l + ί2)dβ(ί) for X > 0, then using Lemma 7.1 (ii) it is

clear that (7.16) holds and that G has the required properties. Con-

versely if (7.16) hold define Ω(0) = 0 and Ω(X) = c + Γ ί2(l +
Jo+

then clearly 42 e j ^ ~ and (7.5) holds.

8. Uniqueness and Simple Consequences of (7»5) In order that
our theory be reasonably complete the following uniqueness theorem is
required.

THEOREM 8.1. The representation (7.5), and hence (7.16) also, is
unique.

Proof. It is sufficient to prove that if Ω is of bounded variation
and

(8.1) ψ(χ) = f [ l - K(x, λ ) ] ! ^ - 2 dΩ(X) - 0
Jo X,2

for all x, then ψ = 0. We will use the following formula [5, p. 168]
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(8.2) (chX + chμ)'1 = π[°° x s h π x K(x, X)K(x, μ)dx
Jo ch2πx

which holds for all λ, μ Ξ> 0. (Rabin's Kx(chλ) is our K(x, λ).) Since
K(0, λ) = 1, if we multiply (8.1) by πxshπx(chπx)~2K(xf μ) and integrate
from 0 to oo we obtain, using (8.2),

(8.3) P
Jo

c h x ~ 1

chX + chμ X2

The interchange of order of integration is justified since (| K(x, μ) | ^
and K(0, μ) = 1)

Jo
} ! f-tl _ κ {

Jo λ

chX — 1 1 + λ2

d I ΩI (λ) < oo ,
Jo 2(1 + chX) X2

where | Ω | stands for the total variation of Ω. But (8.3) may be written

(8.4) ί"(t + s)~^*(t) = 0

for all s ^ 1, where for t ^ 1

(8.5) Ω*(t) = P (ίλ,-2(l + X2)(chX - l)dΩ(X) .
Jo

Noting that Ω* is of bounded variation on each finite interval 1 ̂  t ^ Γ,
we can apply the uniqueness theorem for Stielt jes transform [7, p. 336].
This leads to the conclusion that £?*, and hence Ω, is identically zero.

THEOREM 8.2. Given a ψ of the form (7.5) then φ = e~^ is an
infinitely divisible element of

Proof. Since iΓ( ,λ) is in ^ for each X ̂  0, it follows from
Theorem 6.2 that exp {-b[l - K(-, X)]} is in &ξ for all 6, X ̂  0. Thus
if we approximate the integral defining ψ{x) by a Riemann sum and use
the above fact and Theorem 5.2, we find that φ(x) = exp [—f(x)] is in
^ . Since φ is in ^ it can be extended to a function φ(z) which is
continuous on the strip —l/2^y^ 1/2 and analytic on —1/2 < y < 1/2.

Using Lemma 7.1 (i) it is immediate that the integral in (7.5) con-
verges for z in the strip —l/2^y^ 1/2 to a function which we denote
by ψ(z). It is also clear that ψ is continuous on —1/2 ^ y <; 1/2 and
analytic on —l/2<y< 1/2. It now follows that φ(z) — exp [—f(z)] for
all s in the strip -1/2 ̂  2/ ̂  1/2. Since f (-ΐ/2) - 0 it follows that
^ e ^ J . Similarly exp[ — l/wψ*] is in ^ for each n>0 and thus φ =
exp(—τ/r) is infinitely divisible.
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COROLLARY 8.1. φ is a generalized limit if and only if φ is infi-
nitely divisible.

Proof This results from Theorems 7.1, 7.3, and 8.2.
Actually contained in the proofs of Theorem 7.3, 8.1, and 8.2 is the

following result which we state explicitly for completeness.

THEOREM 8.3. Let φnK e ^ for n = 1, 2, and k = 1, 2, , kn

with kn —> oo and satisfy (7.1). Let φn be defined by (7.2), then a
necessary and sufficient condition φn —• φ e ^ is that

= Σ
* 1

be Bernoulli convergent to i ? e ^ . In this case φ = exp(~ijr) where
ψ is defined by (7.5).

9. Proofs of the Lemmas. We begin with Lemma 7.1 (i). In view
of the definition (4.9) of K(z, X) it will suffice to show λ~211 - P,(chX) | g
Mr for 0 S. λ ^ λ0 and | v \ ̂  r . Choose λ0 such that the inequalities.

(9.1) chX - 1 < 1 X~2(chX - 1 ) < 1

hold for 0 ^ λ ^ λ0. Since [3, p. 122]

(9.2) P,(chX) = F(-v, v + 1; 1; — (1 - chX))
Li

provided 11 — chX | < 2, we easily find that for 0 ^ X ^ λ0

Taking Mr = F(r, r + 1; 1; 1/2) we obtain the desired conclusion.
Let λ0 be as above, then from (9.2) and (4.9) we have for 0 ^ λ, ^ λ0

K(x, X) - ί ί i - - ix, \ + ix; 1; ± (1 - chX)] .

Expanding the hypergeometric function we find that

λ"2[l - K(x, λ)] + —λ" 2 [(— + z2)(l - chX)j = G(x, X)

where G(x, X) -> 0 as X —• 0 for each fixed x. The second conclusion of
Lemma 7.1 is now immediate.

Finally all of the conclusions of Lemma 7.2 with the possible excep-
tion of HT(X) > 0 for X > 0 are easy consequences of Lemma 7.1 and
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(4.5). But if HΓ(λ0) = 0 for λ0 > 0 we would have K(x, λ0) = 1 for all
x in [0, T]. In particular K(0, λ0) = 1. Using (4.5) and the fact that
K(0, 0) = 1 this leads to the conclusion that

f~ dt f~ dt- f°
" J oJo [chX0 + cht]1'2 Jo [1 + cht]112

which is clearly impossible if λ0 > 0. This then completes the proofs of
our lemmas.

10. Gaussian and Stable Distributions. It is an immediate conse-
quence of Theorems 8.2 and 7.4 that for each t > 0 the function

(10.1) φ{x) = e x p [ - i ( y +

is an infinitely divisible element of ^ξ. Following Bochner [1] a φ of
the form (10.1) will be called Gaussian (or normal). Let Ut(X) be the
element in ^corresponding to exp[—£(1/4 + x2)]. If one uses the in-
version formula of Fock [5, p. 165] and the fact that [5, p. 154]

K(x, X) = YJ. coth πx Γ finv ' Jλ (chth (cht - chxy*2

one finds that

Ut(X) = I u(t, μ)shμdμ
Jo

where

(10.2) u(t, X) =
(chs —

The function u(t, X) defined in (10.2) is therefore the density (with re-
spect to shXdX) of the rotationally invariant Gaussian distribution on
the hyperbolic plane. It is not difficult to check directly that

\
Jo

°u(t, X)shXdX = 1 for all t > 0 ,

although it is not necessary for us to do so since we know that Ut e
Finally it is interesting, but not unexpected, to note that

αo.3) ^

The differential operator on the right side of (10.3) is the radial part of
the Laplace-Beltrami operator in geodesic polar coordinates (λ, θ) for the
hyperbolic plane.
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Let 0 < a < 1 and let ga(u) be the positive continuous function
defined on u Ξ> 0 by the relation

(10.4) e~s* = [°e"ugΛ(u)du
Jo

for s ̂  0. See § 4.3 of [1]. (The function gΛ is the density of a one-
sided stable law of index a on the real line.) For t > 0 we define

(10.5) ua(t, X) = \ u(t*s, X)gΛ{s)ds
Jo

where u(t, X) is the normal density (10.2). Clearly ua(t, •) is a probability
density with respect to shXdX. Moreover

(10.6) [°K(x, X)ua(t, X)sh(X)dX = exp [- £(1/4 + x2)"]
Jo

Thus for each t>0 the function exp [—ί(l/4 + a?2)α] is an infinitely
divisible element of ^ξ. By analogy with the Euclidean case one might
call the densities (10.5) or the transforms (10.6) stable. We will investi-
gate the properties of these distributions in a future paper, in particular,
we will give a fuller justification of the name stable.

l l Higher Dimensional Hyperbolic Spaces* All that has gone before
can be easily extended to a more general class of integral transforms
that are related to the higher dimensional hyperbolic spaces. Let μ be
a real parameter with μ > —1/2 and define the kernels

(11.1) K^x, X) = 2»Γ(μ + l)(shX)^P%+ix(chX)

= (1+/λ)"V(l/2 - ix, 1/2 + ix; μ + 1; ̂ ψ^) ,

where P^] is the usual associated Legendre function [3]. Similarly we
define Kμ.(z, X) for complex z by replacing x by z in (11.1). Clearly
Kμ(z, X) is analytic in z and it is not difficult to verify that

(11.2) I Kμ(z, λ) I g 1 if -μ~ll2^y^ 1/2

and

(11.3) K»(z, 0) - 1, K.(-i(μ + 1/2), λ) = 1 .

Moreover it follows from 3.7(8) of [3] that

(11.4, JW.. X, = / I r * " ^ + »χyμ £<«*. - * ) - . » cos

and combining this with (11.2) results in
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(11.5) - 1 ^ JKμ(»,λ) ^ 1 .

If μ — 0 then Kμ reduces to the kernel K considered in the previous
sections.

Let μ = JV/2 — 1 where N ^ 2 is an integer, then the functions
KJίz, •) are the spherical functions on iV-dimensional hyperbolic space
and the functions Kμ(x, •) are the spherical functions of positive type.

If for arbitrary μ > —1/2 we define the //-transform of an element
by

(11.6) φ(χ) = Γifμ(£, X)dF(X)
Jo

then all of the results of the preceding sections can be carried over to
//-transforms with only minor changes. In particular, in (7.16) one
must replace c/4(l/4 + x2) by c/[4(μ + l)][(μ + 1/2)2 + x2] and then the
Gaussian elements have the form exp(—t[(μ + 1/2)2 + x2]). The proofs
require only minor technical changes with the exception of Theorem 6.1.

In order to prove the analog of Theorem 6.1 for μ-transforms one
needs the following formula

(11.7) Kμ(x, X)Kμ{x, t) = 2 ^ + μ}[ [K»(X, w) si

Ttί \Δμ + 1) Jo

where

w — chXcht + shXsht cos θ .

Formula (11.7) is a simple consequence of the addition theorem for
associated Legendre functions (formula 80 of Peter Henrici, Addition
Theorems for General Legendre and Gegenbauer Functions, Journ. of Rat.
Mech. and Anal. (4) 1955; note the misprint in this formula, namely
—μ—n should be — v —n) and the orthogonality relations for Gegenbauer
polynomials. Using (11.7) the fact that the product of two //-transforms
is again a //-transform is proved by an argument similar to the one
used in § 6.

Note added in proof. Some results which are similar to a part of ours appeared in a
paper by F. I. Karpelevitch, V. N. Tutubalin, and M. G. Sur entitled "Limit theorems for
convolutions of distributions on Lobachevsky's plane and space", Theory of Probability and
its Applications, 4, (1959), 432-436. These authors were particularly interested in con-
vergence to the normal distribution.
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SEQUENCES IN GROUPS WITH DISTINCT

PARTIAL PRODUCTS

BASIL GORDON

l In an investigation concerning a certain type of Latin square, the
following problem arose:

Can the elements of a finite group G be arranged in a sequence
alf a2, •••,&„ so that the partial products alf aλa2f , axa2 an are all
distinct?

In the present paper a complete solution will be given for the case
of Abelian groups, and the application to Latin squares will be indicated.
Let us introduce the term sequenceable group to denote groups whose
elements can be arranged in a sequence with the property described
above. The main result is then contained in the following theorem.

THEOREM 1. A finite Abelian group G is sequenceable if and only
if G is the direct product of two groups A and B, where A is cyclic
of order 2* (k > 0), and B is of odd order.

Proof (i). To see the necessity of the condition, suppose that G is
sequenceable, and let alf a2, « , α w be an ordering of the elements of G
with αlf α^a, , aλa2 an all distinct. The notation b{ = axa2 a{ will
be used throughout the remainder of the paper. It is immediately seen
that aλ = bx = e, the identity element of G; for if α; = e for some i > 1,
then 6{_j = bif contrary to assumption. Hence bn Φ e, i.e., the product
of all the elements of G is not the identity. It is well known (cf [2])
that this implies that G has the form A x B with A cyclic of order
2k(k > 0) and B of odd order.

(ii) To prove sufficiency of the condition, suppose that G — A x B,
with A and B as above. We then show that G is sequenceable by
constructing an ordering a19 a2, , an of its elements with distinct partial
products. From the general theory of Abelian groups, it is known that
G has a basis of the form c0, c19 * , c w , where c0 is of order 2fc, and
where the orders 8lf δ2, , δm of c19 c2, , cm are odd positive integers
each of which divides the next, i.e., δ{ | δ i + 1 for 0 < ί < m. If j is any
positive integer, then there exist unique integers j o t j \ , , j m such that

( 1 ) i s i0(mod δx δ2 δm)

io = ii + iA + iAδ* + + jΛ sm^
0 ^ J\ < 8X

Received January 3, 1961.
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0 g j 2 < δ2

o s jm < sm .

The proof of the existence and uniqueness of this expansion will be
omitted here; it is entirely analogous to the expansion of an integer in
powers of a number base.

We are now in a position to define the desired sequencing of G. It
is convenient to define the products blf b2, , bn directly, to prove they
are all distinct, and then to verify that the corresponding a{, as calcu-
lated from the formula ax — e,ai — bϊlfii, are all distinct. If i is of the
form 2j + 1(0 ^ j < %/2), let

where .j19j2, •••, j m are the integers defined in (1). On the other hand,
if i is of the form 2j + 2(0 ^ j < n/2), let

The elements 6^ 62, •••,&„ thus defined are all distinct. For if b8 = bt

with s = 2u + l,t = 2v + l, then

δ m ) .

From the inequalities in (1) we conclude that uλ = vlf , um == vm. Hence
w0 = ô» so that u Ξ= ^(mod δx δm); coupled with the first of equations
(2), this gives u = v (mod w), which implies u — v. Similarly b2u+2 = b2υ+2

implies u — v, so that the "even" ί>'s are distinct.
Next suppose

Then

—u = v + 1 (mod 2fc)

—u1 = v1 + l (mod δj

~^« = vm + l (mod δm)

or equivalently,

(3) u + v + 1 = 0 (mod 2fc)
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uλ + vλ + 1 ΞΞ 0 (mod Sx)

^ m + ^m + 1 = 0 (mod δ J .

Since 0<u1 + v1 + l^ 2(8, — 1) + 1 < 2δx, we must have u1 + v1 + l —
δx. Reasoning similarly for i = 2, , m we obtain

Multiplying the (i + l)'st equation of this system by δxδ2 δ< (1 ^ ί < m)
and adding, we get u0 + v0 + 1 = δx δm, which implies u + v + 1 Ξ=
o(δ2 δOT). Combining this with the first of equations (3), we find that
u + v + 1 == 0 (mod n), which, on account of the inequality 0 < u + v +
1 < n, is impossible. Hence bu 62, , bn are all distinct.

Next we calculate alf α2, , an. If i = 2j + 2 (0 ^ i < w/2), then

These are all different by the same argument as above. If % = 2j + 1,
and j \ Φ 0, then

If i = 2j + 1 and j \ = 0, but i 2 ^ 0, then α̂  = c^c^c^-1 . . . c; 2^" 1,
while if j \ = i 2 = 0 but j 3 φ 0, then α, = Co-^Cs"2^"2^"1 c~^-\ etc.
These α/s are obviously distinct from each other by the same reason-
ing as before. Because of the exponent of c0 they are also distinct
from the a{ with i even. This completes the proof of the theorem.

As an example of the construction of Theorem 1, consider the group
G — C2 x C3 x C3. We use basis elements c0, c19 c2 of orders 2, 3, 3 re-
spectively. Using the notation {a, β, γ) for the element <cfc2

Y, the
sequences α̂  and 6; are then the following:

(0 0 0) (0 0 0)
(1 1 1)(1

(0
(1
(0

(1

1
1
0
2
2

1)
2)
1)
2)

1)
(0 0 1)
(1 1 0)

(1
(0
(0

r-l

(1
(0

2
2
1
0
0
1

0)
1)
0)

1)
2)

2)
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(0 1 0)
(1 0 0)

(0
(1
(0
(1
(0
(1
(0

2
2
0
1
1
0
2

0)
0)
2)
2)
1)
2)
1)

BASIL GORDON

(0
(1
(1
(0
(0
(1
(1
(0
(0

h
2
2
1
0
0
1
2
2
1

2)
2)
2)
2)
1)
0)
1)
0)
1)

(1 2 2) ( 1 0 0)

2 Application to Latin squares. Consider the following Latin square:

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Given any ordered pair (aβ) with a Φ β, it occurs as a pair of consecutive
entries in some row of this square. In general, an n x n Latin square
(cst) whose elements are the integers 1, « ,w will be called horizontally
complete if for every ordered pair (a, β) with 1 ^ a, β ^ n and a Φ β,
the equations

(4) c8t = a

C,.t.+i = β

are solvable. Similarly a vertically complete square is one for which

c8t = oc

Cs + l.t = β

can be solved for any such choice of a, β. A square which is both
horizontally and vertically complete is called complete.

Note that in a horizontally complete square, the solution of equa-
tions (4) is unique, since the total number of consecutive pairs ast, a8tt+i
is equal to the total number of order pairs (a, β) with a Φ β. Conversely,
uniqueness implies existence for the same reason.

Complete Latin squares are useful in the design of experiments in
which it is desired to investigate the interaction of nearest neighbors.

THEOREM 2. Suppose that G is a sequenceable group, and let alf

α2 , α n be an ordering of its elements such that blf b2, •••, bn are

distinct. Then the matrix (c9t) = (bτ%) is a complete Latin square.
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Proof. It is immediately seen that (c8t) is a Latin square, since
either b~xbt = b^bu or biλb8 — b~λb8 imply t = u by elementary properties
of groups. To show that (c8t) is horizontally complete, suppose

We must show that s — u and t = v. From the definition of c8t,

(5) b7% = K%

(6) b~λbt+1 = b~%+1 .

Inverting both sides of (5) yields br% = Kιbu. Combining this with (6)
we get (K1bs)(b;bt+1) = (fc^X&u^+i), or br%+1 = δ^^+i, i.e., α ί+1 = αβ+1.
This implies t — v. Substituting in (5) we obtain bϊ% = &"% from
which s = u follows immediately. The proof that (c8t) is vertically com-
plete is entirely similar and will be omitted.

This method enables one to construct a complete Latin square of
order n for any even n (note that B may be trivial in Theorem 1).
Whether or not complete, or even horizontally complete, squares exist
for odd n is an open question.

3 Extension to non-Abelian groups. The problem of determining
which non-Abelian groups G are sequencable is unsolved at the present
time. Considerable information about the nature of a sequence αlf •••,&«
with distinct partial products, if one exists, can be obtained by mapping
G onto the Abelian group G/C, where C is the commutator subgroup.
Using this technique, for example, it can be shown that the non-Abelian
group of order 6 and the two non-Abelian groups of order 8 are not
sequencable. On the other hand the non-Abelian group of order 10 is
sequencable. To see this, denote its elements by e, α, b, αb, bα, αbα, bαb,
αbαby bαbα, αbαbα, where α2 = b2 = (α&)5 = e. A suitable ordering is then
given by e, αb, αbαb, αbαbα, bαb, αbα, b, α, bαbα, bα, the partial products
being e, αb, bαbα, α, αbαb, bαb, bα, b, αbα, αbαbα. In view of Theorem 1
and the results of [2], one might conjecture that G is sequencable if
and only if it does not possess a complete mapping. However, the sym-
metric group S3 does not possess a complete mapping (cf [1]) and is also
not sequenceable. Whether or not the two properties are at least mutu-
ally exclusive is still an open question.
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RELATIVE SELF-ADJOINT OPERATORS

IN HILBERT SPACE

MAGNUS R. HESTENES

1. Introduction, Let A be a closed operator from a Hubert space
6 to a Hubert space £>''. The main purpose of this present paper
is to develop a spectral theory for an operator A of this type. This
theory is analogous to the given in the self-adjoint case and reduces to
the standard theory when A is self-adjoint. The spectral theory here
given is based on generalization of the concept of self-adjointness. Let
A* denote the adjoint of A. An operator T o n ξ) to ξ>' will be said
to be an elementary operator if TT* T = T. If T is elementary, the
operator 7A* T can be considered to be an adjoint of A relative to T.
If A = TA* T, then A will be said to be self-adjoint relative to T. The
polar decomposition theorem for A implies the existence of a unique
elementary operator R relative to which A is self-adjoint and having
the further property that R has the same null space as A and that
A*R is a nonnegative self-adjoint operator in the usual sense. Every
elementary operator T relative to which A is self-adjoint is of the form
T = To + Rx - R2, where R = Rx + R2 and TQ, Rlf R2 are ^-orthogonal.
Two operators B and C are said to be ^-orthogonal if JB*C —0 and
BC* = 0 on dense sets in § and ξ>' respectively.

An operator B will be called a section of an operator A if there is
an operator C ^-orthogonal to B such that A = B + C. If R is the
elementary operator associated with A, there exists a one parameter
family Aλ, Rλ (0 < λ < oo) of sections of A, R respectively such that Rλ

is the elementary operator belonging to Aλ, || Aλ || ^ λ, Aμ (μ < λ) is a

section of Aλ and A = I XdRλ. From this result it is seen that A pos-
Jo

sesses a spectral decomposition relative to any elementary operator T
relative to which A is self-ad joint. These results can be extended to
the case in which A is normal relative to T. When φ' = φ and T
is the identity, these results give the usual spectral theory for self-
adjoint operators. Examples are given in §§ 4 and 10 below. In par-
ticular spectral resolutions are given for the gradient of a function and
its adjoint, the divergence of a vector. The finite dimensional case has
been treated in a recent paper by the author1.

The results given below are elementary in nature and are based

Received October 11, 1960. The preparation of this paper was sponsored in part by
the Office of Naval Research and the U. S. Army Research Office. Reproduction in whole
or in part is permitted for any purpose of the U. S. Government.

1 M. R. Hestenes, Relatively hermitian matrices, to be published in the Pacific Journal
of Mathematics.
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upon the fundamental ideas concerning Hubert spaces. These ideas can
be found in the standard treatises on Hubert space. The concept of
*-commutativity is introduced. This concept is used in the development
of the spectral theory. It is shown that a reciprocally compact oper-
ator has a discrete principal spectrum. The concept of reciprocal com-
pactness is connected with the concept of ellipticity of differential oper-
ators, as is indicated in the last section below.

2. Preliminaries* Let ξ> and ξ>' be two Hubert Spaces over a scalar
field ©. The field © will be taken to be either the field of real numbers
or the field of complex numbers. The two case can be treated simul-
taneously by defining the conjugate b of b to be b itself in the field of
reals. The spaces ξ> and § ' may coincide. The same notations will be
used for the inner product in each of the two spaces. Thus, the symbol
(xly x2) denotes the inner product of x1 and x2, whether xι and x2 are
in ξ> or in ξ)\ The norm of x will be denoted by | |α?| |. Strong con-
vergence of a sequence {xn} to x0 will be denoted by xn =φ χQ and weak
convergence by xn —• x0.

The closure of a subclass & of φ will be denoted by ^ and
its orthogonal complement in <Q by &L. Clearly &L is ' a subspace
of ξ>. By the sum 2ί + & of two linear subclasses 21 and & will be
meant the class of all elements of the form x + y with x in 21 and y
in ^ . It will be called a direct sum if 21 and & have no nonnull
elements in common.

A linear tranformation A will be said to be from .£> to £>' if its
domain ^)A is in ξ> and its range &A is in ξ>\ If 3$ A — $ the phrase
"on ξ) to £>'" will be used to emphasize this fact. The phrase "A in § "
will be used occassionally in case £ ' = .£. A linear transformation B
from ξ> to £>' will be called an extension of A, written A g B or B ^ A,
in case ^ B 3 ^ ^ and B = 4 on ^ 4 . If HF"^ = ξ>, then A will be
said to be dense in £>. The transformation A will be said to be bounded
if it maps bounded subsets of & A into bounded sets of ξ>\ If A is
bounded, its norm \\A\\ is defined to be the least upper bound of \\Ax\\
for all x in &A having || x \\ — 1. If whenever xn e DAy xn =$x0, Axn =Φ
y0 we also have x0 e 2$A and Ax0 = y0, then A will be said to be closed.
If whenever x0, xn e &A and a; =Φ OJO, AxΛ =̂> 2/0 we have Ax0 = ?/0 then
A is said to be preclosed. A closed dense linear transformation is
bounded if and only if &rA — ξ>. The minimal closed extension of A,
if it exists, will be called the closure of A and will be denoted by A.
If A is preclosed, its closure exists. By the null class 3lΛ of A will be
meant all x in 3ί A such that Ax = 0. There is a unique extension of
A whose domain is &A + %lA and whose null space is %ΪA. If A is
closed then 9^ is closed.

Consider now a dense linear transformation A from § to £>' and let
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£2f A* be the class of all vectors y in fgr for which there exists a vector
A*y in § such that the relation.

(Ax, y) = (x, A*y)

holds for all x in <%rΛ. The transformation A* from ξ>' to ξ> so defined
is a closed linear transformation whose domain is &A*

:, whose null class
9^* is ^ i and whose range , ^ V is a subclass of 5Ri.

A linear transformation A from ξ) to § will be said to be self-
ad joint if it is dense and if A* = A. A self-ad joint linear transforma-
tion A will be said to be nonnegative, written A ^ 0, if the inequality
(Ax, x) ̂  0 holds for all x in ^ 4 . By a projection E in φ will be
meant a self-adjoint operator such that E2 = # .

It will be convenient to use the term "operator" to denote a closed
dense linear transformation. We shall have occassion to use the follow-
ing well known result.

THEOREM 2.1. Let A be an operator from ξ> to § ' . Then its adjoint
A* is an operator from «£>' to £>. Moreover, 4** = A, sJi4* = &L

A, 3ί4

= ^ i * . For each vector x0 in § and y0 in £)' there is a unique vec-
tor x in ϋ ^ and y in £fA* such that

(2.1) xo = x + A*y , y0 = Ax - y .

The transformation A*A is a nonnegative self-adjoint operator in §
whose null space is 3lA. Similarly AA* is a nonnegative self-adjoint
operator in § ' whose null space is 9^A*. The operator A is bounded
if and only if A* is bounded. In this event || A || = || A* ||.

3. The reciprocal and ^reciprocal of a closed operator. Consider
a linear transformation A from ξ> to ξ>' whose domain S)4 is expressible
as a direct sum £ ^ = (&P

A + 9^, where 9ί4 is the null space of A and
C^A is orthogonal to !QA. The class r ^ will be called the carrier of A.
If 9^ is closed, then £2)A has such a representation. Consequently, the
carrier of a closed linear transformation is well defined.

The transformation A establishes a one-to-one correspondence between
its carrier and its range. The inverse transformation on &A onto ^ 4 ,
when extended linearly so as to have &\ as its null space and &A +
^ i as its domain, defines a linear transformation A'1 which will be
called the reciprocal2 of A. The carrier of A'1 is the range of A and
the range of A~λ is the carrier of A. It is clear that A'1 is dense in
£>' and that 9^-i is closed.

The reciprocal of A'1 for an arbitrary linear transformation A will

2 See E. H. Moore General analysis I, Memoirs, American Philosophical Society (1935).
See also, J. von Neumann, On regular rings, Proc. Nat. Acad. Sci, 22, (1936), 707-715.
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be defined to be the reciprocal of the extension Ao of A whose domain
is SfA + sJlA and whose null space is ΪQA. The carrier of Ao will be
defined to be the carrier of A. The reciprocal of A"1 is accordingly the
extension of A whose domain is & A + ^lA + QίL

A and whose null space
is sίlA + &A. Hence A is the reciprocal of A~x if and only if A is
dense in ξ> and its null space is closed. If ^lA is closed, then A is closed
if and only if A'1 is closed. If A possesses an inverse, then A"1 is the
inverse of A.

THEOREM 3.1. The adjoint of the reciprocal of an operator A is
the reciprocal of its adjoint, that is, (A~λ)* = (A*)"1. The operators
A and A"1* have the same null spaces.

Clearly 9^-i* = &A-ι = 9lA. Let a; be a vector in c^A-u. Then
(A^yo, x) = (y0, A~λ*x) for every y0 in ^ - i = & A. Hence (x0, x) = {Ax0,
A~λ*x) if x0 e <ĝ  and hence if x0 e &A. It follows that A~x*x is in &A

and that x = A*A~1x. Consequently %fA-u a &A* = r^A*=ι. Conversely
if x e cέ?A*-\, then (x0, x) — (Ax0, A*"1^) holds for all x0 in ^fA or equiva-
lently (A"1^, %) = (2/0> A*-1^) holds for all y0 in ^ - i * . It follows that
x is in ί^-i* and that A~J*x = A*-Jx. It follows that A"1*, A*"1 coincide
on their carriers, as well as their null spaces and hence are identical.

The element A*"1 plays an important role in the results given below
and will be called the ^-reciprocal of A.

As an immediate consequence of the last theorem we have

THEOREM 3.2. Let A be an operator from <£> to £>'. Then A~\ A*,
A*"1 = A"1* are operators. The products A*A, A^A*'1 are nonnegative
self-adjoint operators, are reciprocals of each other and have the same
null space as A. Similarly, the products AA*, A*'1 A'1 are non-
negative self-adjoint operators, are reciprocals of each other and have
the same null space as A*.

A linear transformation A will be said to be reciprocally bounded
if its reciprocal is bounded, or, equivalently if there is a positive number
m > 0 such that || Ax \\ ̂  m \\ x \\ on the carrier of A. The following
theorem is self-evident.

THEOREM 3.3. Let A be an operator from § to £>'. Then A is
reciprocally bounded if and only if its range is closed. Hence A is
reciprocally bounded if and only if the equation Ax = y has a solution
x in &Λ whenever y is orthogonal to every solution z of A*z — 0.
The operator A is reciprocally bounded if and only if A* is recipro-
cally bounded. Finally, A is reciprocally bounded if and only if
A* A (or A A*) is reciprocally bounded.
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The concept of reciprocal boundedness is the basis for a large class
of existence theorems for ordinary and partial differential equations. In
view of the last conclusion in the theorem existence theorems for non-
self-adjoint problems follows from those for self-adjoint problems.

THEOREM 3.4. Let A be an operator from ξ> to ξ>\ If a and β
are positive numbers, then

a A + /3A*-1 , a A* + βA~*

are reciprocally bounded operators and are adjoints of each other.

In order to prove the theorem it is sufficient to consider a transforma-
tion of the form B = XA + (l/λ)A*-\ where λ is a positive number.
Let y0 be a vector in &Λ. By Theorem 2:1, with A replaced by XA,
there is a unique vector x in &A and y in 3JA* such that

0 = x + \A*y , y0 = XAx — y .

The vector y is therefore in &A = 5fti* and in the carrier of A*. Conse-
quently, y = (l/λ)^*-1^ and

y0 = (xA + — A*~τ)x = Bx .

The range of B is therefore closed. It follows that B is reciprocally
bounded and closed. Similarly C = XA* + (1/λ)^."1 is reciprocally bounded
and closed. Clearly C = B*. This proves the theorem.

COROLLARY 1. If A is self-adjoint operator, and a, β are positive
numbers, then aA + βA~λ is a reciprocally bounded self-adjoint oper-
ator. Moreover the reciprocal of A2 is A~2 = (yl"1)2.

THEOREM 3.5. Let C = BA, D = A^B1, where A is an operator
from IQ to ξ>' and B is an operator from £>' to a Hilbert space ©".
Suppose that %lA* = 3lB. Then yiσ = WΛ, <SlD = 9^*. / / D is dense, then
D = C"1. // either A or B~τ is bounded then C and D are closed.

Suppose that xne&rϋ, xn^ x0, Cxn =Φ z0. Set yn = Axn, zn = Byn =
Cxn. If A is bounded, then yn => Ax0. Since Byn = C^w =Φ ̂  it follows
that z0 = J?A^0 = Cx0. Consequently C is closed. Observe that this
conclusion is valid even if yiA* Φ %lB. Since yn e ^ B we have yn — Axn

= B~ιzn. If B1 is bounded, then yn = Axn=^ B^ZQ. Hence B~% =
AίCo, that is 20 = EA^o = Cx0. Consequently C is closed in this event
also. The remaining statements in the theorem are readily verified.
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COROLLARY. If A is bounded and reciprocally bounded and %lA* D

%lB, then the products C and D described in Theorem 3.5 are operators
and are reciprocals of each other.

This follows readily from Theorem 3.5 because we can replace A
by FΆ where Fr is the projection in § ' whose null class is $lB. We
then have %lA* = WB.

4. Examples* The results here given were motivated in part by
certain applications to differential equations. It will be convenient to
explain in part two of these applications at this time.

EXAMPLE 1. Let ξ> be the class of all real valued Lebesgue square
integrable functions x in the interval 0 ^ t g π. This class with

(x, v) = [πχ(t)y(t)dt

as its inner product and the real numbers as scalars from a Hubert
space. Let 21 be the class of all absolutely continuous functions x(t)
(0 g t = π) whose derivatives x are in ξ). Let A be the differential
operator djdt having as its domain the class &A of all functions in 21
having x(0) = x(π) = 0. The carrier oΐ A is &A itself. Then range
&A consists of all functions y in ξ> satisfying the condition

(4:1) [*y(t)dt = 0 .
Jo

Since &A is closed it follows that A is reciprocally bounded. The
reciprocal of A is

S t 4. Cπ

y(s)ds — —I y(s)ds .
o TZ Jo

The adjoint A* of A is the operator —djdt with &A* = 21 as its domain
and SI Π &A as its carrier. Since A is reciprocally bounded so also A*.
Moreover &A* — § . The reciprocal of A* is

-1^ = -\tχ(s)ds + —\*\rχ(s)dsdr
Jo TC Jo Jo

by virtue of the relation (4.1). Let & be all functions in 21 whose
derivatives are also in 21. The operator A*A is the operator —d2ldt2

having as its domain all functions in & such that x(0) = x(π) =0. The
range of A*A is £>. The operator AA^ is the operator —d2jdt2 having
as its domain all functions x in & whose derivative x satisfies the con-
ditions x(0) — χ(π) = 0, The range of AA* coincides with that of A,
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The operator AA* is also reciprocally bounded.
A preview of the theory to be presented below can be given for

this example by recalling certain known facts. Let

xn(t) = JΆ- sin nt , yo(t) = Jλ , yn{t) = JΆ. cosnt (n = 1, 2, 3, ) .

The function xn form a complete orthonormal system in §. A function
x in φ is accordingly given by the fourier sine series.

oo

x = Σ α A , αn = (a?, αn)

where convergence is taken to be convergence in the mean of order 2.
Similarly a function y in § is expressible in the form

y = hVo + Σ 6 n i / n , bj = (y, 1/,.) (i = l, 2, •).
n = l

If x and 7/ are in the appropriate domains we have

00 TO 1

Ax = Σ wα»2/» , ^-"^ = Σ — 6«#» »Σ
(4.2)

as one readily verifies. These formulas can be put in another form by
defining the operators R and R{ (i = 1, 2, 3, •) by the formulas

RX = Σ <*>nVn , Ri% = GWi (ί = 1, 2, 3, •) -

Observe that
oo

*The operator i? maps ξ) isometrically onto ^ ^ . Its adjoint Jί
maps &A isometrically onto ξ) and annihilates ^ i . We have the
relations

(4.3)
B?fly - 0 , RiRf = 0 (i Φ j) .

Moreover, by (4.2) we have

A = Σ ^ ^ > A"1 = Σ -
71 = 1 Λ = l

(4-4) „
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These formulas constitute a spectral resolution of A, A~*, A*~\ A*. It
is our purpose to show that every operator A can be resolved in terms
of elementary operators having the properties similar to those given in
(4.3).

The example just given can be modified so as to include all complex
valued functions in § and so that A = i(dldt). Then A is a symmetric
operator but is not self-ad joint. The theory for this case is not signifi-
cantly different from that just described.

EXAMPLE 2. Let £> be the class of all real valued Lebesgue square
integrable functions x(s, t) on the square O ^ Ξ S ^ T Γ , 0 ^ S ^ 7 Γ . Then

S πΓπ
I x(s, t)y(s, t)dsdt defines a

o Jo

Hubert space with the real numbers as its scalar field. Let 31 be the
class of all functions x in § such that

( i ) x(s, t) is absolutely continuous in s on 0 :£ s ^ π for almost
all t on 0 ^ t ^ π and is absolutely continuous in t on 0 :g t ^ π for
almost all s on 0 ^ s ίg π;

(ii) The partial derivatives xs,xt, (which exist almost everywhere)
are in £>. Let φ' be the Hubert space defined by the cartesian product
Φ x •£. Observe that the gradient of x, written grad x, is defined on
SI and maps Sί into § ' .

We shall be concerned with the operator Ax = grad x whose domain
3ί A consists of all functions x in SI which vanish on the boundary, in
the sense that x(0, t) — x{π, t) — 0 for almost all t on 0 ^ ί g TΓ and
x(s, 0) = (x π) = 0 for almost all s on 0 f§ s S π. It can be shown that
the mapping A so defined is a closed dense operator A from § to ξ)\
In fact it is the closure of the transformation grad x restricted to
functions of class C" that vanish on the boundary of the given square.
Its adjoint A* is defined by A*y = —div y, where div y is the closure
of the usual divergence operator defined on the class of all vectors y in
§ ' of class C". The ranges of A and A* are closed. Consequently A
and A* are reciprocally bounded. The operators A"1 and A*"1 are
bounded and can be given an integral representation but we shall not
pause to do so here.

The functions

2
^m n(s, t) = —sin ms sin nt (m, n = 1, 2, 3, •)

form a complete orthonormal system in ξ>. Consequently every vector
x in φ can be expressible in the form
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where convergence is taken in the mean of order 2. The vectory ymn

in £>' whose components are

- cos ms sin nt , , r- sin ms cos nt
πvm2 + w2 πΊ/m2 + n2

form an orthonormal system in ξ>' that is incomplete. However, it is
complete in &A. Consequently every vector y in £>' is expressible in
the form

oo

V = Vθ+ Σ KnVmn
m,n~l

where yQ e &\, that is, A*y0 — 0. If ^ and y are in the appropriate
domains we have.

mn

y — 2-Λ

where Xmn = (m2 + n2)112 and m, n summed over the positive integers.
Defining R and Rmn by the formulas.

Rx = Σ amnymn , β m n x = amnymn

it is found that R and 2?^ satisfies relation analogous to (4.3) and that
R maps ξ> isometrically onto &A. Moreover,

^ Ί = = 2-x λ'mn-Kmn i A = ^ J ^mn-^mn

A = Σ ^mnRmn j A = 2 j XmnKmn .

These formulas are analogous to (4:4) and with minor modifications
illustrate the spectral theory given below for an arbitrary closed operator
whose reciprocal is compact.

5 Some properties of nonnegative self*adjoint operators. It is the
purpose of this section to establish certain properties of nonnegative
self-ad joint operators. The first of these is given in the following

THEOREM 5.1. Let A be a nonnegative self-ad joint operator from
ξ> to § and let E be the projection

(5.1) E = A'1 A - AA-1 .

There exists a unique pair of nonnegative self-adjoint operators C and
D such that

(5.2) C + D = E , A = CD1 = DιC , A~ι = C~γΌ - DC'1 .
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The operators C and D are bounded and are given by the formulas

(5.3) C-1 = A-1 + E , D-1 = A + E .

TΛei/ focwe £fee same mtii space as A. Moreover

(5.4) CD= DC , C-'D-1 = J D ^ C " 1 - C"1 + Z)- 1 .

In order to prove this result let C and D be defined by the formula
(5.3). Then C and D are bounded. In fact \\C\\S 1, || 2?|| ^ 1. The
set £^ = & A Π ^ ^ - i is the domain of each of the transformations
C~ιD-\ D-ιC-\ C-1 + D-\ In view of (5:1) we have

C-'D'1 = A~τA + A + A-1 + E = C-1 + D'1 = D^C" 1 .

These operators are accordingly reciprocally bounded operators and are
the reciprocals of CD and DC, by Theorem 3.5. Hence (5.4) holds. In
addition

C-τC = D-'D = E= D-'C-'CD = (C"1 + D'^CD = D + C ,

C-1 - C~\C + D) = E+ C'λD = (C + Z))C-1 = £? + DC"1 ,

JD-1 = D-^C + D) = D^C + £; = (C +

Comparing this result with (5.3) it is seen that (5.2) holds. On the
other hand equations (5.2) imply that A, C, D have the same null space
and it follows from the computation just made that (5.3) holds. This
proves the theorem.

THEOREM 5.2. Let A be a nonnegative self-adjoint operator from
ξ> to ξ>. There is a unique nonnegative self-adjoint operator P from
ξ> to ξ> such that P2 = A. The operator P will be called the square
root of A and will be denoted alternatively by A112. The square root
of A'1 is P-1.

If A is bounded, this result can be established by elementary
means3. In this event every bounded self-adjoint operator that com-
mutes with A also commutes with A1'2. The truth of the theorem for
the unbounded case can be obtained from the spectral theorem. As-
suming the truth of the theorem for the bounded case one can establish
its truth for the unbounded case without the direct use of the spectral
theorem. As a first step in the proof we shall prove the following

LEMMA 5.1. Let P and A be two self-adjoint operators from ξ> to
Q such that P2 — A. Then A is nonnegative and (P" 1) 2 = A"1.

Clearly A is nonnegative. In order to show that C = (P"1)2 is the

See, for example, F. Reisz and B. Nagy, Lecons d'Analyse Fonctionelle, p. 262.
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reciprocal of A observe that on ^r A we have CA = (P^P)2 g E, where
E = A'1 A. It follows that C 3 4 Λ Since C and A'1 are self-adjoint
we have A'1 = (A"1)* 3 C* = C Hence A"1 = C, as was to be proved.

COROLLARY. A reciprocally bounded nonnegative self-adjoint oper-
ator possesses a unique square root.

We are now in position to complete the proof of Theorem 5.2. To
this end let C and D be related to A as described in Theorem 5.1.
Since C and D are bounded and commute, their square roots M and N
satisfy the relations

M2 + N2 = E , MN = NM , M^N'1 = N^M'1 .

Moreover E = M~ιM = N~1N and

ΛΓ-1 = JV-W2 + ΛP) - Λ ^ M 2 + N = (M2 + JVIΛΓ-1 = I W " 1 + N.

Hence ΛΓ"W2 = M2N~λ and

Similarly ikf'W = JVM"1. In addition

(ΛΓ-W)2 - N~ιMN~ιM = ΛMM2 = D~ιC = A , {M~ιN)2 = A-1 .

Setting 2/ = Afe with x in the carrier of N and using the fact that
MN = NM ^ 0 we find that

(MN~ιy, y) = (Ma?, JVa?) - (MJSfc, x) ^ 0

for all 7/ in the carrier of MN'1. Hence ΛίiV"1 is a nonnegative self-
ad joint operator whose square is A. It remains to show that if P is a
nonnegative self-adjoint operator whose square is A, then P — MN"1.
To do so observe that

(P + P-y = P2 + P-2 + 2E = A + A-1 + 2E= C~ιDι = {M'ιN~1)2 .

Since reciprocally bounded operators have unique square roots it follows
that

Moreover

PM~2 - P C 1 = PA'1 + P C P + P-1 = M-W-1 - AΓ^W1

P = PM'2M2 c N~ιM~ιM2 = JSΓ-W .

Since P and N~ιM are self-adjoint, they are equal. This completes the
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proof of Theorem 5.2.

6. Elementary operators and the polar fornu By an elementary
operator R from φ to § ' will be meant one that is its own ̂ -reciprocal,
or equivalently one whose adjoint is its reciprocal. It is characterized
by the relation

(6.1) RR*R=R.

An elementary operator maps its carrier isometrically onto its range.
If R Φ 0 then | |22| | = 1. It is easily seen that an operator R is
elementary if and only if E — R*R is a projection in ξ). Similarly R
is elementary if and only if E' — RR* is a projection in ξ>'. If § =
£>', then an elementary operator R is normal if and only if E = £",
that is, if and only if R and R* have the same null spaces. A projec-
tion is a nonnegative self-ad joint elementary operator. An elementary
operator R is self-adjoint if and only if it is expressible as the difference
R — E+ — E- of two projections E+ and E- that are orthogonal. For
if R is self-adjoint, then

E+ = i(E + R) , E- = i(E - R)

satisfy the relations

El = E+ = E$ , El = E- = E* , E+E- = E_E+ = 0

and hence are projections. Moreover

R = E+ - E- , E= E+ = E- = R2 .

Conversely, if R is expressible in this form it is a self-adjoint ele-
mentary operator, as one readily verifies.

It should be observed in passing that if R is an elementary operator
from § to ξ>' and F is a projection in § that commutes with the pro-
jection E = R*R, then S — RF is also elementary. This follows
because S*S = FR*RF= FEF = FE is projection. Similarly if Fr is
a projection in £>' that commutes with RR*, then F'R is elementary.

Let R be an elementary operator from ξ> to ξ>\ An operator A
from φ to £>' will be said to be self-adjoint relative to R in case

(6.2) A = iL4*JΪ .

If φ = φ' and R is the identity, this concept reduces to the usual
definition of self-ad join tness. We have the following

THEOREM 6.1. Let A be an operator from § to § ' that is self-
adjoint relative to an elementary operator R. Then A*'1 is self-
adjoint relative to R, Similarly A*, A'1 are self-adjoint relative to



RELATIVE SELF-ADJOINT OPERATORS IN HILBERT SPACE 1327

R*. Moreover %lR c 9^ and %lR* c 9Ϊ4*. The operators A and R satisfy
the further relations

(6.3a) A = RR*A = AR*R , RA*A = AA*R

(6.3b) A*R == i2*A ,

(6.3c) (A*i2)2 = A M

It is clear from (6.2) that 3ls c WA, $lR* c <XlA. and i2*A#* = A*.
Moreover

A = RR*RA*R = i2A*i2 = A =

i?A*A = i?A*i2A*i2 = AA*R .

Hence (6.3a) holds. The relation (6.3b) and (6.3c) follow from the com-
putations

A*E - R*AR*R = R*A , RA* = RR*AR* = AR*

(A*R)2 = A*RR*A = A*A , (AR*)* = AR*AR* = AA* .

In view of the corollary to Theorem 3.5 it is seen that RA~ιR is
the reciprocal of A* = i2*AJ?*, that is, A*"1 = RA~ιR, This proves the
theorem.

It is easily seen from the formula (6.2) that %lR = ΉIA if and only
if %lR* = ̂ A*. In addition we have the following

COROLLARY. An operator A is self-adjoint relative to an ele-
mentary operator and only if

(6.4) A = RR*A = AR*R , R*A = A*R, RA* = AR* .

The existence of elementary operator R relative to which A is self-
adjoint is established in the following

THEOREM 6.2. Given an operator A from § to £>' there is a unique
elementary operator R such that A is self-adjoint relative to R, 9^ =
3lΛ and A*R is nonnegative. The operators A~ιR, AR* and A*~ιR*
are also nonnegative and 9ΐ4* = 9^*.

In order to prove this result P be the square root of A*A. Then
P is nonnegative and 9^P = 31A. We shall show that the operator R =
(P~ιA*)* has the properties described theorem. Observe first that

(6.5) R a AP-1 , R* a P~ιA*

and hence that

E - R*R a P-^AP-1 = p-ιp*p-i = (p

This is possible only in case E is a projection. Hence R is elementary
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and 5RΛ = 5RP = yiAy SSlA* = 9^*. By Theorem 3.5, the operators R*A
and A*R are closed. Moreover by (6.4).

E = R*R 3 JBMP-1 , £7 = i?*i2 2 P ^

It follows that P*R = i?*A ^ 0. Consequently

! - A ,

the last inequality holding since 9^* = $RΛ and RR* is a projection on
£'. Since A-IR = P 1 , AR* = ΛPΛ*, A*-ΛR* = RA'RR* = RP-'R*,
these products are nonnegative. The uniqueness of i? follows from
(6.3c) and the uniqueness of the square root of A*A.

The elementary operator R described in Theorem 6.2 will be called
the elementry operator belonging to or associated with A. The pro-
jections E=R*R, E' = RR* are such that EΆ = AE = A and will be called
the projection associated with A. It should be observed that if we
set P = A*R, Q = AR*, then, A = RA*R = RP = QR. This formula
is commonly called the polar decomposition of A. It was first established
for an unbounded operator in Hubert space by J. von Neumann.4

COROLLARY. If R is the elementary operator associated with A,
then R is the elementary operator associated with A*-1 and J?* is the
elementary operator associated with A* and A~ι.

THEOREM 6.3. Let A be an operator from § to ξ? and let R be the
associated elementary operator. Then A is normal if and only if R*
commutes with A. If A is normal so also is R. The operator A is
self-adjoint if and only if R is self-adjoint and commutes with A.
Finally A is self-adjoint and nonnegative if and only if R is a
projection.

Since A*A and AA* are equal if and only if their square roots R*A
and AR* are equal, it follows that A is normal if and only if A com-
mutes with R*. If A = A* then R*A = AR* - RA, by (6.3b). Hence
R = R* and R commutes with A. Conversely if R commutes with A
and R= R*, then A is normal and A*R = RA = AR. Hence A* = A.
If 12 is a projection, AR = RA*R2 = RA*R = A = RA. Hence A is
self-ad joint and nonnegative. The converse is immediate and the theorem
is established.

COROLLARY 1. If A is a self-adjoint operator from § to ξ>, it is
expressible as the difference A = A+ — A- of orthogonal nonnegative

4 Neumann, J. v. ϋber Adjungierte Funktionaloperatoren Annals of Math., 3 3 (1932),
294-310.
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self-adjoint operators.

This follows because its associated elementary operator R is self-
adjoint and hence is the difference R — E+ — £7_ of two orthogonal
projections. Since R and E = E+ + E- commute with A so also does
E+ and i?_. Using this fact it is seen that A+ = AE+, A_ = AE- have
properties described in the corollary.

COROLLARY 2. If A is self-adjoint relative to an elementary
operator T so also is its associated elementary operator R, that is R
= TR*T.

7. ^-orthogonality and sections. Two operators A and B will be
said to be ^-orthogonal if their carriers are orthogonal and their ranges
are orthogonal. This is equivalent to the statemnt that A*B = 0 (or
J3*A = 0) on a dense set in § and A5* = 0 (or BA* = 0) on a dense
set in £)'. It is clear that A is ^-orthogonal to B if and only if A*"1

is ^-orthogonal to B. If one of the pairs A, B; A*, £*; A"1, B'1;
A*"1, B*'1 form a ^-orthogonal pair, then the remaining pairs form
^-orthogonal pairs. Finally two operators A and B are ^-orthogonal if
and only if their associated elementary operators R and S are *-orthogo-
nal. The following result is readily verified.

THEOREM 7.1. Let B and C be ^-orthogonal operators from ξ> to
£>'. Then A = B + C is an operator and A'1 = B'1 + C'1, A* = B* +
C*, A*"1 = B*"1 + C*"1. Moreover A is elementary if and only if B
and C are elementary. If S and T are respectively the elementary
operators associated with B and C, then R = S + T is the elementary
operator associated with A — B + C.

An operator B will be called a section of an operator A, if there
is an operator C ^-orthogonal to B such that A = B + C. If B is a
section of A, its associated elementary operator S is a section of the
associated elementary operator R of A. As a first result characterizing
sections of A we have the following.

THEOREM 7.2. Lei E = A~xAy E' = AA"1 6e £/^ projections as-
sociated with A. Le£ JP Ff be projections in ξ> and $Q' respectively.
Suppose that AF a F Ά . T / ^ ΉF = FE and F'Ff = F Έ f . Moreover
Ai*1 is α section of A and its adjoint is A*F'.

Since the domain of FΆ is & A it follows from the relation A F 3
PΆ that B = AF is dense. Since 5 is closed, it is an operator. Since
AE = A it follows that AFJ57 3 F'A. Hence AίΉ - AF = A(EFE —
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EF) = 0 on Sf A. This possible only in case EFE = EF and hence only
in case EF = FE. Similarly, since A*Ff 2 FA*, it follows that FΈ'
= £"F'. Moreover JB* = A*F'. The projections associated with B are
accordingly G = EF and G' = E'F'. The operator C = A(E - G) has
E — G and £" — G' as its associated projections. It follows that C and
B are ^-orthogonal. Moreover A = B + C and the theorem is established.

THEOREM 7.3. An operator B is a section of A if and only if A*B
= B*B and AB* = BB*.

If A = B + C, where B is "-orthogonal to C, then A*B = (5* + C*)B
= £*J3 and A£* = B*B. Conversely suppose that A*B = £ * £ and AJB* =

BB*. Let F = S^B, F' - M 3 1 : Then

β* = A*BB~λ £ A*F' , J5 = AB*B*~λ s

It follows that JFΆ £ β E AF and hence that B = AF. In view of
Theorem 7.2 the operator B is a section of A, as was to be proved.

THEOREM 7.4. Let R be an elementary operator and let E — R*R.
Let F be a projection in ξ>. Then S = RF is a section of R if and
only if EF — FE. Similarly if F' is projection to ξ>', then F'R is a
section of R if and only if E'Fr = FΈ', where Er = RR*.

If S = RF is a section of i£, then

S*S = R*S = #*J?F = # F ,

is a projection in ξ>. Hence ϋLF = FE. Conversely if EF = FE then

R*S - #*i?F =EF= FEF = Fi2*i2F - S*S ,

SS* - i2Fi2* = RS* .

Consequently, S is a section of R, by Theorem 7.3. The last statement
in the theorem follows similarly.

8* **commutativity. A bounded operator B from § to £>' will be
said to ^-commute with an operator A from φ to £>' if

(8.1) A*B 2 B*A , AB* 2 #A* .

It should be observed that products A*B and AB* appearing in (8.1)
are closed and dense and hence are operators. In the present section
we shall derive some elementary properties of ^-commutative operators
of this type. Throughout this section the operator B is restricted to
be bounded, while A is arbitary. The associated projections will be
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denoted by

(8.2) E = A-1 A , Ef = AA-1 , F = B^B , F' =

as a first result we have

LEMMA 8.1. Suppose that B ^-commutes with A. The product
A*B is self-adjoint and is the closure of B*A. Similarly, the product
AB* is self-ad joint and is the closure of BA*.

Suppose that B *-commutes with A and that A*B is not the closure
of B*A. Then there is vector x0 Φ 0 in the domain of A*B such that

(x0, x) + (A*Bx0, B*Ax) = 0

for all x in &rΛ. Since (B*AY = A*B it follows that

(8.3) (x0, x) + (A*BA*Bx0, x) = 0

for all x in £ ^ , and hence for all x in φ. Choosing # — B*Bx0 and
making use of (8.1) we find that

(x0, B*BxQ) + {A*AB*BxQy B*BxQ) - 0.

Since B*Bx0 is in 3$ A we have

and hence Bx0 — 0. Using (8.3) we find that x0 — 0, contrary to our
choice of x0. The closure of B*A is accordingly A*JS. The last state-
ment in the lemma follows by symmetry.

LEMMA 8.2. Suppose that %lA = yiB and %lA* = SSlB*. If the first of

the relations

(8.4a) A*B ^BA, AB* a

(8.4b) A-^B a S*A*-2 , A*

(8.4c) .B-1^!*-1 a A-1^*-1 , .B*- 1^- 1 a A*-χB~λ ,

(8.4d) 5-χA a A*B*~X , S*-χA* a ^ l^" 1 ,

holds, so the others hold also. If (8.4) holds, the products appearing
on the right are operators.

The last statement in the theorem follows from Theorem 3.5. Sup-
pose now that (8.4a) holds. Then A*B — B*A on &A. Consequently,
on £&A-λ we have

A*'1A*BA"1 = A*-1B*AA~1 = A*~'B* .
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Hence the second relation in (8.4b) holds. The first relation follows
similarly. The right and left members of (8.4c) are the reciprocals of
the corresponding right and left numbers of (8.4a). Hence (8.4c) holds.
Similarly (8.4d) holds.

LEMMA 8.3. Suppose that B ^-commutes A. Then A and B are
expressible uniquely as sums of sections

(8.5) A = A0 + Alt B = B0 + B1

such that (a)A0 is ^-orthogonal to B and Bo is ^-orthogonal to A: (β)
B1 ^-commutes with Ax and %lAl = SRBl, 9^* = 9^*. Moreover

(8.6) A = B*"1A*B , At = B-'AB* .

Conversely, if A and B are expressible in the form (8.5) such that
(a) and (β) hold, then B ^-commutes with A.

Suppose first that B ^-commutes with A. Using (8.1) and (8.2) it
is seen that

EB*A = B*A , E'BA* = BA* , FA*B = A*B , FΆB* = AB* .

Hence

EB*E' = B*E' : ErBE = BE , FA*F' = A*F' FrAF = AF.

Consequently BE = E'B, AF a FΆ. In view of Theorem 7.2 it follows
that Ax = AF, Bx = BE are respectively sections of A and B, each
having EF and E'F' as their associated projections. We have according-
ly 3lΛi - 5βΛl, SR̂  - %lBl = Λ % Choose Λ and Bo so that (8.5) holds.
The operator Ao has E — EF and E' — E'F' as its associated projections
and is accordingly *-orthogonal to B, Bo, Bx and Ax. Similarly Bo is
*-orthogonal to A, Ao, Ax and Blm Using (8.1) again we see that

BtAx = EB*AF e EA*BF = (Ao* + A f ) ^ + Bx) - Af^ .

Likewise BxAΐ S AxBt. This proves the first conclusion of the lemma.
The last statement is immediate.

It remains to obtain the formulas (8.6). To this end observe that

B*-*A*B = Bt'1AtB1 3 BΪ~1BΪA1 = A .

In view of the result we may suppose that A = Aχm Assume that A Φ
B*-1^*^. s i n c e β*~1AB* and A are closed, there is a vector xQ φ 0
such that

(8.7) (a?0, a?) + (B*'1A*BxQf Ax) = 0

for all a? in ^ ^ . Consequently, by (8.4d),
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(x0, x) = -{AΈ^AΈx.x) = -(B-1AA*Bx0, x)

for all x m & A and hence for x in ξ>. Choosing $ = B*Bx0 we find
that

|| Bx01|2 = -

This relation together with (8.7) can hold only in case x0 — 0. It follows
that the first formula in (8.6) holds. The second is obtained by sym-
metry and the lemma is established.

COROLLARY 1. Suppose that B ^-commutes with A. The associated
projections (8.2) satisfy the relation EF — FE, E'F' = FΈ'm Moreover
WΛ = WB if and only if SRJ = 9fc£.

As a further result we have

COROLLARY 2. If an elementary operator T ^-commutes with A,
then TA* T is a section of A.

In view of Lemma 8.2 and 8.3 we have

COROLLARY 3. Suppose that B ^commutes with A. Then B
^-commutes with A*"1 and with a A + βA*~λ, where a and β are posi-
tive numbers.

The restriction that a, β are positive is made only to insure that
a A + βA*-1 be closed.

LEMMA 8.4. Let T be an elementary operator such that TA*T —
A and suppose that B ^-commutes with T. Then B ^-commutes with
A if and only if AT*B Ώ BT*A.

If B ^-commutes with A then

AT*B = ΓA*ΓΓ*B = TA*B 2 TB*A = BT*A .

Conversely, if AT*B^ BT*A, then

A*B = Γ*AΓ*5 2 Γ*BΓ*A - £*ΓT*A = B*A

AB* = TA*TB* 2 TB*TA* = BT*TA* = BA*

as was to be proved.

9 Decomposition of an operator. As a first result we have

THEOREM 9.1. Let R be the elementary operator associated with
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an operator A from Jρ to φ\ Let T be second elementary operator
that ^-commutes with A. Then T ^-commutes with R and the operators
Ay R} T are expressible uniquely as sums and difference

(9.1) A = Ao + A+ + A- , R = Ro + R++ i?_ , T = To + R+ - R_

of mutually ^-orthogonal operators such that RQJ R+, R_ are the ele-
mentary operators associated respectively with Ao, A+, A_ and To is
^-orthogonal to A. Moreover T is ^-orthogonal to Ao and RQ and ^-com-
mutes with A+, A_, R+ and R-. Conversely if A, R, T are expressible
in the form (9.1) then T ^-commutes with A and R.

Suppose that T ^-commutes with A. Then, by Lemma 8:3, they
are expressible in the forms A = Ao + A19 T = To + Tu where Ao is
^-orthogonal to T and Au To is ^-orthogonal to A and T, 3lτ = %lAl,
9ZΓΪ — ̂ ί a n ( * ^i ^-commutes with Ax Moreover, by Theorem 7.1 R =
Ro + R19 where RQ is the elementary operator belonging to Ao and Rx

is the elementary operator belonging to AΎ. In view of this result we
can restrict ourselves to the case in with Ao = 0, To = 0, Ro = 0. Then
%lΛ - Wτ = ^ Λ and 91^ - 3^* - ^ . Since A*T is self-adjoint, its as-
sociated elementary operator S is self-adjoint and hence is expressible
as the difference S = E+ — E- of two orthogonal projections E+, £'_
whose sum is E—R*R. The operator A*TS is nonnegative and self-
ad joint. It follows from Theorem 6.1 that R = TS and T = i?S. Set-
ting R+ = Λ£7+, i2_ = # # _ we see that

R = RE = x?+ + xv— , T = RS — R+ — R_ .

Since Ai2* - Ai?ΐ + AR1 and AT* - AR% - Ai?_ are self-adjoint,
so also are AR% and AR1. Moreover AR% ^ 0 and AR* ^ 0 since
they are orthogonal and AR* ^ 0. The elementary operators R+ and
12- are therefore the elementary operators associated respectively with
A+ = AE+ and A~ — AE^. Since J?+ and R- are ^-orthogonal it follows
that A+ and A_ are ^-orthogonal. Consequently A, 12, T are expressible
in the form (9.1). The remaining statements in the theorem are easily
established.

COROLLARY. TWO elementary operators R and T on $ to ξ>' ̂ -com-
mute if and only if there exist mutually ^-orthogonal elementary
operators RQ, R+, R-, To such that R = Ro + R+ + R-, T = To + E+ -
R-. Moreover, this representation is unique.

THEOREM 9.2. Let R be the elementary operator associated with
an operator A from ξ> to ξ>\ Given a positive number λ there are
unique decompositions.
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(9.2) A = Aλ+ + Aλ0 + Aλ_ , R = Rλ+ + Rλ0 + i2λ_

0/ 4̂ ami i? into sections such that Rλ+, Rλ0, i2λ_, Rλ+ — i?λ_ are re-
spectively the elementary operators associated with Aλ +, Aλ0, Aλ_, A —
XR. Moreover,

(9.3a) Aλ + - Rλ+A*Rλ+ , Aλ0 = XRλ0 , Aλ_ - #λ_A*i?λ_ .

The relations

(9.3b) II Ak+x II > λ II i? λ + z II , (A λ + £, i2λ+α;) > λ || Rκ+x | |2 ,

hold for all x in & A such that Rλ+x Φ 0 and the relations

(9.3c) II Aλ.x II < λ II Rx^x \\ , (Aλ__z, Rλ.x) < λ || i? λ_^ ||2

/or αiϊ x in § such that Rλ-X Φ 0. If X < μ, then Aλ_ + Aλ0 is
α section of Aμ_, and Aμ0 + ^.μ+ is a section of Aλ+. Similarly iϋλ__ +
Rλ0 is a section of iϋμ_ and Rμ0 + i?μ + is a section of Rλ+.

In order to prove this result let C = A — XR, where λ is a fixed
positive number. Let T be the elementary operator associated with C.
Since R ^-commutes with A and R, it follows that R ^-commutes with
C. By virtue of Theorem 9:1 R also ^-commutes with T. Similarly T
^-commutes R and C and hence also with A = C + λ/ϋ. Applying Theorem
9.1 to A, R, T and to C, Γ, iϋ it is seen that they aree xpressible
uniquely as sums

A = Ao + A+ + A- , R= Ro + R+ + R-

C - Co + C+ - C- , T= To + R, -R-

of mutually ^-orthogonal operators such that iϋ+ is the elementary
operator associated with A+ and C+; J?_ is the elementary operator
associated with A_ and C_; Ro is the elementary operator associated
with Ao. Since 9^ z> 9^ it follows that Co = To = 0. From the relation
C = A ~ XR we obtain the relations

Ao = λi20 , A+ = C+ + ,

Moreover, if we set E+ = ^ΐi2+, £7- = R*R-

Rt A+ - i?ΐC + + XE+ , i?ΐA_ =

It follows that the second relations in (9.3b) and (9.3c) hold. If x is
in <grA, then

II A+x ||2 - λ2 II R+x ||2 = || C+x ||2 + 2X(RX C+x, x) ^ 0 .

Hence the first relation in (9.3c) holds. Since P = R*A_ ^ 0 and Q =
i?ΐC_ ^ 0 satisfy the relation P + Q = XϋL, they are bounded and



1336 MAGNUS R. HESTENES

commute. Hence PQ — A1C- — CtA- ^ 0. Using the relations

|| A.x ||2 + 2(A*_C-x, x) + || C-x ||2 = λ21| R.x ||2

it is seen that the first relation in (9.3c) holds.
In order to prove the last statement with μ > λ apply the results

described in the first part with Aλ+, Rλ+, μ playing role of A, R, λ.
One then obtains the partitions

Rλ+ - Rμ+ + i2μ0 + Rλfλ .(9.4a)

Setting

(9.4b)

We have

= Λχ+ -

= Aλβ-\

i_ A A- A

— A -4- A R
λQ

A = Aμ + + Aμ0 + Λ - , ^ = ^μ+ + ^μθ + R»-

with i2μ+ — i?μ_ as the elementary operator A — μR. The last statement
of theorem follows from the relations (9.4). This completes the proof
of Theorem 9.2.

COROLLARY 1. Suppose that A is bounded and set M = || A| | . Let
m be the largest number such that \\ Ax || Ξ> m\\ Rx | |. / / λ ^ M, then
JRλ+ = 0 . If m> 0 and 0 < λ ^ m , £ / ^ n i? λ _ = 0. If m <X< M,

then || A — λ J ? || ^ m a x [ikf — λ, λ — m ] .

COROLLARY 2. 7%β operator Rλ = i?λ0 + J?λ_ (0 < λ < <») is the
elementary operator belonging to Aλ = Aλ0 + Aλ_ = RλA*Rκ. Moreover

(1) lim Rλ = R , lim Rκ = 0 , lim Aλ = A , lim Aλ = 0 .
λ = oo λ = 0 λ = oo λ = 0

(2) If X < μ, then Rλ is a section of Rμ, Aλ is a section of Aμ,
and

λ || Rλx || ^ || Aμx - Axx \\ ̂  μ \\ R»x || .

(3) lim i?μ = Rλ , lim Aμ = Aλ .
μ=λ+0 μ=λ+0

Let Aλ(0 < λ < oo) be the one parameter family of sections of A
described in the last corollary. By the principal spectrum A of A will
be meant the set of all numbers λ0 on 0 ^ λ < oo such that Aλ is con-
stant on no neighborhood of λ0. The principal spectrum of A* is also
A. The spectrum of A"1 and A*"1 is the closure of the reciprocals 1/λ
of the points λ Φ 0 in A.

If iϋλ is the elementary operator of Aλ described in the last corol-
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lary, we have the representations

A = [\dRκ , A* = [\dRΪ ,
Jo Jo

A*-1 — \ Λ-i/7 7? A-1 —
Jo

where the integrals are defined in the usual manner. It should be
observed that Eλ = R*J?λ and E'λ — RxRt are resolutions of E = R*R
and E' = RR*, respectively. Since Rκ = REk = J5"λi2 we have, from
the polar form of A,

A =

It follows that the results given above can be derived from the self-
adjoint case, if one so desires.

An extension of the results given above is found in the following

THEOREM 9.3. Let A be an operator and T be an elementary
operator such that A — TA* T. Given a real number X there exist a
unique decomposition

(9.6) A = Aλ+ + Aλ0 + Aλ_ , T = Tλ+ + Γλ0 + Γλ_ (-00 < λ < « )

of A and T into sections such that

(a Πrχ\ λ T A* T A \ T A T A* T

(9.7b) (Aκ+x, Tλx) > λ II Tκ+x \\2 for all x in 3rA having Tλ+x Φ 0 ,

(9.7c) (Aλ_x, Tλx) < λ II Tk-x ||2 for all x in &A having Tλ_x Φ 0 .

If μ> X, then AλQ + Av_ is a section of A^f Tλ0 + Γλ_ is a section
of Tμ_, Aμ+ + Aμ0 is a section of Aκ+ and Tμ + Tμ0 is a section of Tλ+.

In order to prove this result observe first that by Theorem 9.1 the
operators A, R, T have unique decompositions

A A 1̂  A Ty 7"> _ι ~D rn rp ι_ 7~> 7">
J± — J±ι -f J±2 , JX — JΛ/χ "T* Λ g , -L — -L 0 "ΐ" J vi J-*2

where Rx, R2 are the elementary operators associated with Au A2 respec-
tively and Γo is ^-orthogonal to A. The terms Ao and Ro described in
Theorem 9.1 are zero since A = TA*T. If λ is positive let

A ___ A 1 A i A TΓ> 7I> [ TΓ> 1 TΓ>

be the decompositions of Ax and R1 described in Theorem 9.2. Then
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have the properties described in Theorem 9.3. If λ = 0 set

Λ.\+ ~ A.x , y±λ0 = 0 , ^T-X- = = A2

If x = _μ < 0 let

-"•2 ~ ^ 2 μ + "I Ά2μθ "Γ ^ 2 μ — » -*̂ 2 = -*^2μ+ ~Γ -Π/2μθ I tίiμ-

be the decomposition of A2, i?2 described in Theorem 9.2. Then

^ λ + = -^-1 I ^ 2 μ - > ^ - λ θ : = : ^ 2 μ O » ^ - λ - = r ^ - 2 μ + \[A ~ -~ X)

n+ - -̂ 1 - ^ 2 μ ~ - » •* λθ = = -^2μO > -*- λ— =Z -*^2μ +

have the properties described in Theorem 9.3. The uniqueness of the
decomposition follows from (9.7) and the connections between T and R.

COROLLARY. The operators Tλ = Γλ0 + Γλ_, ^ λ = ^ λ 0 + ^λ_ = Γλ

= A*Γλ have the following properties:

(1) lim Tk = Γ , lim Γλ = 0 , lim Aλ = Λ , lim Aλ = 0 .

λ=r + oo λ=-oo λ= + oo λ=-oo

(2) If X < μ, Tλ is a section of Γμ, Aλ is a section of Aβ

(3) lim Tμ= Tλ, lim Aμ - Aλ .
μ = λ + 0 μ^λfO

(4) (Tkx, Aλx) ^ λ || Γλα; ||2 /or α/ϊ a? in &A .

In view of the results obtained in the last corollary we shall define
the spectrum Λ of A relative to T to be the set of all real numbers
λ0 such that the operators Aλ described in the last corollary is constant
on no neighborhood of λ0. The spectrum of A* relative to T* is also
Δ. Similarly the spectrum of A*-1 relative to T and A~ι relative to
Γ* is the closure of the reciprocal 1/λ of the points λ Φ 0 in A.
Moreover A and A* are representable

A - Γ XdTλ , A* = Γ XdTt .

If $lA = STCΓ, then

A*"1 - Γ λ^dΓx , A-1 = Γ λ - ^ Γ , .
J-oo J-oo

When ξ) = § ' and T7 is the identity one obtains the usual spectral
resolution for self-adjoint operators.

lO Spectrum of the gradient operator* Let ξ> be the class of all
complex valued Lebesgue square integrable functions x(t) = x(tu •••,*»)
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of points t = (tlf •••,*„) in an m-dimensional Euclidean space. It is
convenient to normalize a function in ξ> to be equal to the limit of its
integral mean whenever these limits exist and setting x(t) = 0 elsewhere.
The class so normalized forms a Hubert space over the field of complex
numbers with

- o o

as the inner product, where x(t) denotes the conjugate of x(t). As is
well known the Fourier transform

(10.1) x(s) = c[° e'ίstx(t)dt , st = sA + + smtm ,
J-oo

where c = (2/τr)m/2, defines an isometry on § onto ξ> and hence is an
elementary operator, whose inverse is given by

(10.2) x(t) = cί~ eίstx(s)ds .

Let & be the class of all functions x in ξ> that are linearly abso-
lutely continuous5 and whose partial derivatives are in ξ>. A function
x in ^ is characterized by the condition that Siί(s), •••, smx(s) are
square integrable, where x(s) is the Fourier transform of x. In fact
one has

= c Γ β ί 5 ίsαφ)cίs .

The gradient operator A defined by — iid/dtj, •••, —i(θldtm) is a closed
operator from §> to the cartesian product § ' of ξ> by itself m times.
The domain A is ^ . It is not difficult to see that A is the closure of
the restriction of A to the class of functions of class C°° with compact
support.

Let y(t) = [yλ{t)y •• ,^/m(ί)] be a function in £>'. If y(t) is of class
C°° and has compact support, then the divergence

dh dtm

is in ξ>. This operator from ξ>' to ξ> is preclosed and its closure is the

adjoint A* of A. If #(s) is the Fourier transform of y(t) then y is in

^ A * if and only if the sum 8ωya(s) is square integrable. Moreover

eίstsΛyΛ(s)ds , (α: summed) .

- o o

5 Calkin J. W. ''Functions of several variables and absolute continuity I," Duke Math
J. Vol 6 (1940) pp. 170-186. See also Morrey Jr. C. B. "Functions of several variables
and absolute continuity II, Duke Math J. 6 (1940), 187-215.
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The elementary operator R associated with A is given by the
formulas.

(Rx)Λ = c\~ eίs*^β^-ds (a = 1, ... m) ,

R*y = c[~ eist s«y«(sϊ ds
J | s I

where \s\ is the distance from s to the origin. The carrier of R* is
the set of all functions y in ξ>' whose Fourier transforms ya(s) are of
the form sax(s)l\ s | such that x(s) is in ξ>. Similarly the carrier of A*
consists of all functions y in £>' whose Fourier transform is of the form
ya(s) = sαί(s)., such that | s \2x(s) is in ξ>. It is easily seen that

(A*-χx)Λ = c\~ eist s ^ ( 8 ) ds
J-~ I s | 2

A-'y = c[~ eίst 8»V*Wd8 .
J I si2

The operator A*A is, of course, the Laplacian.
The operators Aλ, Rλ described in Corollary 2 to Theorem 9.2 are

defined by the formulas

(Aλx)a = c\ eίstφλ(s)sΛx(s)ds
J—co

s«x{s) ds

where <pλ(s) is the characteristic function of the sphere | s \ g λ. The
principal spectrum of A is accordingly point set 0 ^ λ < co.

ll Principal values and principal vectors* In the present section
we shall be interested in certain special points of the principal spectrum
of A which we shall call principal values of A. Before defining this
concept it will be convenient to introduce the concept of the rank of
an operator. By the rank of an operator A will be meant the dimen-
sion of its carrier, or equivalently the dimension of its range. It is
clear that the ranks of A, A*, A"1, A*"1, A*Ay AA* are the same. If
the rank of A is finite, then A is bounded and reciprocally bounded.

A number λ on 0 < λ < co will be said to be a principal value of
an operator A if the rank of the section Aλ0 = λϋ?λ0 of A described in
Theorem 9.2 is not zero. The rank of Aλ0 will be called the order of
λ as a principal value of A and Aλ0 will be called the corresponding
principal section of A. The non-null vectors in the carrier of Aλ0 will
be called the principal vectors of A corresponding to λ, The non-null
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vectors in range of Aλ0 will be called the principal reciprocal vectors
of A corresponding to λ. The latter are the principal vectors of A"1

corresponding to 1/λ. The order of 1/λ as principal value of A'1 is
equal to the order of λ as a principal value of A. A number λ is a
principal value of A if and only if it is a principal value of A* and its
order as a principal value of A is equal to its order as a principal
value of A*. A positive number λ is a principal value of A if and
only if λ2 is a principal value of A*A. Again the order of corresponding
principal values are the same. The principal values of A*A are the
nonzero eigenvalues of A*A. The eigenvectors A*A corresponding to
nonzero eigenvalues are the principal vectors of A. Similarly the
eigenvectors of A A* corresponding to nonzero eigenvalues are the princi-
pal reciprocal vectors of A. Principal values of A belong to the princi-
pal spectrum of A. Isolated points of the principal spectrum of A are
principal values of A.

A principal value λ of A can be characterized in another way. A
value λ is a principal value of A if and only if there is a non-null
vector x in its carrier such that Ax = XRxf where R is its associated
elementary operator of A. The vector y = Rx is a principal reciprocal
vector of A and satisfies the relation A*y = XR*y. Consequently,

(11.1) Ax = Xy , A*y = Xx .

Conversely if λ is a positive number such that there exist a vector
x Φ 0 on s&A and a vector y φ 0 in £& A such that (11.1) holds, then
λ is a principal value of A, x is a principal vector and y is a principal
reciprocal vector. From these remarks, it follows that the principal
values of A are the positive eigenvalues of the self-adjoint operator

0 A*

A 0

from the cartesian product ξ> x ξ>' to § x ξ>\ It is clear that the
foregoing results could have been obtained from the study of this self-
adjoint operator. However, the author prefers the more direct approach
here given.

THEOREM 11.1. Suppose the principal spectrum of A apart from
X = 0 consists of a set of isolated points XlfX2f •••. Then X4 is a
principal value of A and has associated with it a unique elementary
operator R{ as described in Theorem 9.2. The elementary operators
Rl} i?2, •••, are mutually ^-orthogonal and

A = ΣX& , A* = ΣX,R* , A*-1 = iJ^R, , A'1 = Σ^LR* .
Xi Xi
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12 Further results on **commutativity. Throught this section we
shall be concerned with a closed operator A and bounded operator B
from ξ> to ξ>'. As a first results we have the following converse of a
statement in Lemma 8:4.

LEMMA 12.1. If B ^-commutes with aA + βA*"1 for every pair
of positive numbers a and β, then B ^-commutes with A.

Suppose that B ^-commutes with C = axA + AA*"1 and D = a2A +
β2A*~ι where a19 β19 a2, β2 are positive numbers such that aβ2 — β2ax

— 1. These operators have the common domain 3$ — & A π j ^ ^ -i.
The operator β2C — aλD is the restriction of A to S . Since C*B —
B*C and D*B= B*D on &r it follows that A*5 = B*A on ^ . In
order to show that A*B = ΰ*A on &rA consider a vector x in &Λ.
Let ^w = JS7na; — Ellnx9 where Eκ = RZRλ and ϋ?λ is the section of R
described in Corollary 2 to Theorem 9.2. The vector xn is in ^ and
xn =φ a?, A^n =Φ> Ax. Consequently A*Sα?n = B*Axn =#> β*Ax. Since A.*^
is closed we have A*Bx = B*Ax. We have accordingly A * β 3 5*A.
Similarly Ai?* 3 £ M and the lemma is proved.

COROLLARY. / / £>' = § and aA + βA*-1 is self-adjoint for all
pairs of positive numbers a and β, then A is also self-adjoint.

This result is obtained from lemma by selecting B = I, the identity.

LEMMA 12.2. Suppose that § ' = ξ> and that B ^-commutes with
A. // one of A or B is self-adjoint and positive, the other is self-
adjoint.

Consider first the case in which A is bounded and A = A* > 0.
Since AB = B*A and A 5 * = BAf the difference C = B - J5* satisfies
the relation AC = -CA. Hence AnC = {-l)nCAn and etΛC = Ce~tA.
The inverse etA is e~tA. We have accordingly

C = β- ί 4Cέr ί 4 .

Since A > 0 it follows from the spectral theorem for A that limί=+00 e~tAx
— 0 for each x in ξ). Consequently C — 0, that is, B = B* for the
case here considered.

If A is reciprocally bounded, then A*"1 is bounded and B ^-commutes
with A*"1. If A is self-adjoint and positive, so also is A*~x = A~ι and
β ^-commutes with A"1. Hence B = B* by virture of the result just
obtained. If B = i?* > 0 then A*"1 is self-ad joint and hence A is also
self-adjoint.
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In the general case if A — A* > 0, then A + A'1 is self-adjoint,
reciprocally bounded and positive. Since B ^-commutes with A + A"1,
it follows that B = B*. If on the other hand B = B* > 0, then C =
aA + /3A*-1 is self-adjoint whenever a and /3 are positive. This follows
because C is reciprocally bounded and ^-commutes with B. By virtue
of the last corollary the operator A is self-adjoint and the lemma is
established.

LEMMA 12.3. Let R and S be the elementary operators associated
with A and B respectively. If B ^-commutes with A, then B ^-com-
mutes with R, and S ^-commutes with A.

In order to prove this result we may suppose, by Lemma 8.3 that
%lA = 3lB and 9^* = 3ΪΛ>. In fact, we may assume that SSlΛ = 3lB — 0,
3lA* — 3lB* = 0. Under these assumptions P = A*R = R*A is positive
and self-ad joint. Setting Q = R*B we obtain

PQ = A*RR*B = A*B 2 B*A = B*RR*A = Q*P

P*Q = R*AB*R 3 R*BA*R = QP .

Hence Q ^-commutes with P and Q — R*B — B*R by the last lemma.
Similarly RB* = 5i2*. Consequently B ^-commutes with R.

In order to prove that S ^-commutes with A it is sufficient, by
Lemma 12.1, to show that S ^-commutes with C = aA + βA*'1, where
a and β are positive numbers. The operator C is reciprocally bounded
and ^-commutes with B. The operator C*"1 is bounded and ^-commutes
with B. Hence S ^-commutes C*"1 and also with C. This completes
the proof of the lemma.

LEMMA 12.4. / / an elementary operator T ^-commutes with A,
then T ^-commutes with a section Ax of A if and only if it ^-commutes
with the elementary operator Rx associated with Alm

Let Aλ be a section of A and let AQ be the section of A such that
A — Ao + Alm Let Ro, Rλ be the elementary operator associcated with
A09 Aλ respectively. Suppose that T ^-commutes with Rx. Since T
^-commutes with R = Ro + R19 it follows that T ^-commutes with RQ.
Consequently TQ = RQT*RQ and Tx = RλT*Rλ are ^-orthogonal sections
of T. The section T2 = T — To — Tλ is ^-orthogonal to A. Consequently
the operators A*Γ and AT* are expressible as sums

A* T = At To + A* T19 AT* - A0Γ0* + Λ Γ *

of orthogonal operators. Hence A*Tt and AXT* are self-ad joint and Γx

*-commutes with A,. Since AX*Γ= AίTt and AXΓ* = Λ^i*, it follows
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that T ^-commutes with Ax as was to be proved.

13 Representations of operators as products. The present section
will be devoted to an extension of Lemma 5.2 and some of its con-
sequences.

THEOREM 13.1. Let A be an operator from ξ) to φ' and let R be
its associated elementary operator. There is a unique pair of opera-
tors C and D from ξ> to ξ>' such that

(13.1) C + Z> = R, A = D^R^C = CR*D*~ι .

The operators C and D are determined by the formulas

(13.2) C - 1 = A - 1 + J B * , D~1 = A*+R*

and have R as their associated elementary operator. The operators C
and D are bounded and ^-commute. In addition

(13.3a) C-'RD-1 = D^RC'1 = C'1 + D~λ

(13.3b) A'1 = C-ΉD* = D*RC-χ , A* = C^RD'1 = D~ιRC* ,

A*-i = c*~1R*D = DR*C*~1 .

This result is an easy consequence of Lemma 5.2. The operator
Ax — R*A is self-ad joint and nonnegative. Let d and Dx be the
bounded nonnegative self-adjoint operators related to Ax as described in
Lemma 5.2. The operators C = RClf D = RD1 have the properties
described in the theorem, as one readily verifies. An alternate proof
can be made by defining C and D by (13.2) and making computations
analongous to those made in the proof of Lemma 5.2. Finally, a proof
can be made by the use of the integral representation (9.5) of A. In
this case C and are defined by the formulas.

1 ~Γ Λ>

THEOREM 13.2. Let C be the operator related to A as described
in Theorem 13.1. A bounded operator B ^-commutes with A if and
only if B ^-commutes with C.

If B ^-commutes with A, then B ^-commutes with R and A*"1 =

c*_i __ % Consequently B ^-commutes with C*"1 and hence with C.
Conversely if B ^-commutes with, C, then B ^-commutes with R, C*" 1

= A*"1 + R, A*"1 and A. This proves the theorem. It is clear that
the results described in the theorem hold equally well with C replaced
by D = R - C.
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We state without proof the following

THEOREM 13.3. Let C be the operator related to A as described
in Theorem 13.1 and let

Ct = (l^LL^R + tC , Dt = R - Ct ( -1 ^ t ^ 1) .

The one-parameter family of operators

At = DrWCt - C^DT1 ( -1 ^ ί ^ 1)

contains A for t = 1, A*"1 for t — — 1, R for t = 0 and is swc/& £/&a£
A, ( — 1 < t < 1) is bounded and reciprocally bounded.

As a further result we have

THEOREM 13.4. Let C and d be the bounded operators related
respectively to two operators A and A1 as described in Theorem 13.1.
Then Ax is a section of A if and only if d is a section of C.

Let R1 and R be the elementary operator associated with Ax and A
hence also with Cx and C. If Ax is a section of A, then

R.C-'R, = R.A-'R, + R,R*RX = Ar1 + J2X = Cr1 .

Since Rx ^-commutes with C it follows that C1 is a section of C. The
converse is readily verified.

The result given in Theorem 13.2 enables us to extend the defi-
nition of *-commutativity to two unbounded operators Ax and A2. To
this end let CΊ and C2 be the bounded operators related respectively to
Ax and A2 as described in Theorem 13.1. The operators Ax and A2 will
be said to ^-commute if the operators CΊ and C2 ^-commute. This
definition is consistent with the one given heretofore for the case in
which one of the operators is bounded. The result described in Lemma
12.3 is valid without the assumption that B is bounded.

14 Further decomposition of operators* In this section we assume
that A and B are arbitrary operators from ξ> to £>'. As an extension
of Theorem 9.1 we have

THEOREM 14.1. Let R and S be the elementary operators associated
with A and B respectively. If B ^-commutes with A, then A, R, B
S are expressible uniquely as sums and differences

A = AQ + A+ + A-, R = R0 + R+ + R-
[ ' } B = BQ + B+-B-, S = So + R+ - R-
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of mutually ^-orthogonal operators such that (a) ROf R+, R_ are the
elementary operators beloging to Ao, A+, A_ respectively; (β) So, R+, R~
are the elementary operators belonging to Bo, B+, JB_ respectively; (7) Ao

and Ro are ^-orthogonal to Bo and So; (δ) B+ ^-commutes with A+ and
2?_ ^-commutes with A-. Conversely if A, R, B, S are so expressible
then B and S ^-commute with A and R.

In view of the results given in the last section we may assume
that A and B are bounded. Suppose that B ^-commutes with A> then
B *-commutes with R, and S ^-commutes with A, by Lemma 12.3. By
virtue of Theorem 9.1 applied to A, R, S, it is seen that A, R, S have
the decomposition (14.1) such that condition (a) holds and So is ^-or-
thogonal to RQ. Applying Theorem 9.1 to the operators B, S, R it is
seen that B, S, R have the decomposition (14.1) such that condition (β)
holds and So is ^-orthogonal to Ro. Since the decomposition of R and
S are unique, the decomposition (14.1) holds such that (a), {β)y and (7)
hold. Since

A*J5 - A1B+ - AtB- , AB* - A+Bt - A^B*_

are self-adjoint it follows that each of the operators on the right are
also self-adjoint. Consequently B+ ^-commutes with A+ and 2?_ *-com-
mutes with A-. The converse is immediate and the lemma is established.

COROLLARY. // B ^-commutes with A there is elementary operator
T such that A = ΓA*Γ and B = TJB*T.

The operator T = So + R has this property.

THEOREM 14.2. Suppose that A and B ^-commute and are self-
adjoint relative to an elementary operator T. Then the operators Ao,
A+, A_ Bo, B+, B- described in Theorem 14.1 are also self-adjoint re-
lative to T.

Since the elementary operators R and S belonging to A and B are self-
adjoint relative to T it follows that

R+ = |(Si2*S + RS*R) , Λ_ = i(SR*S - RS*R) ,

are self-adjoint relative to T. The same is true for Ro and So. The
theorem follows readily with the help of Lemma 12.4.

The result just given can be extended as described in the following

THEOEM 14.3. Suppose that B ^-commutes with A and T is an
elementary operator such that A= TA*T and B= TB*T. Then T,
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A and B can be decomposed uniquely in the form

T= Γo = Tx+ T2 + Tz+ T,+ Γ6 + Tβ+ T7 + Ts

(14.2) A = Λ - A2 + A3 + A, + Aδ - Aβ

B = B3- B4-Bδ + B6 + B7- B8

into mutually ^-orthogonal operators such that (a) Tά is the elementary
operator associated with Aά (j = 1, 2, •••, 6) (β) Tk is the elementary
operator associated with Bk (k = 3, 4, , 8) (y). The operators Tif

Ajf Bk *-commute.

In order to prove this result let A, B, R, S have the decomposition
(14.1). By virtue of the last theorem the operator T ^-commutes with
each of the operators given in (14.1). Applying Theorem 14.1 to Ao

and T we see that Ao can be expressed as the difference Ao = Ax — Ai
of ^-orthogonal operators A1 and A2 whose associated elementary operators
ϊ\ and T2 are sections of T. Similarly Bo = B7 — B8, where B7 and B8

are ^-orthogonal operators whose associated elementary operators T7 and
T8 are section of T. Applying Theorem 14.1 to A+, T; B+, T; A-, T
and 5_, T we obtain differences A+ — A3 — Aif B+ = B3 — Bif A^ = A
— A6, B-. = Bΰ — BQ of ^-orthogonal operators such that Aif B{ have the
same associated elementary operator Ti9 a section of T.

From these relations one obtains the decomposition (14.2), the section
To of T being ^-orthogonal to A and B. In view of Theorem 14.1, the
operator Tif Aif Bk ^-commute. This proves the theorem.

THEOREM 14.4. Let Aκ+, Aλ0, Aλ_ (0 < λ < oo) be the sections of A
described in Theorem 9.2 and let J5μ+, B^, B^ (0 < μ < oo) be the
corresponding sections of B. Suppose that B ^-commutes A. Then the
operators B, J5μ+, Bμ,0, 2?μ_, Bμ = 5 μ 0 + 2?μ_ ^-commute with each of the
operators A, Aκ+, Aλ0, Aλ_, Aκ = Aλ0 + Aλ_.

In order to prove this result recall, by Theorem 9.2, that T = Rκ+

— iϋλ_ is the elementary operator associated with C = A — λR. Since
i? ^-commutes with A it ^-commutes with R,C, T,RC*T and hence
also with

) , C_ = C - i2C*Γ = 2(Λ- - λ22λ.) .

The elementary operators of C+ and C_ are Rλ+ and i?λ- respectively.
It follows that B ^-commutes with Aλ+, Aλ_ and hence also with Aλ0.
Similarly Bμ+, Bμ0, B^ ^-commutes with A. The operators therefore
^-commute, as described in the theorem.

THEOREM 14.5. Suppose that B ^-commutes with A and that T is
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an elementary operator such that A— TA*T,B = TB*T. Let Aλ, Tκ

(—00 < λ < 00) be the sections A and T described in the corollary to
Theorem 9.3. Let Bμ, Tμ. (— 00 < μ < 00) be the sections of B and T
obtained by having B playing the role of A in this corollary. Then
A, Aλ, Tλ, B, Bμ., Tμ., Tλfl = TxT^Tμ, *-commute with each other. More-
over

A = Γ XdTλ = (~ Γ XdTKμ , B = Γ μdTμ = (" (°°

// the scalars are the complex numbers, then

A + iB=

15* Bounded normal operators relative to 2\ In the present
section it will be assumed that the scalars are the complex numbers.
Let T be an elementary operator from ξ> to ξ>' and let 2I(T) be the
class of all bounded operators A such that the relation

(15.1) A Γ Γ = ΪΎ*A = A

holds. Let &{T) be the class of all operators A in 2ί(Γ) that *-com-
mute with T. These are the operators A in 2ί(Γ) that satisfy the
relation A = TA* T, that is, the operators in ^ ( T) that are self-adjoint
relative to T. Every operator A in 2ί( T) is expressible uniquely in the
form A — Ax + iA2 where Ax and A2 are in 23(JΓ). The operators Ai
and A2 are given by the formulas

(15.2) Λ = i(A + TA* Γ) , A, = &A - ΓA* Γ) .

It should be observed that, by virtue of Lemma 8.4, two operators A
and B in &{T) ^-commute if and only if A Γ ΰ = BT*A.

Let 9f(Γ) be the class of all operators A in Sί(Γ) such that TA*A
— AA*T. An operator A in ^{T) will be said to be normal with
respect to T. It is clear that an operator that is self-adjoint relative
to T is also normal relative to T. An operator A in 2ί(Γ) is in ^ ( Γ )
if and only if the operators A± and A2 defined by (15.2) ^-commute. In
order to prove this fact observe that

B = A1T*A1 + A2T*A2, C = Λ T M ,

are in ^ ( Γ ) and

TA*A = B + iC , AA*T= B-iC .

Consequently ΓA*A = AA* T if and only if C = 0, that is, if and only
if Ai ^-commutes with A2. If A is in ^ ( Γ ) , there is by virtue of
Theorem 14.5, a section TΛ corresponding to each complex number a
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such that

A=[adTΛ

where the integral is taken over the complex plane.
Given an operator A in ί f(T) let <g*(A, T) be the class of all

operators B in <&{T) such that TA*B = BA*T and AT*5 = BT*A.
If 5 is in 9f(A, Γ), then TB*A = AB*T also. Moreover, TB*T is in
i f (A, T). Let 2JΪ(A, Γ) be all operators 5 in 9f(T) such that if (A, Γ)
c &(B, T). If 5 and C are in 2R(A, Γ), so also are aB + βC and
BT*C, where a and β are complex mumbers. Moreover

It follows that if we define BT*C to be the product of B and C, the
class 9Ji(A, T) is a Banach algebra with the operator Γ as a unit
element and TB*T as an involution. The subclass _S^(A, T) of all
operators B in 2K(A, Γ) such that 5 = Γ5*? 7 form a Banach algebra
over the reals.

16 Compact and reciprocally compact operators. An operator A
from § to φ' will be said to be compact if given a bounded sequence
{#J in £&A, the sequence {Aα;w} has a strongly convergent subsequence.
An operator A will be said to be reciprocally compact if its reciprocal
is compact. Since compact operators are bounded, it follows that re-
ciprocally compact operators are reciprocally bounded. It should be
observed that an operator A is compact if an only if given a weakly
convergent sequence {xn} in £%rA9 the sequence {Axn} converges strongly.

THEOREM 16.1 An operator A is of finite rank if and only if it is
compact and reciprocally bounded. An operator A is of finite rank
if and only if it is bounded and reciprocally compact An operator
A is of finite rank if and only if it is compact and reciprocally
compact.

Suppose that A is compact and reciprocally bounded. Then 9^ and
&A are closed. Let {xn} be a sequence in WA converging weakly to a
point x0. Since A is compact yn = Axn converges strongly to y0 = Aoc0.
it follows that x = A~xyn converges strongly to x0 = A~ιy. Consequently
weak convergence on ^A implies strong convergence. It follows that
<ifA is of finite dimension. Hence A is of finite rank. Conversely if A is
of finite rank, then A is compact and reciprocally bounded. The re-
maining statements follow readily.

THEOREM 16.2 Let A be the sum A = B + C of two ^-orthogonal
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operators B and C from ξ> to ξ>\ Then A is compact, reciprocally
compact, bounded, or reciprocally bounded if and only if B and C
have the same property. If C is of finite rank, then A is compact,
reciprocally compact, bounded, or reciprocally bounded if and only if
B has the same property.

The first conclusion is immediate from the definitions of the terms
involved. The second follows from the first. In view of the second
statement sections of finite rank can be disregarded in determining the
properties of compactness, reciprocal compactness, boundedness and
reciprocal boundedness.

THEOREM 16.3. An operator A is compact if and only if its re-
ciprocally bounded sections are of finite rank. Similarly, an operator
A is reciprocally compact if and only if its bounded sections are of
finite rank.

The second statement follows from the first. If A is compact, its
sections are compact and hence its reciprocally bounded sections are of
finite rank, by Theorem 16.1. Suppose now that A is an operator whose
reciprocally bounded sections are finite rank. Then as was seen in § 9,
given a number λ > 0, the operator A can be written as the sum A =
Aλ+ + Aλ of two ^-orthogonal operators such that Aλ+ is reciprocally bounded
and Aλ is of norm at most λ. In view of our hypothese Aλ+ is of
finite rank and hence is compact. It follows that A is bounded and
that & A = ξ>. Let {xn} be a sequence in <£ίA converging weakly to
zero. Then,

|| Axn || g || Aλ+xn || + || Aκxn \\ ^ \\ Aλ+xn || + λ || xn || .

Since Aλ+ is compact we have lim% = = 0 O | |^lλ +#n | | = 0. Consequently limΛ=ooSup
II Axn || ^ XM where M is a bound for the sequence \\xn\\. Since λ is
arbitrary it follows that Axn =Φ 0 and hence that A is compact, as was
to be proved.

THEOREM 16.4. An operator A is compact if and only if its
spectrum (apart from X = 0) consists of a bounded set of isolated
principal values of finite order. It is reciprocally compact if and
only if its spectrum consists of isolated principal values of finite
order bounded away from zero.

Again, the second statement follows from the first. In order to
prove the first statement we use the decomposition A = Ax+ + Aλ of
A into the ^-orthogonal sections described in § 9, where λ is an arbi-
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trary positive number. The points of the spectrum of A that exceed
λ comprise the spectrum of Aλ +. The remaining points of the spectrum
of A comprise the spectrum of Aλ. If A is compact, then Aλ+ is of
finite rank. Consequently the points of the spectrum of A that exceed
λ consist of a finite number of principal values of Aλ+, each being of
finite order. Since λ is arbitrary it follows that the spectrum of A
consists of a bounded set of isolated principal values of finite order.
Conversely if the spectrum of A consists of a bounded set of isolated
principal values of finite order, then Aλ + is of finite rank for every
value of λ. Consequently A is compact, as was to be proved.

The following corollary is immediate.

COROLLARY. / / one of the operators A, A*, A*A, AA* is compact,
then the others are compact. Similarly, if one of the operators A,
A*, A*A, AA* is reciprocally compact so also are the others.

17 Operators of finite character* By the nullity of an operator
will be meant the dimension of its null space. An operator A will be
said to be of finite character if it is of finite nullity and if its bounded
sections have finite rank, or equivalently by, if it is of finite nullity
and is reciprocally compact. Operators of this type play an important
role in the calculus of variations and in existence theorems for elliptic
partial differential equations. In fact the condition of ellipticity is
equivalent to the condition that an operator be of finite character
relative to a suitably chosen norm, provided the domain of the inde-
pendent variable is bounded. The operators described in § 4 are of
finite character.

THEOREM 17.1. An operator A is of finite character if and only
if given a bounded sequence {xn} in & Ά such that {Axn} is also bounded,
then {xn} has a strongly convergent subsequence. An operator A is of
finite character if and only if it is of finite nullity and given a
sequence {xn} in the carrier <g^ of A such that {Axn} is bounded, then
{xn} has a strongly convergent subsequence.

Suppose that A is of finite character. Then the nullity of A is
finite, and A"1 is compact. Let {xn} be a sequence in ^ such that
{Axn} is bounded. Setting yn = Axn we have xn = A~xyn. Since {yn} is
in the carrier of A"1 and A"1 is compact it follows that {xn} has a
strongly convergent subsequence. Suppose next that {xn} is a bounded
sequence in & A such that {Axn} is bouneded. Then x is expressible in
the form xn = xn0 + xnl, where xn0 e 5Jΐ̂  and xnl e <^Λ. Since $lA is of
finite dimension and Axn = Axnl, the boundedness conditions imposed
imply that {xn} has a strongly convergent subsequence. The criteria
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given in the theorem are accordingly necessary conditions for A to be
of character.

Suppose conversely that every bounded sequence {xn} in 2$ A for
which {Axn} is bounded has a strongly convergent subsequence. Then
the nullity of A is finite, since otherwise there would exist a orthonormal
sequence {xn} in sJίA. Such a sequence would have Axn = 0 and would
possess no strongly convergent subsequence. The reciprocal A"1 is
bounded. If this were not so we could select a sequence {xn} in ^A

such that || xn || = 1 and || Axn || ^ \\n. In view of the last inequality
the sequence could be chosen so as to converge strongly to a vector x0.
Since A is closed it would follow that xQ would be in <g ,̂ || χQ\\ = 1 and
Ax0 =0. This is impossible. Hence A'1 is bounded. Consider next a
bounded sequence {yn} in C<^A-Ύ. Set xn = A~fy». Since A'1 is bounded
the sequence {xn} is also bounded and hence, by our criterion, has a
strongly convergent subsequence. The operator A'1 is therefore com-
pact. Hence A is of finite character, as was to be proved.

COROLLARY 1. Let A be an operator from ξ> to ξ>' and let B be
the operator that maps a point x in &A into the pair {x, Ax} m § x § ' ,
The nullity of B is zero. Moreover A is of finite character if and
only if B is of finite character.

COROLLARY 2. / / B and C are ^-orthogonal operators and C is
finite rank, then A = B + C is of finite character if and only if B
is of finite character.

Let T be an elementary operator such that A = TA* T and let R
be the elementary operator associated with A. By Theorem 9.1, T is
expressible uniquely in the form T = To + R+ — J?_ where TQ, R+, R-
are ^-orthogonal and R = R+ + jβ_. The operator T will be said to be of
finite index relative to A in case one of the operators R+ and i?_ is of
finite rank. The minimum of the ranks of R+ and R- will be called
the index of T. Clearly the index of T is the minimum of the ranks
of the sections A+ = R+A*R+ and A- = J?_A*ίL of A. In the self-
adjoint case with T — /, the identity, this index is the smaller of the
ranks of the orthogonal nonnegative operators Alf A2 such that A — Ax

— A2. In this event this index is frequently called the index of A or
of the quadratic form (Ax, x).

THEOREM 17.2. Let T be an elementary operator such that TA* T
= A. Every bounded sequence {xn} such that {{AxnJ Txn)} is bounded
has a strongly convergent subsequence if and only if A is of finite
character and T is of finite index relative to A.
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This criterion, stated in a somewhat different form, is the basis
for a large class of existence theorems for weak solutions of partial
differential equations.

Since || T*Ax || = || Ax || it follows from Theorem 17.1 that A is
finite character if and only if T*A is of finite character. Moreover
T*A is self-adjoint. It follows that it is sufficient to consider the case
A — A* and T = I. Let {xn} be a bounded sequence such that {Axn} is
bounded. From the inequality

\(Ax,x)\^\\x\\\\Ax\\

it follows that {(Axn, xn)} is bounded. Consequently if the criterion
described in the theorem holds, then {xn} has a strongly convergent
subsequence. By virtue of Theorem 17.1 the operator A is of finite
character. It remains to show that if A is expressed as the difference
A — B — C of two orthogonal nonnegative self-adjoint operators, then
either B or C is of finite rank. If this were not the case one could
select an orthogonal sequence {yn} in <g=i and {zn} in <g*σ such that
(Bym, yn) = (Czmzn) = Smn. The vectors xn = an(yn + zn) then satisfy the
relation

(Axm, xn) = aman[(Bym, yn) - (Cym, yn)] = 0 (m, n = 1, 2, 3 . . ) .

Choosing an such that || xn || = 1, we obtain an orthogonal sequence {xn}
such that (Axn, xn) = 0. This sequence cannot have a strongly con-
vergent subsequence. Consequently either B or C is of finite rank, as
was to be proved.

Conversely suppose that B or C is of finite rank and A = B — C is
of finite character. For definiteness suppose that C is of finite rank.
Then B is of finite character. Consider now a bounded sequence of
vectors {xn} in <^A, such that {(Axn, xn)} is bounded. Select yn in ^B

and zn in <ĝ  such that #n = j / w + zn. Then

(ABW, a?w) = (Byn, yn) - (C«n, z) .

It follows that {(Byn, yn)} is bounded. Consequently, {yn} has a con-
vergent subsequence. Since {zn} is restricted to a finite dimensional
subspace of £grA, it follows that {xn} has a strongly convergent subse-
quence. This completes the proof of the theorem.

THEOREM 17.3. Let A be an operator from ξ> to ξ>' of finite char-
acter and let B be an operator from φ to a Hubert space φ". / /
&B a 2$A, then B is of finite character.

Since &B c &A there is a constant a such that if x is in ^ *
then
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II A » 1 1 ^ o f { | | fell+ 11 a? | | } .

If {xn} is a sequence in ^rB such that || xn ||, || Bxn \\ are bounded, then
|| Axn || is bounded also. It follows from Theorem 17.1 that {xn} con-
verges strongly in subsequence. Consequently B is of finite character,
by virtue of Theorem 17.1.

A linear transformation K from φ to φ " will be said to be compact
relative to A if &κ z> ϋ ^ and if for every bounded sequence {#„} in
£ ^ such that {Axn} is bounded, the sequence {Kxn} has a strongly
convergent subsequence.

THEOREM 17.4. Let A be an operator from ξ> to £>' of finite char-
acter. Let K be an operator from § to ξ>" such that &κ D <2tA.
Then K is compact relative to A if and only if given a positive
number a there is a number β such that the inequality

(17.1) \\Kx\\Sa\\Ax\\+β\\x\\

holds on &A.

Suppose that K is compact relative to A. Suppose further there
is an a > 0 such that (17.1) holds on £&Λ for no constant β. We can
select a non-null sequence {xn} such that

\\Kxu\\^a\\Axu\\+n\\xn\\.

We can suppose that || Kxn \\ = 1. Then || Axn \\ is bounded and xn =^0.
Since K is compact relative to A it follows that Kxn =Φ 0, in subsequence,
contrary to the fact that || Kxn || = 1.

Suppose that (17.1) holds as stated. Let {xn} be a bounded sequence
such that {Axn} is bounded. A subsequence, rename it {xn}, converges
strongly to a vector x0. The point x0 is in 3f A since A is closed.
Given a > 0 choose β so that (17.1) holds. Then

II K(xn - B0) II ^ a || A(xn - x0) \\+β\\χn- χ0 \\

and

lim sup || Kxn — Kx01| ^ a lim sup || A(xn — x0) \\ .

Since α: is arbitrary it follows that {Kxn} converges strongly to Kx0.

The operator K is therefore compact relative to A, as was to be proved.

THEOREM 17.5. Let A and K be operators from ξ> to $' such that
K is compact relative to A. The operator A is of finite character if
and only if B = A + K is an operator of finite character.
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In order to see t h a t B is closed when A is of finite character let
{xn} be a sequence such t h a t xn =Φ xQ, Bxn => yn. In view of (17.1) with
a<\

|| Kxn || ^ α || A s . || + β \\ xn \\ ̂  a \\ Bxn \\+a\\ Kxn \\+β\\ xn || .

We see that {Kxn} is bounded. Consequently {Axn} is bounded also. It
follows that {Kxn} converges to Kx0 and that Axn =Φ yQ — Kx0. Since A
is closed #0 — Kx0 = AxQ, that is, y0 — Bx0. The operator B is according-
ly closed. Since B and A has the same domain, B is of finite character.
Conversely if B is an operator of finite character, so also is A since

In a similar manner we obtain

THEOREM 17.6. Let A be an operator from ξ> to ξ>' and let K be an
operator from ξ> to ξ>" that is compact relative to A. Let B be the
operator that maps a point x in &A into the point {Ax, Kx] in £>' x
ξ>". Then A is of finite character if and only if B is an operator
of finite character.

THEOREM 17.7. Let A be an operator from ξ> to ξ> and suppose
that every bounded sequence {xn} in &Λfor which {(Axn, xn)} is bounded
has a strongly convergent subsequence. Then A is of finite character.
Moreover, a linear subclass & of &A on which {Ax, x) = 0 is of
finite dimension.

The proof of this result is like that of Theorem 17.2 and is equiva-
lent to the result given in Theorem 17.2 is A = A*. In this theorem
the role of (Ax, x) may be replaced by (Ax, x) + (x, Ax).

18. Elliptic partial differential equations* The purpose of the
present section is to indicate the connections between the results de-
scribed in the preceding pages with the theory of elliptic partial differ-
ential equations. To this end let β be a bounded region in an m-
dimensional Euclidean space of points t = (tl9 •••, tm). The boundary of
Ω will be assumed to be nonsingular and to be of class C°°. The results
given below are valid under much weaker assumptions but we shall not
consider them at this time.

The symbol a will be used to designate an m-tuple a = (alf , am)
of nonnegative integers. Let \a\ = aλ + + am. The symbol Da.
will be used to denote the differential operator

v ' dt? dtT

Let ξ>n4 be the class of all Lebesgue square integrable complex valued
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functions xί(t) (t e Ω; j = 1, , n; | a \ — k), normalized so as to be
equal to the limit of their integral means whenever this limit exists
and to be zero elsewhere. The class ΪQnk with

(j and a summed) as its inner product forms a Hubert space over the
field of complex number. The symbol xk will be used to denote an
element in &nk. The cartesian product of φn 0, φ n l , •••,&,* will be denoted
by φ£. Its elements x are of the form x = (a?0, a?lf , xk). An element
a; in φ£ such that &0: a?'(ί) is of class C* and such that xr is the set of
derivatives xί — DΛx

5 \a\~r of order r will be denoted by <&\% The
closure of <^t will be denoted by 3ϊk

n. In view of our normalization
of the functions in φ n r , it can be shown the formula x*(f) = D^xJ(t)
I a I = r ^ k holds almost everywhere on Ωy where xJ(t) are the functions
defining x0 in (a?0, xlf , a?A). The projection of &ΐ in $nk will be
denoted by Ξίnk. The class ^ n f c is a closed subspace of ξ)nJb.

Since an element (x0, xlf •••,»*) in ^ J is uniquely determined by
its inital element x0, a function Gk on ξ>°n = φw 0 to §^ is defined. The
range of the function is 3t\. Its domain &Θ* is the projection of
3f\ on ξ)n0. The functions Gk (k — 1, 2, 3, •) have the following pro-
perties:

(1) The function Gk is a closed and dense linear transformation
from ξ> = ξ)TO0 to φϊ.

(2) The operator Gfc (& > 0) is of finite character and zero nullity.

(3) The operator Gά {j < k) is compact relative to Gk.

These results follow from well known connections between partial
derivatives and can be found in papers on this subject.

Let C be a bounded operator from 3ίk

n (k > 0) to a Hubert space
£>g0. Given a restriction Bk of Gk that is closed and dense in ξ> = ξ>n0>
the product Ak = CBk defines a dense linear transformation. Such an
operator will be said to be elliptic in case it is closed. This definition
of ellipticity is an extension of the one usually given. An elliptic
operator of this type is necessarily of finite character by Theorem 17.3
since Bk has this property. It is clear that Ak is elliptic if and only if
there is a constant h > 0 such that

(18.1) \\Bkx\\^h[\\Akx\\ + \\x\\]

for all x in &B]C- It should be observed that if Ak (k ̂  1) is elliptic,
then the equation Akx = y has a solution x for all y orthogonal to the
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solutions z of A*kz = 0. The existence of strong solutions is thereby
established.

In order to illustrate these ideas consider the case in which the
operator C is defined by a formula of the form

(18.2) c δ j ( t ) x i ( t ) (δ = l,-. , q ; j = l , . . - , n : \ a \ ^ k )

where j and a are summed and the coefficients are continuous on the
closure of Ω. Select Bk — Gk. Then Ak — CBk is elliptic, that is, an
inequality of the form (17.1) holds if and only if the following two
conditions are met:

(1) Given a point t m Ω there is no non-null set of real numbers
ξ = (ξ19 . . . , ξm) and no non-null set of complex numbers ξ = (ξ\ . , ζn)
such that the relations

(18.3) Clψζ3 = 0 (σ = 1, , g, I α I = fc)

holds, where ξ* = ξpξp | ϊ » .
(2) Given a point t on the boundary of Ω the relations (18.3)

cannot be satisfied by non-null complex numbers ζ = (ζ1, , ξn) and by
non-null numbers ξ = (ξlf , ξm) whose normal component is complex
and whose tangential components are real.

If the first of these conditions is met then Ak = CBk is elliptic,
where Bk is the restriction of Gk defined by the closure of the subclass
of 3ϊ\ whose elements are continuous and have x3

a(t) = 0 (| a \ < k) on
the boundary of Ω.

These and related results can be found in the recent papers6) on
partial differential equations by Aronszajn Browder, Friedrichs, Gaarding,
Hormander, Morrey, Nirenberg, Schechter and the author.

For a list of references see Hestenes, Magnus R. Quadratic Variational-theory and
linear elliptic partial differential equations to be published soon in the Transactions of the
American Mathematical Society.





ON A THEOREM OF FEJER

Fu CHENG HSIANG

1. Let

T: (τnv) (n = 0,1, 2, •; v = 0,1, 2, •)

be an infinite Toeplitz matrix satisfying the conditions

(i ) lim τnv = 0

for every fixed v,

oo

(ϋ) l imΣ^nv^l

and

(iϋ) Σ I r v 1 ̂  K ,
v=o

K being an absolute constant independent of n.
Given a sequence (Sn) if

oo

lim Σ τ«vSv = S ,
v=o

then we say that the sequence {Sn) or the series with partial sums Sn is
summable (T) to the sum S.

2. Suppose that f(x) is integrable in the Lebesgue sense and periodic
with period 2π. Let

f{x) α0 + Σ (an cos nx + bn sin nx) .

Let

Σ nφn cos Tiα? — an sin ^a;) = Σ Bn{x)

be the derived series of the Fourier series of f(x). Fixing x, we write

Fejer [1] has proved the following

Received July 20, 1960.
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THEOREM A. If f(x) is of bounded variation in (0, 2π), then {Bn(x)}
is summable (C, r) to the jump l{x) = {f(x + 0) — f(x — 0)}/τr for every
r > 0 at each point x.

Recently, Siddiqi [3] extended Fejer's result and established the
following

THEOREM B. Let A: (λnv) be a triangular Toeplitz matrix, i.e.,
\v — 0 for v > n. If it satisfies, in addition, the condition

(iv) Σ I 4λ., I = 0(1)
v=o

as n—• oo, then {Bn(x)} is summable (A) to l(x).

It is known [2] that a series which is summable by the harmonic
means is also summable (C, r) for every r > 0 but not conversely. We
take, for the (C, r) means, λnv = Ar

nz\IAr

n,

A: = Γ(n + r + l)IΓ(n + l)Γ(r + 1) ,

and for the harmonic means, Xny = l/(n — v + 1). Both satisfy (iv).
Thus, we infer that Siddiqi's theorem contains Fejer's as a special case.

In this note, we develop Siddiqi's theorem into the following g eneral
form for the summability (T) of {Bn(x)} at a given point.

THEOREM. If ψjt) is of bounded variation in the neighborhood of
t = 0 and absolutely continuous in (η, π) for any 0<η<π, then \Bn(x)}
is summable (T) to the jump l(x) at x.

3. Let us consider

0"n(α) = Σ τ*&(x)

= — JtτStMv sin vtdt
7Γ v=o Jo

= l(x) Σ Γ»v + — Σ «̂v ("cos vtdψx(t)
v=o 7Γ v=o Jo

7Γ v=o

We are going to prove that ΣτnvΛ = 0(1) as n—> oo. Since ψx(t) is of
bounded variation in the neighborhood of t — 0, for a given ε > 0, we
can choose δ > 0 such that

Γ I dψx{t) \ < ε .
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Write

COS Vtdψx(t)

= U + HI' ,

say. Then

V T T*
v=0

Σ.\τnv\[\dψx(t)
V = 0 J 0

V = 0

g Ke .

Remembering that ψx(t) is absolutely continuous in (8, π), we have

1 cos vtdψx(t) = I cos vtψ'x(t)dt .
J δ J δ

For the given ε > 0, we can find vQ such that

cos vtψx(t)dt < ε
δ

for v < vQ by Riemann-Lebesgue's theorem. Fixing v0, we can take a
positive integer ^ 0 making | τ n v | < ε/(v0 + I) 0 tί v ^ v0, n < nQ. If we
write

o Σ

say, then

— Λ + I2 J

i i l ^ Σ

+ i)
= Mε .

for n > %0, where

M=\'\ ψ'x(t) I dt .
Jo

1,1 = Σ 1
v=vo+i

CO

s Σ I
v=vo+i

v ("cos yt ψ ;(t)dt
J δ
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o

S Kε

by (iii). From the above analysis, it follows that

-2K)s

for n > n0. Since ε is an arbitrary quantity, we obtain ΣτnJv = 0(1) as
n —* co. This proves the theorem.
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ON TV-HIGH SUBGROUPS OF ABELIAN GROUPS

JOHN M. IRWIN AND ELBERT A. WALKER

In a recent paper [2] the concept of high subgroups of Abelian
groups was discussed. The purpose of this paper is to give further
results concerning these high subgroups. All groups considered in this
paper are Abelian, and our notation is essentially that of L. Fuchs in
[1], Let N be a subgroup of a group G. A subgroup H of G maximal
with respect to disjointness from N will be called an N-high subgroup
of G, or JV-high in G. When N'= G1 (the subgroup of elements of in-
finite height in G), H will be called high in G.

After considering ΛΓ-high subgroups in direct sums, we give a char-
acterization (Theorem 3) of iV-high subgroups of G in terms of a divisi-
ble hull of G. Next we show (Theorem 5) that if G is torsion, iVg G1,
and H is ΛΓ-high in G, then H is pure and (Lemma 7) the primary com-
ponents of any two ΛΓ-high subgroups have the same Ulm invariants
(see [3]). These results generalize the results in [2]. The concept of
I'-groups is introduced, and it is shown that any two high subgroups of
torsion J-groups are isomorphic. Further, torsion I'-groups are char-
acterized in terms of their basic subgroups. Theorem 3 of [2] is generalized
to show that high subgroups of arbitrary Abelian groups are pure. This
leads to the solution of a more general version of Problem 4 of L. Fuchs
in [1], Finally, the question of whether any two high subgroups of a
torsion group are isomorphic is considered, and a theorem in this direction
is proved.

Preliminaries.

LEMMA 1. Let M and N be subgroups of a primary group G
such that M is neat in G and M[p]Q)N[p] = G[p\. Then Mis N-high
in G.

Proof. Suppose M is not iV-high in G. Then there exists an N-
high subgroup S of G properly containing M. Let 0 Φ s + M be in
(SjM) [p]. By the neatness of S in G ([1], pg. 92) we may suppose
that seS[p] . But this contradicts M[p] 0 N[p] = G[p], and so M is
iV-high in G.

As a consequence of Lemma 1, we obtain a standard

COROLLARY. ([3], pg. 24). Let G be a primary group, and Ha pure
subgroup containing G[p]. Then H=G.

Received August 10, 1960.
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Proof. Purity implies neatness. Now put N= 0 in Lemma 1.
A useful generalization of Lemma 1 to torsion groups is

LEMMA 2. Let M and N be subgroups of a torsion group G such
that M is neat in G and M[p] φ N[p] — G[p] for each relevant prime
p. Then M is N-high in G.

Proof. Use the proof of Lemma 1 with the observation that since
S properly contains M, (S/M)[p] Φ 0 for some relevant prime p.

Concerning ΛΓ-high subgroups in a direct sum, we have

THEOREM 1. Let G = ΣGa be an arbitrary direct sum of torsion
groups, where Ha and Na are subgroups of GΛy and where H& is
Na-high in GΛ for each a. Let N = ΣNΛ. Then H = ΣHa is N-high
in G.

Proof. First notice that H is neat in G. To see this, use the neat-
ness of Ha in Go, for each a (see [2] Lemma 10). Next observe that
G[p] = ΣGJ[p] = ΣHa[p] φ ΣNΛ[p] = H[p] φ N[p] for each relevant prime
p. Now apply Lemma 2 to get H to be ΛΓ-high in G.

An interesting result concerning high subgroups (which are our main
interest) in a direct sum is a corollary of Theorem 1.

THEOREM 2. Let G = ΣGΛ be an arbitrary direct sum of torsion
groups where Ha is a high subgroup of Ga for each a. Then H = ΣHa
is high in G.

Proof. By [2], Lemma 9 we have G1 = Σ(Ga)
1. Now use Theorem

1 and the definition of high subgroup.

Divisible hulls and high subgroups. Now we shall discuss the nation
of a divisible hull for a group G, and the connection of such a hull with
high subgroups. A group E minimal among those divisible groups con-
taining G as a subgroup will be called a divisible hull of G. We need
a few lemmas. The following lemma is almost obvious, and its proof is
omitted.

LEMMA 3. Let E be a divisible hull of a torsion group G. Let
£Ί = ΣEP and G = ΣGP. Then Eλ — E, and Ep is the unique divisible
hull of Gp in E for each relevant prime p.

LEMMA 4. Let D be a divisible hull of a mixed group G, and E
be a divisible hull of the torsion subgroup T of G in D. Then D~E@F
where E is torsion and F is torsion free divisible.
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Proof. Since E is divisible, it is a direct summand of D. Thus
D — E 0 F for some subgroup F of D. That E is torsion follows from
Lemma 3. Next we show that the torsion subgroup TF of F is zero.
To see this, consider TF f) G a TF f] T c E Π F = 0 to get TF n G = 0.
Then by Kulikov's Lemma, ([1], pg. 66) applied to D, TF = 0 and i*1 is
torsion free. That JP is divisible is clear, and the lemma is proved.

The following theorem gives a characterization in terms of divisible
hulls of JV-high subgroups of a torsion group G.

THEOREM 3. Let N be any subgroup of a torsion group G, and E
be a divisible hull of G with D a divisible hull of N in E. Then the
set of N-hίgh subgroups of G is the set of intersections of G with com-
plementary summands of D in E.

Proof. Let H = A Π G, where A φ f l = iS. Now by [2], Lemma
1, and [1] pg. 67, we have for each relevant prime p,

G[p] = E[p] = A[p] 0 D[p] = (A n G)[p] 0 N[p] = H[p] 0 N[p] .

By [1] Pg. 92, H is neat in G, and finally by Lemma 2, H is iV-high in
G. Now for the converse, suppose H is iV-high in G, so that if n N = 0.
Now H 0 D = 0. To see this, notice that (H 0 D) Π N = H 0 N ^= Q,
and by Kulikov's lemma, i ϊ (Ί -D = 0. Since Z) is an absolute direct
summand (see [1]), there exists A containing H with A 0 D = #. But
ί ί c i f l G , and since ( A n G ) ί l i V = 0 , by the maximality of H with
respect to H Π N — 0, we have if = A Π G.

The reader will note that in particular Theorem 3 yields a character-
ization of high subgroups in torsion groups.

In general, a group G may have many high subgroups. It is even
possible that H Π K = 0 for two high subgroups H and K of G. The
following theorem indicates the extent of the non-uniqueness of iV-high
subgroups.

THEOREM 4. Let G be a primary group, let N be a subgroup such

that I N[p] I = I G | and such that [G[p]: N[p] = | G |. Tfeew ίλerβ eαjisί

2iGI distinct N-high subgroups of G. Furthermore, there exists an in-

dependent set {Hώ«eR of N-high subgroups of G such that \R\ = \G\.

Proof. Let H be an iV-high subgroup of G. By [2], G[p] =
H[p] © N[p]. Clearly | ί ί[p] | - | N[p] | = | G |. Let fffo] = Σ.e*O*>
and N[p] - Σβerθβ>. Then | S | = | T~\ = \G\. There exists 21(?1 one-to-
one mappings of S onto T. Let / be such a mapping, and let

Pf — Σ \̂ α> + Vficc)/
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If g is any one-to-one mapping of S onto T such that / Φ g, then it is
easy to see that Pf φ Pg. Let Hf be an iV-high subgroup of G contain-
ing Pf. Then if/[p] = Pf, and since Pf Φ Pg, it follows that Hf φ Hg.
Hence there exist 2m iV-high subgroups of G. Let T = \JβeRTβ, where
I Γβ I = I Γ|, I R I = I T I, and Tβ Π Tδ = φ if β Φ S. That is, partition
T into I TI subsets each of cardinal | T\. Let fβ be a one-to-one mapping
of S onto Γβ, and let Hβ be an JV-high subgroup containing

It is straightforward to verify that {Pβ}βeR is an independent set of sub-
groups of G, that Hβ[p\ = Pβ, and hence that {Hβ}βeR is an independent
set of subgroups such that \R\ = \G\. This concludes the proof.

It is easy to find examples of reduced primary groups G such that

Purity of JV^high subgroups of torsion groups. We now state and
prove a generalization to iV-high subgroups of torsion groups of [2]
Theorem 3, namely that high subgroups of torsion groups are pure.

THEOREM 5. Let N be a subgroup of a torsion group G with Na G\
and let H be an N-high subgroup of G. Then H is pure in G.

Proof. That it suffices to consider the primary case here follows
from the fact Hp is JV,-high in Gp (see [2] Lemma 10 and [2] Lemma
11). So let G be primary. Now by [2] Lemma 1, we have G[p] =
H[p] 0 N[p]. Since G\p] z> N[p], then Gλ[p] = (H n G 1)^] 0 N[p).
Now let Hλ be an (H Π G1) [p]-high subgroup of H. Since JV-high sub-
groups are neat (see [1] c, d pg. 92) and neatness is transitive, we have
that fli is neat in G. By [2] Lemma 1, H[p] = Hλ[p] 0 (if n Gι)[v], so
that G[p] = H\p\ 0 Gι[p]. An application of Lemma 1 yields H, high in
G. Finally, by [2], Lemma 8, Hx contains B basic in G, so that by [2]
Lemma 2, if is pure in G as stated.

Before stating some corollaries, we would like to pose the following
question: characterize all subgroups T of an Abelian group G such that
Γ-high subgroups of G are pure. Suitable examples are easy to find
which show that just any subgroup T will not do.

A couple of corollaries of Theorem 5 are

COROLLARY 1. Let Nλ and N2 be subgroups of a torsion group G
with Nλ gΞ N2 S G1. Then every N^high subgroup of G contains an
N2-high subgroup, and in particular every Nλ-high subgroup K contains
a subgroup H high in G.
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Proof. The proof is similar to the proof of Theorem 5.

COROLLARY 2. Let N be a subgroup of G1 in a torsion group G,
and let S be an infinite subgroup of G with S Π N = 0. Then there
exists a subgroup K pure in G with | K | = | S | and K Π N = 0.

Proof. Substitute N for G1 in the proof of [2], Theorem 2.
This last corollary is a generalization of the solution in [2] of Fuchs'

Problem 4.

I'-groups The following ideas arose from an investigation of the
question of whether or not all high subgroups of a given group are iso-
morphic. A natural query in this direction is: If one of the high sub-
groups of a given group G is a direct sum of cyclic groups, are all of
them direct sums of cyclic groups? The answer for torsion groups is
yes. It is this observation that gives rise to so called I'-groups. Before
discussing this notion further, we need a few lemmas.

LEMMA 5. Let N be a subgroup of a torsion group G with H and
K both N-high subgroups of G. Then ((H(BN)IN)[p] = ((K®N)IN)[p]
for each relevant prime p.

Proof. For heH we have that o(h + JV) = p if and only if o(h) = p.
Suppose h6 H[p]\(K Π H). Then there exists keK, neNwith h — k~
n, whence o(k) = p. Thus h + N = (k + N) e ((iΓ0 N)/N)[p]; and since
p was arbitrary, we have by symmetry that

P θ N)IN)[p] - ((K®N)IN)[p]

as stated.

LEMMA 6. Let N be a subgroup of a torsion group G with NQG1.

Let H be an N-high subgroup of G. Then ((HQ) N)/N) is pure in
GIN.

Proof. Suppose m(g + N) = h + N for some heH, geG, ma non-
zero integer. Then mg — n — h for some neN, and since neG1 and
H is pure (Theorem 5), we have h = mhτ for some hλ e H. Thus h + N =
m(/&! + ΛΓ) and the lemma is proved.

COROLLARY. Let N be a subgroup of a reduced torsion group G
with N £ G1 Φ 0, and let H be an N-high subgroup of G. Then H is
not closed,
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Proof. This follows easily from a theorem of Kulikov and Papp
([1] pg. 117).

LEMMA 7. Let H and K be any two N-high subgroups of a primary
group G with N a subgroup of G1. Then for all positive integers n

(a) pnH is N-high in pnG,
(b) pnH is pure in pnG,
(c) {pn{{H@ N)IN))[p] = (*>»((#θ N)IN))[p]f

(d) H, K, and G have the same nth Ulm invariants (see [3]).

Proof, (a) Use the proof of Theorem 5 (e) in [2] and the fact that
N g pnG for all n.

(b) Use (a), N g (pnG)\ and Theorem 5.
(c) First notice that pn((Hζ& N)/N) = {pnH@ N)jN. Now (c) follows

immediately from Lemma 5 applied to the right sides of this equation
and the corresponding one for K.

(d) The proof is similar to that of Theorem 6 in [2].
The following theorem is a slight generalization of the fact that

any two high subgroups of a countable group G are isomorphic. (See
[2], Theorem 5 (u).)

THEOREM 6. Let N be a subgroup of a countable torsion group G
with N g G\ and G1 elementary. Then any two N-high subgroups H
and K of G are isomorphic.

Proof. Write G = ΣGP9 H = ΣHP, K = ΣKP. Now Hp and Kp are
both Np high in Gp, and Np S G\ for each relevant prime p. Let
Hp = (HP 0 NP)INP and Kp = (Kp 0 Np)/Np. Using Lemmas 5 and 6 and
the fact that G1 is elementary, we get immediately that (pωHp)[p] —
(pωKp)[pl and t h a t (pω+Ήp)[p] =_(pω+1KP)[p] = 0. Thus for_α ^ ωf the

<̂ th Ulm invariants of Hp and Kp are the same. Since Hp ~ Hp and
KP = KP, Lemma 7 (d) implies that Hp and Kp have the same Ulm in-
variants. Since G1 is elementary, H and K are reduced, and Ulm's
theorem yields H ~ K.

REMARK. In Theorem 6, if we take N to be a subgroup of G1 such
that N[p] Φ Gι[p\, then neither H nor K will be a direct sum of cyclic
groups as is easily seen.

A Σ-group is any group G all of whose high subgroups are direct
sums of cyclic groups. This means that in a torsion I'-group every high
subgroup is basic. This implies further that in J-groups, every high
subgroup is an endomorphic image. Examples of I'-groups are ver^ to
easy to find. For instance, direct sums of countable groups turn out to
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be ^-groups. Also, any group G such that G/G1 is a direct sum of cyclic
groups is a Σ-group. (See the proof of Theorem 7.) For a non-I'-group,
see [2], Theorem 5(0-

THEOREM 7. Let H and K be high subgroups of a torsion group
G. Then if H is a direct sum of cyclic groups, so is K. Moreover

Proof. Let S be the image of S under the natural homomorphism
of G onto G/G1. Now H = H, K = K, and by Lemma 5 we have K[p] =
H[p] for each relevant prime p. By [3], Theorem 12, we have that
H[p] is the union of a sequence Pn of subgroups of bounded height in
H. The purity of H (Theorem 5) tells us that Pn has bounded height in
K for each n. Hence by [3], Theorem 12, each Kp is a direct sum of
cyclic groups, so that K is a direct sum of cyclic groups. Thus K, which
is isomorphic to Ky is a direct sum of cyclic groups. Since H and K
are both basic in G, we have H = K. Thus we have shown that in a
torsion group, if one high subgroup is a direct sum of cyclic groups,
they all are, and they are all isomorphic.

From Theorem 7 we see that if in a torsion group G there exist
two non-isomorphic high subgroups, then no high subgroup is a direct
sum of cyclic groups. The next theorem shows that torsion I'-groups
are closed under direct sums.

THEOREM 8. For torsion groups it is true that a direct sum of
Σ-groups is a Σ-group.

Proof. By Theorem 2, a direct sum of highs is high. But such a
direct sum is basic. An application of Theorem 7 completes the proof.

COROLLARY. A direct sum of countable torsion group is a Σ-group.

Proof. It suffices by Theorem 8 to verify that a countable torsion
group is a J-group, and this is very easy.

REMARK. Examples exist of torsion groups G such that G/G1 is a
direct sum of cyclic groups, but such that G is not a direct sum of
countable groups. Therefore, we see that the class of torsion Jt'-groups
properly contains the class of all torsion groups that are the direct sum
of countable groups.

The next theorem gives an interesting characterization of torsion
I'-groups.

THEOREM 9. A torsion group G is a Σ-group if and only if G



1370 JOHN M. IRWIN AND ELBERT A. WALKER

contains a maximal basic subgroup.

Proof. If G is a I'-group, then any high subgroup will be a maximal
basic subgroup of G. Now suppose G contains a maximal basic subgroup
B. Let H be a high subgroup containing B, and suppose B Φ H. By
[1] pg. 114, there exists Bλ basic in H with Bλ > B. Since H is pure
and G/H is divisible, Bλ is basic in G, a contradiction. Therefore B~H,
and G is a I'-group by Theorem 7.

The next theorem is a result concerning the I'-groups of a torsion
group.

THEOREM 10. Every torsion group G contains a Σ-subgroup R pure
in G such that Rι = G1.

Proof. First if G1 = 0, put R = B basic in G. Also if G is a £-
group, but R — G. So suppose that G1 =£ 0 and G is not a I'-group. Let
5 be a basic subgroup of G. Embed ΰ in a high subgroup H of G. By
Theorem 8 and the assumptions on G, H/B Φ 0. 5 is basic in if so that
G/B = i7/£ 0 .#/£, where the divisibility of H/B guarantees that R/B
may be chosen to contain (G 1 0 B)jB. Hence R contains G1. The
purity of R/B in G\B gives us that R is pure in G. Hence iϋ1 = G1.
Now H n i2 = B, so that G[p] - ff[p] 0 Gx[p] and

= (Λ Π IT)[p] θ ^[P]

By Lemma 2, J5 is high in R so that by Theorem 7, R is a I'-group,
and the proof is complete.

We do not know whether every subgroup of a 2"-group is a I'-group.
However, every pure subgroup of a torsion I'-group is a I'-group. In
fact, we have

THEOREM 11. Every subgroup L of a torsion Σ-group G with V —
L Π G1 is a Σ-group.

Proof. Embed a high subgroup HL of L in a high subgroup H
G. Since G is a J-group, H is a direct sum of cyclic groups and hence
so is HL. Now apply Theorem 7 to L to get that L is a J-group.

COROLLARY. Every pure subgroup R of a torsion Σ-group G is a
Σ-group.

Proof. R1 = JR Π G\ and Theorem 11 then yields the desired result.

COROLLARY. Every pure subgroup of a direct sum of countable
torsion groups is a Σ-group.
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High subgroups in mixed groups. In this section we will discuss
some properties of high subgroups of arbitrary Abelian groups and
generalize some of our results for the torsion case. A lemma which is
useful is

LEMMA 8. Let S be any subgroup of an Abelian group G with
S Π G1 = 0. Then for any subgroup T with (Γ/S) Π (G/S)1 = 0, we have

Proof. Suppose T Π G1 φ 0. Then (T/S) n (G/S)1 Ψ 0.

The following theorem was proved in [2] for the torsion case. The
fact that G1 is divisible in the torsion free case makes this case easy, so
we proceed directly to the general case.

THEOREM 12. Let H and K be any two high subgroups of a group
G. Then

(a) GjH is divisible
(b) GjH is a divisible hull of (G1 0 H)/H ~ Gι

(c) G/H^G/K.

Proof, (a) Let T\H be the torsion subgroup of G\H. Now T/H
is divisible, for if not, T\H would have a non-zero cyclic direct summand
L\H. But LjH would be a direct summand of GjH since T/H is pure
in GjH. Hence (L/H) Π (G/H)1 = 0, and Lemma 8 gives us that
L Π G1 ~ 0. Consequently H is not high in G, a contradiction. Thus
we have G/H= T/ H@F/H, where F/H is torsion free. This means
that (F/H)1 is divisible, whence F/H = (F/H)1 © R/H. Now clearly,
(R/H) n (G/H)1 = 0, so that by Lemma 8, R - H, and G/H is divisible
as stated.

(b) As a divisible group, G/H must contain a divisible hull DjH of
(G 10 H)IH. Put G/H = DjH® L\H. Clearly L Π G1 - 0, hence L\H - 0
and (b) is proved.

(c) This follows from (G1 0 H)/H = G1 = (G1 0 K)jK and the fact
that divisible hulls of isomorphic groups are isomorphic. Thus we see
that G/H is a structural invariant of G.

We shall now discuss a generalization to arbirary Abelian groups of
a theorem proved in [2] for the torsion case. Here again, the torsion
free case is easy (G1 is divisible), and for a torsion free group G we see
easily that all high subgroups are isomorphic. First we need

THEOREM 13. Let T be the torsion subgroup of an Abelian group
G, H be a high subgroup of G, and TB be the torsion subgroup of H.
Then Tπ is high in Γ,
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Proof. We need only consider the case of a mixed group G. Let
E be a divisible hull of G with Dπ and Doi divisible hulls in E of H
and G1. Then E=DHQ)DGι (see [2]). Next let DTjf and DTG, be
divisible hulls of TΠ and To\ in D^ and Z^i respectively. Then

E=DH®DGl^ DTn 0 A θ DTθl 0 A = ΰ ^ θ ^ i θ

Applying Lemmas 3 and 4 to DΠ and ZV, we have that TE = DTH(£)TTG1

is the torsion subgroup of E, and A ® A is torsion free. Clearly
(Lemma 3) ϊ ^ is a divisible hull of Γ in E. Now by Theorem 3, it
remains to verify that T Π DTH = TH. To this end put L = T Π DTH.
That TH c L is clear. By Lemma 4, i ϊ Π A ^ = TE. So suppose there
exists te(G\H) Π L. Then by the definition of H, there exists heH
with fe + mt — gx Φ 0, where gΎeGλ. But since L is torsion we have
that he TH. Hence (h + mt) e DTH, and h + mt ~ gλ φ 0 together with
DTn c D^ contradict DΠ Π D î = 0, and TΠ is high in Γ as desired.

COROLLARY. Let H be a high subgroup of G, and let TH be the
torsion subgroup of H. Then TH is pure in G.

Proof. By Theorem 13, TH is high in T, and consequently pure in
T. Since T is pure in G, it follows that TΠ is pure in G.

THEOREM 14. Let H be a high subgroup of an Abelian group G.
Then H is pure in G.

Proof. Let the notation be the same as in Theorem 13. Now by
Theorem 13 T\TH is divisible, so that G\TM= T\TH@R\TB, where R
is chosen such that R/TH contains HjTE. Since TΠ is pure in G, R is
pure in G, and since H is neat in G, HjTH is neat in R\TH. But H/TH

is torsion free and since a neat subgroup of a torsion free group is pure
we have that H\TH is pure in R\TH. Thus H is pure in R, so that H
is pure in G, and the proof is complete.

The following embedding theorem is a generalization to arbitrary
Abelian groups of the solution to Fuchs' Problem 4 (see [l]).

THEOREM 15. Let S be any infinite subgroup of an Abelian group
G with S Π G1 = 0. Then there exists a subgroup K pure in G with
SaK, K 0 ^ = 0, and \K\ - | S | .

Proof. Embed S in H high in G. By [1] pg. 78 N, there exists
a pure subgroup K of H with S a K and | S | = \K\. The purity of
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H implies the purity of if in G, and K Π G1 c H Π G1 = 0, so that
K Π G1 — 0, completing the proof.

An unsolved problem. To conclude the present paper we shall
make a few remarks concerning the question of whether all high sub-
groups of an Abelian torsion group are isomorphic. The reader may
have observed, from the proof of Theorem 6, that this question is a
special case of the more general open question: Given two pure sub-
groups A and B of a primary group G with A[p] — B[p], is it true in
general that A = BΊ The authors feel that an affirmative answer to
this question would have important consequences in the theory of Abel-
ian torsion groups. A step in this direction is

THEOREM 16. Let A and B be pure subgroups of primary group
G with A[p] = B[p], Then G = A © C implies G = BφC and A= B.

Proof. Let G = A φ C. Then G[p] = A[p] φ C[p] = B[p] 0 C[p].
We will show that G = 5 0 C . First notice that A[p] = B[p] gives us
that B n C = 0. To prove G = £ φ C , it suffices to verify that
G c 5 © C. For this purpose it is sufficient that G[pn] c β 0 C for
each n. But this is true if and only if A[pn] c B φ C for each n.
Now we use induction to show that G[pn] c J ? © C for each n. First,
G[p]cB®C by hypothesis. Next suppose that G [ p n ] c B © C , and
let aeA with o(a) = pn+1. Then pna = b e A[p] = B[p]. By the purity
of B, pna = pnbλ with bx e B, and pn(a — bλ) = 0, so that a — b
by the induction hypothesis. Hence a e B φ C, therefore

which means that G[pn+1] c δ φ C . Thus G = Bφ C. Finally A ̂  (?/C
= β, and the proof is complete.

The foregoing theorem suggests the following generalization.

THEOREM 17. Let G be a direct sum of torsion groups, G = ̂ ae/**>
and let {Ta}aeΛ be a family of subgroups pure in G with Ta[p]=GJ[p]
for each relevant prime p and each aeA. Then for any subfamily
{Ta}aes, G = Σi»e8TωζBΣi»*ίβ». In particular, G = Σ«eAT« and Ga=Tω

for each aeA.

Proof. Put T = Σ«6^Γ«. It suffices to show that G = T. We
show as before that for each n we have G[pn] c T. This is true if for
each a e A we have for the primary components Gap, that Ga [pn] c T
for each n. This is accomplished as in the proof of Theorem 16. Finally,
that T« = G# for each a follows as before.
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The results in this paper were part of a doctor's thesis completed
in February 1960 under Professor W. R. Scott at the University of
Kansas. The author wishes to express his gratitude to Professor Scott
for his advice and for checking the results.

In what follows, all groups considered are Abelian. Let G1 be the
subgroup of elements of infinite height in an Abelian group G (see [2]).
A subgroup H of G maximal with respect to disjointness from G1 will
be called a high subgroup of G. If N is a subgroup of G, H will be
called N-high if and only if H is a subgroup of G maximal with respect
to disjointness from N. Zorn's lemma guarantees the existence of N-
high subgroups for any subgroup N of G. A group E minimal divisible
among those groups containing G will be called a divisible hull of G.
Unless otherwise specified, the notation and terminology will be essentially
that of L. Fuchs in [1].

The main theorem says that high subgroups of Abelian torsion groups
are pure. After proving some preparatory lemmas, we will prove the
main theorem. Then we will discuss Fuchs' Problem 4 and list some of
the more important properties of high subgroups. Finally we will state
some generalizations.

A lemma describing iV-high subgroups is

LEMMA 1. Let G be a primary group with H an N-high subgroup
of G, Da divisible hull of G, A any divisible hull of H in D (this
means that A c D), and B any divisible hull of N in D.

Then
(a) D = A®B.
(b) A Π G = if, and H and B Π G are neat in G.
(c) Any complementary direct summand of A in D containing N is

a divisible hull of N.
(d) Any complementary direct summand of B in D containing H is

a divisible hull of H.
(e) D is a divisible hull of any subgroup M with (H φ N)[p] c

IcG.
(f) D[p] = (H® N)[p] = H[p] 0 N[p] = G[p] .
(g) All iV-high subgroups H of G may be obtained as E Π G, where

E is a complementary direct summand of a divisible hull F of N in. D.

Proof. When N — 0 there is nothing to prove, so suppose N Φ 0.
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(a) To see this, we first show that A f] B — 0. lί 0 Φ x e A f) B,
then by Kulikov's lemma ([1], p.66) there exist positive integers r and
s such that prx φ 0 Φ psx and prx e H, psx e N. But 0 ^ ί) m a x ( r s)a; e H Π N
= 0, which is impossible. The divisibility of A © B provides a decom-
position D = 4 © β © C . lί C Γ)GΦO, H will not be iV-high in G,
whence C Π G = 0. By Kulikov's lemma, C = 0, and we have D = A φ 23
as stated.

(b) That A (Ί G = H is clear. The neatness follows from [l], p. 92, h,
(c) and (d) follow from (a) and the definition of H,
(e) and (f) follow from Kulikov's lemma,
(g) follows from (a) and (b). This concludes the proof of Lemma 1.
In what follows <(#> will denote the cyclic subgroup of G generated by

xeG. An interesting and helpful lemma is

LEMMA 2. Let N be a subgroup of a primary group G, H an N-
high subgroup of G, and let H contain a basic subgroup B of G. Then
H is pure in G.

Proof. The group G/B is divisible since B is basic in G. Now
H/B c G)B, and by [1], p. 66, Theorem 20.2, there exists a divisible hull
E\B of HJB in GIB. Suppose EjB > HjB. Then E > H, and hence
E n N φ 0. Thus there exists a nonzero element g e N with 0 Φ
ζg + By c E\B. Now <̂ r + J5> Π (H/B) = 0. To see this, suppose 0 Φ
m(g + B) = mg + B = h + B. Then mg -h = beB, and 0 =£ rag =
h + beH, contradicting i ί Π N = 0. Thus we have <# + £> π (#/£) =
0. By Kulikov's lemma, <# + 2?> = 0, and therefore g eB, which implies
that g — 0, contrary to the choice of g. Thus E'/JB = ί ί / 5 is divisible,
and therefore is pure in G/B. Then the purity of B in G together with
[1], p. 78, M imply that H is pure in G.

A useful lemma with a standard proof is

LEMMA 3. If G = S ® T, wftere eαcΛ element of S has finite height,
then G1 a T and T1 = G1.

A lemma which displays an inheritance property is

LEMMA 4. // G = S © Γ, wftere S c i ί αraZ i ί is /α#/z, in G,
H=S(&H Π Γ, αwd H Π T is high in T. (Note: This implies that
i ί Π Γ is maximal with respect to disjointness from G1 in T by Lemma 3.)

Proof. Put ikf = i ϊ Π T, and suppose that there exists 0 Φ t e T\H,
with {M, t} Π T1 = 0. But this means that {Λf, £} Π G1 = 0, and hence
[S © {M, ί}] Π G1 = 0; for otherwise we would have s + (m + fcί) = g Φ 0
with seS,me M, g e G1. Then s = 0 and m + fcί = g Φ 0. But m +
kte{M,t}, which is not possible. Thus [ S ® {Jlf, t}] Π G1 = 0 and
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[S φ {M, t}] > H, contrary to the assumption that H is high in G.
A lemma on making new basic subgroups out of old ones is

LEMMA 5. Let Bx 0 0 Bn 0 Gn = G, where B = ΣBn is basic in
G. Let Tn = B'n+1 0 B'n+2 0 be basic in Gn. Then C = j ^ φ ©
5» 0 T% is basic in G.

Proof [1], p. 109, Exercise 9a.
An x eG will be called a pure element of G if and only if (xy is a

pure subgroup (and therefore is a direct summand) of G.
The next lemma is the kingpin in the proof that if H is high in

G, then H contains B basic in G. It is not altogether obvious that H
contains nonzero pure subgroups of G. The proof of the next lemma
will be carried out in several steps. We will consider special cases which
are perhaps unnecessary, but which will help to clarify the method of
proof.

LEMMA 6. Let H be a high subgroup of a primary group G. If
G contains nonzero pure elements of order pn

y but not of smaller order,
then H contains pure elements of G of order pn.

Proof.

Case 1. n = 1. Let b e G be pure of order p with bφH. Then
there exists he H such that h + 6 = g Φ 0, where g e G1. Clearly this
means that the orders of h and b are the same. Now h and b both
have finite height, and hence their heights must be equal (since their
sum is an element of infinite height in G). Here we are making use
of the fact that if o(h) = p and h(h) = 0, then <lί) is pure in G. The
fact that b is a pure element of order p in G necessarily means that
h(b) = 0; whence ft(A) = 0, and h is a pure element of G.

Case 2. n > 1. Let 6 be a pure element of G of order pn such
that b $ H. Then there exists an h e H such that h + pjb = g ψ 0, where
geG1 and 0^j < n.

Case 2.1. j = 0. Then we have h + b = g and pn~ιh + pn~ιb =
pn~ιg e G1. Clearly p7 1"1^ has order p and height n — 1 in G and in <Λ>.
Thus by [1], p. 78, Jf we have that h is a pure element of G.

Case 2.2. 1 ^ j < n. Now the equation h + pjb = g Φ 0 clearly
implies that the height of h in G is j . If the height of h in if were
also i, that is if fe = pJh' for some /*/ e H, then ft' would be a pure
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element of G of order pn. To see this simply consider the equation
pn~Ψ + pn~ιb = vn-j-χg e G\ o{pn-χh') = p and obviously h{pn~ιh') =
n - 1. The height of pn~λh' in <h'> = n - 1, so that by [1], p. 78, J,
h' is a pure element of G of order pn in i ϊ . Thus it remains to verify
that the height of h in H is j .

From the neatness of H and the fact that g eG\ it follows that
h = phλ for some hx e H. Now if h(h±) > 0, we again have by the neatness
of H that hx — ph2 for some h2 e H. Continuing in this way, we must
eventually arrive at h = pJ~khk, hke H where the height of hk in G is 0.
If k > 0, then let m be the least positive integer such that pmhk = p *4"1*;
for zeG (if worst comes to worst m — j — k will do). Then clearly
0 < m ^ j — k < j < n, pm(hk — pz) — 0, and p^iK - pz) Φ 0 has
height m — 1 in G by the choice of m and /^. Thus since o{pm-\hk — φz))
= p, and the height of p™'1^ — pz) is m — 1 in <7^ — pzy, we have
by [1], p. 78, J, that hk — pz is a pure element of G of order pm < 2>n.
This contradicts the hypotheses on G. Hence we must have k = 0,
^ = P'Λfc, and hk is a pure element of G in i ί of order pn.

If B = ΣBn is a basic subgroup of G where Bn is a direct sum of
cyclic groups of order pn, then such a subgroup Bn which does not consist
of 0 alone will be referred to as a J?n of G.

LEMMA 7. Let G be a primary group, H a high subgroup of G,
and n the least positive integer such that G contains a Bn. Then H
contains a Bn of G.

Proof, By Lemma 6, H contains pure elements of G of order pn.
The fact that the union of an ascending chain of pure subgroups is pure
together with [1], p. 80, Theorem 24.5 allows us to apply Zorn's lemma
to obtain a ^-bounded direct summand Hn of G, maximal with respect
to the property of being contained in H. We wish to show that Hn is
a Bn for G. To see this write G = Hn@Rn and H = Hn © H Π Rn

where by Lemma 4, H Π Rn is high in Rn. Suppose that Hn is not a
maximal ^-bounded direct summand (a Bn) of G. Then there exists a
Bn of G with Hn < Bn. Now G = Hn 0 RnJ so that Bn - Hn © Bn n #n
Now the transitivity of purity tells us that J5π Π i2n ^ 0 is pure in G.
Thus #„ contains pure elements of order pn since G contains no pure
elements of order less than pn. This means by Lemma 6 that H Π Rn

as a high subgroup of Rn must contain a pure element h of order ίΛ
Then G = fl. 0 Λ» = H © <*> θ # - a n d (#• θ <^» > # * implies that
Hn is not a maximal ^-bounded direct summand of G contained in H,
contrary to the choice of Hn. This means that Hn is a Bn of G contained
in H after all, and this concludes the proof.

LEMMA 8. Let G be a primary group, and let H be a high sub-
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group of G. Then H contains a basic subgroup of G.

Proof. By a theorem of Baer ([1], p.62), it suffices to consider the
reduced case. Lemma 7 provides a start for the induction. Let B'%1 be
a first Bn of G. By lemma 7, H contains a Bni and G = Bni 0 Rx with
H= BniφH f] Rτ. Let Bn2 be the next B5 of G. By Szele's theorem
([1], p. 99) and Lemma 5, J?2 contains a Bn2 but no preceding i?y. We
apply Lemma 7 to H Π # ! as a high subgroup of i^ to see that H Γί #i
contains a i?W2 of G. By successive application of this procedure, we
have by induction, Szele's theorem, Lemmas 5 and 7 that H contains a
basic subgroup of G.

We are now ready to state and prove our main theorem.

THEOREM 1. Let G be a primary group and H a high subgroup of
G. Then H is pure in G.

Proof. As in the proof of Lemma 8, it suffices to consider the case
where G is reduced. Lemmas 2 and 8 complete the proof.

In his book [1], L. Fuchs asks the following question: "Let G be
a primary group and H an infinite subgroup without elements of infinite
height. Under what conditions can H be imbedded in a pure subgroup
of the same power and again without elements of infinite height ?"
Theorem 1 allows us to give the best possible solution to this problem.

THEOREM 2. Let G be an Abelian primary group. If S is any
infinite subgroup of G with S Π G1 = 0, then S can be embedded in a
pure subgroup K of G so that K Π G1 = 0 and \K\ = \S\.

Proof. By Zorn's lemma, there exists a subgroup H high in G with
H D S. By Theorem 1, H is pure in G. Szele has shown that every
infinite subgroup can be embedded in a pure subgroup of the same power
([1], p. 78). So let if be a pure subgroup of H containing S and of the
same power as S. Then by the transitivity of purity, we have that K
is pure in G. Since K c Hf it follows that K Π G1 = 0. This concludes
the proof.

The following discussion yields the solution to Fuchs' question in the
torsion case. The proofs of the next two lemmas are standard and con-
sequently will be omitted.

LEMMA 9. Let G be a torsion group. If G = ΣGa, then G1 = ΣGι

a.

LEMMA 10. Let G be a torsion group. Then an internal direct
sum of pure subgroups of the direct summands of a given direct de-
composition of G is a pure subgroup of G.

Concerning the primary decomposition of a torsion group G, we have,
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LEMMA 11. If H is a high subgroup of a torsion group G, then
writing G and H in terms of their primary components G = ΣGP and
H= ΣHP =ΣH Π Gp, we have that Hp is a high subgroup of Gp for
each relevant prime p in the primary decomposition of G.

Proof. Clearly Hp Π G\ = 0. So suppose for some p, Hp is not high
in Gp. Then there exists an x e GP\HP with {HPJ x) Π G\ = 0. Replacing
HP by Sp = {Hp, x] in H = ΣHP, we obtain from Lemma 9 a subgroup
S > H with S Π G1 = 0. But this is contrary to H high in G.

A generalization of Theorem 1 is

THEOREM 3. If H is a high subgroup of a torsion group G, then
H is pure in G.

Proof. Write G = ΣGP and H= ΣHP and by Lemma 11, we have
that Up is high in Gp so that by Theorem 1 we have Hp is pure in Gp.
Now by Lemma 10, if is pure in G.

The generalization of the solution to Fuchs' question to torsion groups
is

THEOREM 4. Any infinite subgroup S of a torsion group G with
S n G1 = 0 can be embedded in a pure subgroup K of G so that \ K \ =
\S\ and K Π G1 = 0.

Proof. Use Theorem 3 and the proof of Theorem 2.
We mention for completeness that Lemma 8 has a suitable generali-

zation to torsion groups.

LEMMA. 12. Let G be a torsion group and let H be a high sub-
group of G. Then H contains a basic subgroup of G.

Proof. Use Lemma 8, the primary decomposition of H, and [1],
p. 109, Exercise 9a.

Some of the more interesting properties of high subgroups are con-
tained in

THEOREM 5. Let G be a reduced primary group with G1 Φ 0, and
let H and K be high subgroups of G. Then

(a) H contains B basic in G
(b) H is pure in G
(c) GjH is a divisible hull of (G1 0 H)jH ̂  G1

(d) GIK^GjH
(e) pnH is high in pnG for all ne I (7 is the set of positive in-

tegers.)
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(f) pnH is pure in pnG for all nel
(g) G = {H, pnG} for all nel
(h) H is infinite
(i) H is of unbounded height in G
(j) p"G = \p»H, pn+lcG} for all n,kel
( k ) pnH/pn+1cH ^ pnGlpn+kG for all n,hel.
(1) pnG/pnH ~ GIH for all nel.
(m) G is minimal pure containing H 0 G1

(n)
(o)
(p) |GM < \G\implies \H\ = | G |
(q) [ϋΓ| = [JEZΊ (This also holds for iV-high subgroups of infinite

rank.)
(r) \G\ S \H\*o
(s) G/puίί = HjpnH® pnGlpnH for all nel.
(t) i J is not always basic
(u) / / H is countable, then H is basic in G, and H = K.

Proof, (a) and (b) have already been proved.
(c) Is easy.
(d) Follows from (c) and the fact that isomorphic groups have

isomorphic divisible hulls (see [1], p. 66, Theorem 20.2).
(e) To see that pnH is high in pnG, suppose that there exists x e G

with {pnH, pnx} Π G1 — 0 and pnx 0 pnH. (Here we are using the fact
that (pnGf = G\). Now by purity of H, pnx $ pnH implies pnx 0 H. Thus
we have some he H with h + mpnx — g Φ 0, g eG1. But then h must
be in pnH contrary to {pnH> pnx} Π G1 = 0.

(f) The purity of pnH in pnG follows from (e), and Theorem 1
applied to pnG.

(g) This is an immedite consequence of (c).
(h) And ( i ) both follow from (g) and the fact that a high subgroup

of a reduced group is not a direct summand.
(j) Follows from (e) and (g).
(k) Follows from (j), the second isomorphism theorem, and (f).
(1) Is an immediate consequence of the fact that both quotient

groups are divisible hulls of G1. This is also a straightforward applica-
tion of (g).

(m) This follows from Lemma 1 (f) and [1], p. 78, K.
(n) Follows from the fact that (c) holds and hence H is not a direct

summand of G.
(o) Follows from Lemma 1 (f) and an easy set theoretic argument,
(p) Is an easy consequence of (o).
(q) Here some cases are taken care of by (d), but a proof for the

general case is not difficult. To show that \H\ = \K\, it suffices (by an
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easy set theoretic argument) to verify that H[p] ~ K[p], For this
purpose let D be a divisible hull of G, and C be a divisible hull of Gι

in D. By Lemma 1, if A and B are divisible hulls in D of H and K
respectively, then A and B are complementary direct summands of C in
D. Finally A ^ D/C = B and iϊ[p] = A[p] ~ B[p] = K[p]. The same
argument shows the result for TV-high subgroups of infinite rank.

( r ) Follows trivially from (a) and [1], p. 102, Theorem 30.1.
(s) To see this, use (g) and the purity of H.
( t ) Let G be the direct sum of an unbounded closed primary group

and any primary group with nonzero elements of infinite height.
(u) This follows from (b), (c), (q), the fact that a countable H is

a direct sum of cyclic groups, and that any two basic subgroups of G
are isomorphic.

For a comparison with the properties of basic subgroups see [1],
p. 101. The reader will notice that (d) is an interesting property of high
subgroups which basic subgroups do not possess.

We are now ready to discuss the question of whether or not any
two high subgroups of a reduced primary group are isomorphic. Let A
be a subgroup of G, and let A be the image under the natural homo-
morphism from G onto G/G1. It is a simple matter to verify that G is
a reduced primary group without elements of infinite height. Thus if
H is a high subgroup of G, we have that H = H. This provides "us a
natural way to study the properties of high subgroups without actually
looking at these subgroups themselves.

A result concerning Ulm invariants as defined by Kaplansky in [2],
and providing another proof that two countable high subgroups of a
group G are isomorphic is the following

THEOREM 6. Let H and K be high subgroups of a primary group
G. Then (pnH)[p]l(pn+1ϊϊ)[p] = (pnK)[p]l(pn+1K)[p]. In particular, H
and K have the same Ulm invariants. Moreover, their nth Ulm invar-
iants are the same as the nth Ulm invariant of G.

Proof. Consider H and K. First we notice
(i) H[p]=K[p].
To see this we observe that o(h) = o(h + G1). Suppose h e H[p]\H Π

K. Then there exists ke K with h — k = g Φ 0 where g e G1. Clearly
o(k) = p and we have h = k + g. This proves that H[p] c K[p]. Thus
by symmetery H[p\ = K[p]. Next we have

(ii) pnH[p] = pnK[p] for nel.
To see this use Theorem 5 (e), and the foregoing ( i ) .

Now from (ii) we have that (pnβ)[p]\(pn+1H)[p] = (pnK)[p]l(pn+1K)[p]
since the numerators are equal and the denominators are equal, and
hence the Ulm invariants of H and K are equal. Finally the fact that
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H = H gives us that H and K have the same nth Ulm invariants. The last
part of the theorem follows from (pnG)[v]l(pm+1G)[p] = (pnH)[p]l(pn+Ή)[p]
which is obtained with the help of Lemma 1 (f), Theorem 5 (e), and the
second isomorphism theorem.

We will now mention a few generalizations to modules. In what
follows, R will denote a principal ideal ring. This means that R is an
integral domain (commutative ring with an identity and no divisors of
zero) in which every ideal is principal. By an iϋ-module we mean a
unitary left iϋ-module, and by submodule of an i?-module we mean a
sub-i?-module. An i?-module M is called primary if and only if the
order ideal of every element of M is generated by a power of the same
prime element p of R. We shall be content with a generalization to
primary modules of our main results for primary groups. We rely heavily
on the generalizations of Theorems 1 to 14 in [2].

We make a blanket assertion: All of our lemmas and theorems for
primary groups are true for primary modules. Only minor, straight-
forward modifications of the definitions and proofs are necessary, and
these can be easily carried out by imitating all the previous definitions
and proofs. When referring to orders of elements in a primary module,
we say that o(x) is smaller than o(y) if and only if the generator of the
order ideal of x divides the generator of the order ideal of y.

In conclusion we state without proof the most worthwhile lemmas
and theorems.

LEMMA 13. Let M be a primary R-module. Let L, N be sub-
modules of M with L containing a basic submodule B of M, and L
maximal with respect to disjointness from N. Then L is pure in M.

THEOREM 7. Let H be a high submodule of a primary R-module
M. Then H is pure in M.

The solution of Fuchs' question for primary modules is

THEOREM 8. Let S be an infinitely generated submodule of the
"primary R-module M with R countable and S Π M1 = 0. Then S can
be embedded in a pure submodule K of M such that K Π M1 = 0 and
\K\ = \S\.

The only essential difference between this theorem and Theorem 2
is that the word infinite has been replaced by the words infinitely
generated to make |J5Γ| = \S\ true in all cases. The proof is the same
as before. The countability assumption on R makes the proof of [1]
p. 78 N easy.

The author conjectures that all high subgroups of a given primary
group are isomorphic, and also wishes to pose the questions:
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For what subgroups N of a primary group G is it true that
(a) all iV-high subgroups are pure
(b) all JV-high subgroups are isomorphic
(c) all iV-high subgroups are endomorphic images of G
(d) GIN divisible implies N contains B basic in G?
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QUOTIENT RINGS OF RINGS WITH ZERO SINGULAR IDEAL

R. E. JOHNSON

Many papers have been written recently (see [2]-[14] of bibliography)
on extensions of rings to rings of quotients. In most of these papers,
strong enough conditions are imposed on the given rings to insure that
each has a vanishing singular ideal (first defined in [5]). It seems
appropriate at this time to collect these results and present them in as
general a form as possible. In this paper, it is assumed that each ring
has a zero right singular ideal. A subsequent paper will give the
quotient structure of a ring having a vanishing right and left singular
ideal.

1. Introduction. If i? is a ring and M is an iϋ-module, then L(R)
and L(My R) will designate the lattices of right ideal of R and iϋ-sub-
modules of M, respectively. Superscripts " r " and "Z" will be used
in designating the right and left annihilators, respectively, of an element
or subset of a ring or module. The context will always make it clear
from what set the annihilators are to be chosen.

In a lattice L with 0 and /, an element B is called an essential
extension of element A, and we write Aa'B, if and only if A c B
and C Π A Φ 0 for every C in L for which C Π B Φ 0. An element A
of L is called large if 4 c 7 . The sublattice of L of all large elements
is designated by LA.

If R is a ring and M is a right iϋ-module, then let

MA(R) = {x I x e M, xr e LA(R)} , RA = {x | x e R, xr e LA(R)} .

It is easily shown that MA(R) is a submodule of M and RA is a (two-
sided) ideal of R. The ideal RA is called the singular ideal [5; p. 894]
of R.

A ring R with zero singular ideal has the unusual property, proved
in [7; Section 6], that each AeL(R) has a unique maximal essential
extension As in L{R). The mapping s: A -> As of L(R) is shown there
to be a closure operation on L(R) having the following properties:

(1) 05 = 0,
(2) (A Π B)s = As Π Bs for each A, Be L(R), and
(3) {x-'AY = x~xAs for each xeR and A e L(R), w h e r e x~ιB = {y\yeR,

xyeB}. The set LS(R) of closed right ideals (i.e., A = As) may be
made into a lattice in the usual way by defining the union of a set of
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the National Science Foundation.
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elements of LS(R) to be the least upper bound of the set. The result-
ing lattice LS(R), which is not in general a sublattice of L{R), is proved
to be a complete complemented modular lattice in [7; Section 6]. If
ΛΠs a right iϋ-module for which MA(R) = 0, then the closure operation
s may be defined in a similar way on L(M, R). The resulting lattice
LS(M, R) has similar properties to those of LS(R), as was shown in [7;
Section 6].

For A, B e L(R), B is called a complement of A if B D A — 0
whereas C Π A Φ 0 for every C z> B, C Φ B. If B is a complement of
4, then clearly A + δ e L A ( β ) . Furthermore, if RA = 0, then

If A is a two-sided ideal of i2 for which A Π A1 — 0, then evidently
A1 is the unique complement of A in L(i2). Since (A + Azy = A1 Π -A",
clearly A" is the unique complement of A1 in case RA = 0. In this
case, both A1 and A11 are in LS(R). By [7; 6.7], C s (#) = {A \ A ideal
of £ , A n A ! = 0,A = A"} is the center of the lattice L'(#). For each
Λ e C s(#), it is easily seen that AA - 0, that LS(A) = {£ Π A | 5 e Ls(i2)},
and that CS(A) = {B Π A | B e Cs(i2)}. Of course, LS(A) c LS{R) and
C5(A) c C W

Every regular ring R has a zero singular ideal. This is evident
because er Π eR = 0 for each idempotent e e i2. Since i2 = eJS + er,
evidently eR and βr are complements of each other and each is in LS(R).
Consequently, each principal right ideal αReLs(R).

A ring R for which RA - 0 and CS(R) = {0, R} is called (right)
irreducible. An irreducible ring need not be prime. For example, the
ring of all n x n triangular matrices over the ring Z of integers is
irreducible by [8; 3.5]. Clearly this ring has a nonzero nilpotent ideal.
By [8; 2.1], an irreducible ring is prime if and only if it contains no
nonzero nilpotent ideal.

If R is a subring of ring Q then Q is called a (right) quotient ring
of R, and write R ^ Q, if and only if qR Π R Φ 0 each nonzero Q e Q%

It was proved in [5] that each ring R for which RA = 0 has a unique
maximal quotient ring R. By [5; Theorem 2], β is a regular ring with
unity. Essentially, the definition of R in [5] was as follows:

R =z U Homβ(A, R) .

If x,y eR, then we take & = y if and only if xa = i/α for every α in
some large right ideal A c Dom x Π Dom #,

In case R is a subring of a ring Q, then we may consider Q as a
right iϋ-module. If we do so, then the assumption R g Q implies that
Rc'Q, considering i? and Q as right i?-modules. It is easily verified

The more general definition of a quotient ring in [12] and [2] is equivalent to ours
in case RA = 0.
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that if R £ Q then QA(R) = 0 if and only if RA = 0.

2 Some basic lemmas. The rest of this paper will be concerned
only with a ring R for which RA = 0. We shall prove in this section
that if Q is a quotient ring of such a ring R, then the lattices of
closed right ideals of R and Q are isomorphic.

2.1 LEMMA. If RSQ and AeL(Q), then AeLA(Q) if and only
if An ReLA(R).

Proof. If A e LA(Q) and b e R, b Φ 0, then A Π bQ Φ 0 and a =
bq Φ 0 for some α e i and g e Q. Now qC a R for some C e LA(iϋ) by
[7; 6.1]. Since QA(i?) = 0, bqC φ 0 and therefore A f) bR Φ 0. Hence
μ n ί ) n & β ^ 0 a n d i n ReLA(R).

On the other hand, let us assume that AeL(Q) and A Π ReLA(R).
For each nonzero q e Q, qC c R for some C e LA(R). If we let ί = C ί l
(A Π JR), then B e LA(R) and g£ =£ 0 since QA(J?) = 0. Hence qB Π (A
Π R) Φ 0 and we conclude that qQ a A φ 0 for each nonzero qeQ.

Thus, AeLA(Q).

2.2 LEMMA. If R^kQ and M is a right Q-module, then M is a
right R-module and MA(R) = MA(Q).

Proof. If x e M and A=xr(in Q) then A e LA(Q) if and only if A Π
ReLA(R) by 2.1. Therefore, ikfA(i2) = MA(Q).

2.3 COROLLARY. If R^Q, then QA = 0.

This follows from 2.2 if we let M = Q and use the assumption
that RA = 0.

2.4 LEMMA. If R ^ Q and M is a right Q-module such that
MA(Q) = 0, then LS(M, R) = LS(M, Q).

Proof. If A e LS(M, R) and q e Q, then qB c R for some B e
LA(R). Therefore (Aq)B c A and Aq a A by [7; 6.4]. Hence, A e
L(M, Q) and we conclude that LS(M, R) c L(M, Q).

If A e L(M, Q),xeM and Bx = {b \ b e Qy xb e A}, then xeAs if and
only if BxeLA(Q) by [7; 6.4]. Therefore, in view of 2.1, the closure
of A relative to Q is the same as its closure relative to R. Thus,
LS{M, R) = LS{M, Q).

2.5 THEOREM. If R^Q, if M is a right Q-module for which
MA(Q) = 0 and if NeLA(M,R), the LS(M, Q) ^ LS(N, R) under the
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correspondence A -• A Π N, A e LS{M, Q).

Proof. By [7; 6.8], LS(M, R) = LS{N, R). Thus 2.5 follows from
2.4.

2.6 COROLLARY. / / R ^ Q, then LS(Q) = LS(R) under the corre-
spondence A -> A Π R, A e LS(Q).

If R is an irreducible ring, so that CS(R) = {0, #}, then CS(R) =
{0, #} by 2.6. Hence -R also is irreducible. Actually, since R is regular,
R is a prime ring by [8; 2.1]. We state this result as follows.

2.7 THEOREM. / / R is an irreducible ring, then R is a prime
ring.

3 LS(R) atomic* Let us assume in this section that R is a ring
for which RA = 0 and the lattice LS(R) is atomic. We define this to
mean that LS(R) has minimal nonzero elements, called atoms, and that
each element of LS(R) contains at least one atom. It is proved in [7; 6.9]
that a nonzero element x of R is contained in an atom if and only if
xr is a maximal element of LS(R). Incidentally, (xR)s is the atom
containing x.

Two atoms A and B are said to be perspective [1; p. 118], and we
write A ~ B, if and only if A and B have a common complement. It
is easily shown in our case that A ~ B if and only if A U B contains
a third atom [1; p. 120, Lemma 3]. We proved in [7; 6.10] that A ~ B
if and only if ar — br for some nonzero ae A and b e B. If A ~ B and
B ~ C then ar = br and b\ = cr for some nonzero α e A, 6, bλ e J5 and
ceC. Since B is an atom, bR Π ί̂ ϋ? =£ 0 and there exist xfx1eR such
that bx = \xx Φ 0. Hence, (ax)r = (te) r = (Mi)7" = (c^) r. It follows that
perspectivity is an equivalence relation on the set of all atoms of LS(R).
Clearly for a finite set {A19 , An} of perspective atoms, there exist
nonzero a{ e A{ such that a\ — a] for each i and j .

For each atom A of LS(R), let A* be the union in LS(R) of all
atoms perspective to A. It is proved in [7] that A* is an ideal of R
[7; 6.7] and that A* is an atom of CS(R) [7; 6.12]. Conversely, each
atom of CS(R) is of the form A* for some atom A of LS(R).

Since CS(R) is a Boolean algebra, R is the direct union of all atoms
of CS(R). Hence, if {Af; i e Δ) is the set of all distinct atoms of C*{R),
then the ring-union S of the atoms of CS(R) is a discrete direct sum of
these atoms,

Since S* = 0, evidently S S R. Consequently, the maximal quotient
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ring of R is just the maximal quotient ring of S.
The following theorem characterizes R in terms of left full rings.

We shall call a ring R a left full ring if there exists a division ring
D and a right D-module M such that

R ~ Hom^Af, M) .

Evidently we may consider M as a {R, D)-module.

3.1 THEOREM. If R is a right irreducible ring, then R is a left
full ring. If R is right reducible, then R is a complete direct sum
of left full rings.

Proof. Consider first the case in which R is irreducible. Since R
is regular and LS(R) = LS(R), the lattice LS(R) is atomic and its atoms
are principal and hence minimal right ideals of R. Since R is prime
and has minimal right ideals, it is primitive. Let e be an idempotent
element of R such that eR is a minimal right ideal. Then M = Re
is a minimal left ideal of R and D — eRe is a division ring. Since
xReφO for each nonzero xeR by the primeness of R, evidently R
is a right quotient ring of M. However, R is a maximal right quo-
tient ring so that we must have M = R. Besides being a ring, M
may be considered to be a (R, Z))-module. Clearly the right ideals of
M are its D-submodules. Thus, M is the only large right ideal of M.
Consequently,

HonUM, M) ,

considering M as a right M-module, is the maximal right quotient ring
of M. Since x(ae) = x(eae) for each x e M and aeR, evidently

KomM(M, M) = RomD(M, M) .

Since M — R, this proves that R is a left full ring.
If R is not irreducible, then there exists a set {Ri) i e Δ] of ir-

reducible rings, each having an atomic lattice of closed right ideals,
such that

i€Λ

by our previous results. We shall not give the details, but it is easily
seen that if

S - Σ Ri , then S=Σ/Ri

where Σ ' designates the complete direct sum. Since S — R, this proves
the second part of 3.1.
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The important special case of this theorem when R is a primitive
ring was proved by Utumi [12; 5.1] and Wong [13; 4.1]. Both Utumi
and Lambek [10] have independently proved the theorem if R is
prime.

4* LS(R) finite*dimensionaL The usual assumption that RA = 0 is
made for each ring R of this section. If either the a.c.c. or the d.c.c.
holds for LS(R) then so does the other one. In fact, each is equivalent
to the assumption that LS(R) contains a maximal chain of finite length.
When this condition is satisfied, a dimension function d may be defined
on LS(R) as follows [1; p. 67]: for each AeLs{R), d(A) is the length of
the longest chain joining 0 to A. Incidentally, every maximal chain
joining 0 to A has the same length d(A). We shall assume in. this
section that such a dimension function d is defined on LS(R) and that
d(R) is finite. Since the lattice LS(R) is also complemented, each A e
LS(R) is a direct union of d(A) atoms [1; p. 105].

It is proved in [9; 3.4] that if d(R) is finite then for each a e R,
uReLA(R) if and only if ar = 0. Of course, a1 - 0 whenever aReLA(R).
Thus, D(R) = {a\ae R,aReLA(R)} is the set of regular elements of R.
Each ae D(R) has an inverse in R. For, by the regularity or R,
(ab — ΐ)a = a(ba — 1) = 0 for some b e R. Since (ab — l)r ZD aR, a large
element of LA(R), ab — 1 = 0 in view of 2.1 and 2.3. Also, ba - 1 = 0
since ar = 0 in R as well as in R. Consequently, b = a"1.

4.1 THEOREM. If R is irreducible and d(R) = n, then R is a- full
ring of dimension n.

By a full ring of dimension n we mean a ring isomorphic to
RomD(M, M) where D is a division ring and M is a right D-module of
dimension n.

If we select M— Re as in the proof of 3.1, then M ^ R and the
lattices LS(R), LS(M) and LS(R) are isomorphic by 2.6. Since the right
ideals of M are its ΰ-submodules, M is an ^-dimensional vector space
over D. Hence 4.1 follows from 3.1.

A different proof of 4.1 was given in [9; 3.6].
If R is a prime ring for which d(R) is finite, then it was proved

in [3; Theorem 10] and in [9; 3.5] that every large right ideal of R
contains a regular element. Since B = {b \ b e R, qb e R} is a large right
ideal of R for each q e R, clearly qb = a for some b e D(R) and a e R;
that is, q = ab-1. This proves the following theorem of Goldie2 [3]
(also proved in [11] and [9]).

2 That each ring considered by Goldie has a zero singular ideal is proved in [4.; 3.2].
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4.2 THEOREM. If R is a prime ring for which d(R) == n, then not
only is R the full ring of linear transformations of an n-dimensional
vector space over a division ring but also R—{ab~λ\aeR,beD(R)}.

From 3.1 and 4.1, we easily deduce the following theorem.

4.3 THEOREM. If R is a ring for which d(R) is finite, then R is
a direct sum of a finite number of finite-dimensional full rings.

A ring R is called semiprime if it contains no nonzero nilpotent
ideal. We recall that if S is the direct sum of the atoms of CS(R),
then S ^ R. Since each nonzero ideal of R has nonzero intersection
with some atom of CS(R), evidently R is semiprime if and only if each
atom of CS(R) is prime. The following theorem was recently proved by
Goldie [4].

4.4 THEOREM. If R is a semiprime ring for which d(R) is finite,
then not only is R a direct sum of a finite number of finite-dimen-
sional full rings but also R = {ab~λ \ a e R, b e D(R)}.

The first part of 4.4 follows directly from 4.3. To prove the second
part, Jet S = ^ © — ©22* be the sum of the atoms of CS(R). Then
R = § = jRiφ •©#*. If qi e R, then q{ = afc1 for some α< e R{ and
b, e D(Ri) by 4.2. Thus, if q = qλ + + qk, a = a, + . . + ak, and
b = &! + + bk, q = a 6"1. This proves the second part of 4.4.

A converse of 4.4 has been given by Goldie [5; 4.4], He proved
that if R is a ring for which d(R) is finite and R = {αfr11 a e R, b e
D(R)}, then R is semiprime. Naturally, this implies the following
converse of 4.2: If R is a ring for which R is a finite-dimensional full
ring and R — {ab'1 \ae R,b e D(R)} then R is prime.
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THE ASYMPTOTIC DISTRIBUTION OF THE TIME-TO-

ESCAPE FOR COMETS STRONGLY BOUND TO

THE SOLAR SYSTEM

DAVID G. KENDALL AND J. L. MOTT.

1. Introduction This paper is one of a series (Hammersley and
Lyttleton [1], [2], Kerr [3], Kendall [4], [5], [6]) concerned with the
statistical-dynamical properties of the sun's family of comets. For the
astronomical background, terminology, conventions, units, etc., we refer
the reader to [5].

We consider a comet in the energy-state x > 0 (so that the total
•energy per unit mass is equal to —x) which is approaching perihelion,
not necessarily for the first time, and we write T for the total time
spent by the comet in describing complete circuits subsequent to this
perihelion. We ignore the low energy (high x) catastrophes (capture by
Jupiter, falling into the sun, etc.) and consider the fate of the comet sub-
ject to independent energy-perturbations at perihelion, the magnitudes of
which we suppose to be distributed according to the probability law

^e~^w^bdwlb (— oo < Ίβ < oo) ,

the so-called 'double-exponential law'. It is then known [5] that T is
almost certainly finite.

The probability distribution of T cannot be found explicitly, but its
Laplace-Stieltjes transform φ satisfies a differential equation which wre
treat by a perturbation method. At first sight it seems unlikely that a
perturbation procedure followed by a Laplace inversion could yield any
positive information about the distribution being studied, but in fact by
a careful arrangement of the argument we are able to calculate the
-exact limit-law

limPr

for the reduced random variable T/i/αs; the result is given at (15) below.
If we are chiefly interested in the origin of comets we can identify

the given perihelion with the comet's first, and x is then its initial
energy-state. There are indications ([5], [6]) that this value of x is small
when compared with the average size of the perturbations, but information
about solutions for large x can be extracted from Hammersley [2], and
the present result thus forms a useful complement to some of his results 9

with which it is consistent: in fact, the same (limit-) law was obtained
by Hammersley in his exact solution to the corresponding problem involv-

Received November 16, 1960.
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ing Brownian motion.
If we do not identify the given perihelion with the comet's first,

then our result tells us the distribution of the remaining time-to-escape
T for a comet which happens to have entered a high energy-state.
From this point of view the result is of value whatever opinion we may
hold about the origin of comets, but it is of course limited by the fact
that when x is large (i.e.,the comet is strongly bound) then one cannot
properly neglect the low-energy (high x) catastrophes.

The justification for the use of the double-exponential perturbation
law will be found in [3], [4], [5], [6]. Because of the asymptotic character
of the present result one might expect the detailed form of the pertur-
bation law to be unimportant, and one might hope that identically the
same result would follow for any perturbation with zero mean and a
finite variance. The proof that this is so is the object of an investigation
by C. Stone and J. Lamperti, who will in a forthcoming paper discuss the
appropriate invariance theorem.

In the course of our work we shall make use of some Bessel function
formulae given by Watson [7]. We shall refer to these formulae as
(1W), . . . , (5W), where (1W) is given on p. 80 of [7] at (19), (2W)-77(2),
(3W)-202(l), (4W)-203(2) and (5W)-80(15).

2. The asymptotic distribution of Tl\/x. T is the total time during
which a comet remains in the system, measured from (say first) perihelion;
thus T is the total time spent in describing complete circuits. The
comet is subject to energy perturbations at perihelion distributed
according to the double-exponential law, and there is also a chance
k (0 g k < 1) of disintegration at each perihelion passage; for the moment
we retain the possibility of disintegration but our main results depend
on a method which would not be very easy to handle when k > 0, and
we shall shortly put k = 0.

Define
φ(s\x) = ξ?(e-SIt\x);

here x is the energy-state of the comet during the approach to first
perihelion, so that x > 0, and s ^ 0. V(y) — y~312 (y > 0) gives the peri-
odic time of an orbit in state y, but (following Hammersley [Z]) we
shall first set V(y) = y~*. We shall later put a = 3/2 to give our main
result, and afterwards remark briefly on the more general case.

Consideration of the possible events at first perihelion leads to the
integral equation for φ:

φ(s\x) = k + (l -k)he~xlb + [~ ib-1 e~wlb e-sr{x+w) φ(s\x

i b~ι e~wlb e-sv{x~w) φ(s\x — w)dwX,
J
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whence

( 1 ) φ{s I x) = k + (1 - k) {* e~xlb + i 6"1 ex'b J~ e~wlb e~sv^ φ(s \ w)dw

+ ^b~ιe~xlb V ewlb e-sr{ω) φ(s\w)dw\.

Since 0 ^ φ ^ l f o r x > 0 and s :> 0, and φ(s | ) is measurable for s ^ 0,
we see from (1) that φ(s | ) is continuous on the interval 0 < x < oo.
But then </>(s| •) is also differentiate, and with D = d/dx,

( 2 ) {l-k)-ιDφ= - \h-λe-χlb + ib~2exlb Γ e~wlb e~sv{w) φ(s\w)dw
Jx

— * b~2 e~xlb \X ewlb e~sviw) φ(s \ w)dw;
Jo

also

( 3 ) (1 - / c ) - 1 D 2 φ = ib~2e-χ/b + ib-*exlb \~e~wlb e~sviw) φ(s\w)dw
Jx

- b-2e-srix) φ(s\x) + ib-3e~xlb [* ewlb e~sv{w) φ(s\w)dw.
Jo

Thus from (1) and (3)

( 4 ) D2φ = b-2{1 - (1 - k)e-sv{x)}φ(s\x) - kb~2 (x > 0);

and now we have that, in fact, φ e C°°.

We now put k = 0, and then write (4) as

(5) D*φ-gφ=fφf

where

g = sb~2 V(x) and / = {1 - sV(x) - e~sv{x)} ίr 2.

We discuss the nature of φ by using the standard method of variation
of parameters, and so postulate as a solution of (5) (for the moment we
suppress the variable s)

φ(x) = A(x) Θ1(x) + B(x) Θ2(x),

where θ^x), Θ2(x) are independent solutions of

( 6 ) D2φ - gφ = 0.

We find that

( 7 ) φ(x) = θ±(x) \Xf(y) φ(y) Θ2(y) dy\W - Θ2(x) \* f(y) φ(y) θ^y) dyjW,
Jc Jd

where W — θ[(y) Θ2(y) — θ[{y) θλ{y) (actually a nonzero constant) and c, d
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here are constants. When a = 3/2, which is the case we shall work
through in detail, we can take (cf. Watson [7], p. 96)

(8) θx(x) - x1'2 K2{4b~ι s1'2 x1") a n d Θ2(x) = x112 J2(46~1 s1/2 xιli)

also W= — i, using (1W). We now rewrite (7) in the more convenient
form:

( 9 ) φ(x) = Aθx(x) + BΘ2(x) - Wλ{x) \X f(y)φ(y) Θ2(y)dy
Jo+

where A and B are constants (possibly involving s) to be found later;
this we can do because, for fixed s, Θ2(y) ~ Cy (y —» 0) and θλ{y) ~
Cyme~cvλ" (y—oo), by (2W) and (SW). Here (and elsewhere) C is
some positive constant (often depending on s), but not necessarily the
same each time it occurs. Thus the effect of our work so far has been
to replace the natural integral equation, (1), by a second, (9); but (9) is
the easier to handle.

We now find A and B. We first note that B = 0. For

( i ) θi(v) - Cy>18exp(- 4b'1 s1'2 y^) (y - «>), by (3 W),
(ii) Θ2{y) - Cy318 exp(46-χ s1/2 y1!i) (y -> oo), by {AW) and
(iii) f{y) — O(y~3) (y —> CXD); thus the two integral terms of (9) tend

to zero as x —• oo. Since 0 ^ φ g 1 for all x, there is (for x —> oo) just
one unbounded term in (9) if B Φ 0, and so B = 0.

To find A we need further boundary conditions on </>. From (1)
(with k = 0) we have

(10) φ(s|0 + ) = £ + ib~1J,

where

j = Γ r w / δ e"5 F ( w ) φ(slw)dw
Jo

and from (2) (with A; = 0)

Z ) φ ( s | 0 + ) - -hb-1 + hb~2J.

Thus

(11) Φ(s\0+) = 1

which, with (9), allows us (after some detailed calculation) to evaluate
A. We find, by elaboration of the methods used below, that
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we shall not give the details because the asymptotic distribution of
Tj\/x is obtainable without this complete treatment of A. We shall
show later (in § 4) that

(12) φ = AVβs + O(xlt2) (x -> 0),

when 8 > 0, whence φ(s\0 + ) = Ab2/8s. Then from (10), recalling that
A depends on s, we see that

lim (,4&78s) = i + f fc-Πim ( V w / & e~sv{w) φ(s\w)dw
s->0 s->0 JO

= i + i b'1 Γ e~wlb dw Pr{T < oo} = 1
Jo

(because almost certainly there will be only finitely many complete circuits),
so that

A ~ 8s/&2 (s — 0).

Now put s\/x = σ > 0 in (9) and let x —> co and s —> 0, σ being
fixed. Then

(13) ^(β- σ Γ/^|x)-φ(s|x)->86- 2(7if 2(46- 1-/σ), (σ > 0, x->«>).

if both integral terms of (9) tend to zero; this is in fact the case, as
we show in §3. The (honest) probability distribution

has the expression on the right-hand side of (13) as its Laplace transform,
so that

lim if {e-σTNx\x) = gf (e~στ)
X—>oo

for all σ > 0. It follows by the continuity theorem for the Laplace-
Stieltjes transforms of probability distributions of nonnegative random
variables that

(15) limP
64 Jo ^V b2τ/ τ3 V 6V V 62c

This is our main result; but it is clear that (to some extent at least)
the precise value of a affects the detail of (15) rather than its essential
nature. For a Φ 2 we can take as independent solutions of (9)

θλ(x) = x1'2 K,{2vb-χ s1/2 ^- ( 1 / 2 ) Λ ) and Θ2{x) = x1'2 I^vb'1 s1'2 x1-™*),

where v = \a — 21"1 (for a — 2 the solutions are powers of x), and then
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find as before that W is a constant independent of y. But some limi-
tations on a are imposed by the need for suitable behaviour of various
integral terms, and we merely note here one analogue of (15):

if V(χ) = x-\ then

(16) lim Pr{^ ^ c\x\ = λ [ exp (--L) % = exp (--L) .
*-oo l # J δ2 Jo \ 62τ/ τ2 V 62c/

3 Analytical details* Consider the behaviour of the integral terms
in (9) when x -> oo and s\/x — σ > 0. These terms are (apart from
constant factors)

(a) Θ1(x)\xf(y)φ(s\y)θ2(y)dy
Jo

and

(b) 02(x)\^f(y)φ(s\y)θ1(y)dy.

Write (a) as θx(x) { j ^ + jV(l/)Φ(β|l/) θ,(y)dy} - Λ + A,, say, and

consider separately the terms Aτ and A2. Using | / | < 2b~2sy~3l2(y > 0),
and noting that θx{x) = σs~τ ΛΓ2(46"1τ/o>), we have

for a? sufficiently large, since /2(λ1/4) = O(λ1/2) (λ -• 0). Thus A, = O(x~112)
(x-± oo). For A2 we use | / | < is2/y3b2 and find

s Ji yz L 6 \χ 1 J Ji

since Ja(ί) is bounded for 0 ^ (9 ^ 46"V(7. Thus A2 = O(^1/2) (a? --> oo),
so that (a) -> 0 as x -> oo with si/a? = σ > 0.

For (b) have

| ( 6 ) | < Cx1'2 Γ ? / 1 / 2 4 ^ = O(x~2) (x -> oo),
Jx y*

which completes the proof that the integral terms tend to zero.

4 Analytical details (continued). We now prove (12). To do this
we need (part of)
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( i ) θ,{x) = Vβs - \x^ + O(xlogx) (»-»<>),
(ii) Θ2(x) = 2sδ-2 x + O(x312) (x — 0)

and
(iίi) 1 - s V(x) - e~srM = - sar8'2 + 0(1) (α -»> 0) .

Proofs. By (5W) .

ΛΓ,(z) = 2z-2 - i + O(z* log z) (« -> 0) ,

whence (i) follows. Likewise, using (2ΫF), 00 follows from

Uz) = zηS + O(z4) (2 -v 0) .

Finally, (iii) follows from 0 < e~sr{x) < 1 for x > 0, s > 0.

We now note that (12) follows at once from (9) if we show that

(iv) Θ&) \' f(y) φ(y) θt(y) dy = O(x>") (x -* 0)

and

(v) Θ2(x

These results follow from those already given. We have

f(v) - O(y-*'η (y - 0) and Θ2(y) = O(y) (y -> 0)

so that

\'f(y) Φ(v)
Jo

Since θ^x) — 0(1) (x —> 0), this gives (iv). The proof of (v) is similar.
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THE SPECTRUM OF SINGULAR SELF-ADJOINT

ELLIPTIC OPERATORS

KURT KREITH

This note deals with the Dirichlet problem for the second order
elliptic operator

r(x) Σ

whose coeίBcients are defined in a bounded domain G c En. We suppose
the following:

(a) The cbijix) are complex valued and of class C" in G; ai5 — ά5i.
(b) c(x) is real valued, continuous, and bounded below in G.
(c) r(x) is continuous and positive in G.
(d) There exists a function σ(x), continuous and positive in G

satisfying

1,3=1

• •^> ft >
? = U 2-Λ

i = l

for all x in G and all complex w-tuples f = (£i, £r2, , έ:*).
Under these assumptions it is easy to show that L is formally

self-adjoint in the Hubert space Jδf J(G) of functions which satisfy

\ r\u\2 dx < oo .
JO

We denote by CT(G) the set of infinitely differentiate functions with
compact support in G. The operator L defined on C~(G) is a serni-
bounded symmetric operator in ^fl{G) and therefore has a Friedriehs
extension which is self-ad joint in ^fl{G). This operator, to be denoted
by L, will be referred to as the Dirichlet operator associated with L
on G. It is well known that L is unique, has the same lower bound
as the symmetric operator L, and that in sufficiently regular cases, L
can be obtained by imposing Dirichlet boundary conditions on the
domain of L*. The purpose of this note is to state a criterion for the
discreteness of the spectrum of L.

We shall say that the spectrum of an operator A is discrete if the
spectrum of A consists of a set of isolated eigenvalues of finite multi-
plicity. The complex number λ belongs to the essential spectrum of A
if there exists an orthonormal sequence {un} it the domain of A for
which (A — Xl)nn -+ 0. If A is self-ad joint, then it can be shown (see

Received December 6, 1960. This research was partially supported by a grant of the
National Science Foundation NSF G 5010.
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[2]) that λ belongs to the essential spectrum of A if and only if λ belongs
to the spectrum of A and is not an isolated eigenvalue of finite multiplicity.
Thus the spectrum of a self-adjoint operator is discrete if and only if
the essential spectrum is empty.

In case G is bounded and the conditions (a)-(b) are satisfied in G
as well as G, then it is well known that L has a discrete spectrum.
Here we shall allow the possibility that σ(x) and r(x) tend to 0 or <=» on
a set S c ΘG. With this generalization the spectrum of L need not be
discrete.

In order to state criteria for the discreteness of the spectrum of
L, it is convenient to express the problem in the canonical form where

G c {x I xn > 0}

S c {x I xn = 0}

~ 1 Λ«n ) "T~ ZΛ

dXn V dXn / i.i=i &C

Mihlin [1] has shown that this canonical form can in general be attained
by a change of variables. Previous criteria for discreteness derived by
Mihlin [1], Wolf [2], and others depend on the behavior of ann near S.
The criterion to be derived here is independent of the behavior of ann;
with minor modification, the method can also be applied if G is an
unbounded domain.

We define

Gt = G n {x I xn < t}

Et = G n {x I xn = t] ,

and denote by % the coordinates (x19 , xn-τ) in Et. Let L4 denote the
Dirichlet operator associated with L on Gt. Then the following is a
special case of an invariance principle due to Wolf [2].

LEMMA 1. For t > 0 the essential spectrum of Lt is identical
with the essential spectrum of L.

LEMMA 2. J/lim inf A—?^/ = oo, then the spectrum of L is discrete.
\U

Proof. Suppose to the contrary that there is a λ0 < oo which
belongs to the essential spectrum of L. We can choose ί0 > 0 sufficiently
small so that

Then, by the definition of LiQ
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^ λ 0

for all u in the domain of LtQ, and λ0 does not belong to the spectrum
of LtQ. By Lemma 1 this is a contradiction.

For t > 0 the operator

Σ
r{x, t) i.i=

Σ (*«(*, , t)

is a nonsingular elliptic operator defined on Et. Therefore Tu the
Dirichlet operator associated with Tt on Eu has a discrete spectrum.
Let m(t) denote the smallest eigenvalue of Tt.

THEOREM. If lim m(t) = oo, then the spectrum of L is discrete.
t->0

Proof. If u G C0°°(G), then clearly u(x, t) e Cϊ(Et). Thus for all

u

S Γ Γ~ n ^ rill filJ

01 \ svfi Ύ* <L I I \ /Ί .
I Cv j / Gt/tX/ ^ 1 I y> j vί'tj ^ '

Eζ JEj\_i:j~l OX i OX j

s L,[» -

dx

Defining m(ί) = inf m(τ) and integrating both sides from xn = 0 to

#TC = ί we obtain

f f Γ
W 1^1 ' ax ^ \ α % 7 !

Since lim m(ί) = oo we have
ί-0

Km inf

The desired result now follows from Lemma 2.
We give two simple applications of the preceding theorem.

COROLLARY 1. Let Vt denote the (n — ΐ)-dimensional Lebesgue
measure of Et. Let φ(t) and p(t) be continuous positive functions
satisfying

(i)

, for all ξ - (ft,
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If lim φ(t)lρ(t) V\ln~ι — oo, then the spectrum of L is discrete.
<-»0

Proof. Let μ(t) denote the smallest eigenvalue of the Dirichlet
operator associated with — A = —Σ/lzffi/dxl on Et. By (i) and (ii)
m(t) ^ Φ(t)μ{t)jρ{t). It is well known that μ{t) is minimized if Et is a
(n—l)-dimensional sphere of volume Vt and that then μ(t) = C/F?'*"1, C
being a constant. Therefore m(ί) ^ Cφ(ί)/r/θ(t) Ff7—1 and the result
follows from the preceding theorem.

The preceding corollary made no use of the shape of Et. The
following corollary gives stronger results in case Et becomes "narrow"
in the proper sense.

COROLLARY 2. Suppose we can find functions <Xi(α?n), ••.,αlt_a(ίP1t),
<γ(xn) and p(xn) which satisfy conditions (a)-(d) and

( i ) Σ>ai(xn)\ξi\2 ^ΣaiMi for all ξ = (ξu - , U and all x
*=i t.i=i

in G.

(ii) γ(#Λ) ^ c{x) for all x in G.

(iii) ρ(xn) ^ r(x) for all x in G.

Suppose also that we can enclose G in a region

Γ = {x\fi(xn) <%i< 9i(xn), i = 1, •> n - 1; 0 < xn < b < ™} .

// /or some i < n

AMY
then the spectrum of L is discrete.

Proof. Denote by μ(t) the smallest eigenvalue of the Dirichlet
operator associated with

on Γ Π {x I xn — t). By classical variational principles μ(t) ^ m(t). Since
we can compute

the discreteness of the spectrum of L follows from the preceding
theorem.
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THE SEMICONTINUITY OF THE MOST GENERAL
INTEGRAL OF THE CALCULUS OF VARIATIONS

IN NON-PARAMETRIC FORM.*

LlONELLO LOMBARDI

Summary. The positive quasi-regularity of integrals depending upon
any number of surfaces in non-parametric form, each with any number
of dimensions, is defined. Positive quasi regularity is proved to be
sufficient for lower semicontinuity.

l Let Di(i — 1, 2, , m) be a closed bounded set of the ^-dimen-
sional euclidean space of the variable vector x{ = {x{}(j = 1, 2, •• , n),
bounded by surfaces which are absolutely continuous in the sense of
Tonelli [60, 62, 63], without multiple points, and let D be the cartesian
product ΠΓJA Let y = {y^ (i ~ 1, 2, , m) denote a vertical m-vector, and
let p denote a mxn matrix, whose row-vectors are p{ = {p{}(j = 1, 2, ,
n). Let x be the m n matrix whose row-vectors are x{ and φ[x, y,p]
a real function, defined for xt e D{ (i = 1, 2, , m) and for any y and
p, which is continuous with all its partial derivatives of the types

Let q — m be a positive integer and let Uq denote a set of distinct
positive integers out of the first m; let ζ be an index ranging over Uqf

and let μ(8) be a mapping of Uq into the set of the first n integers.
It will be assumed throughout that, for every q, every Uq and every
μ(ζ), all the partial derivatives

d2qΦ[χ, y , P]
(1.1) ~

exist and are continuous for every xe D and for every y and p.
Let y(x) = {yi(Xi)} (i = 1, 2, , m) denote a vector-valued function of

the matrix x, such that each component y^Xi) depends only upon the
row vector xim We assume that each yι{x%) is absolutely continuous, in
the sense of Tonelli [63]; we shall call Variety V the set of m surf aces
represented by y(x).

Received July 29, 1960. The preparation of this paper was sponsored in part by the
Office of Naval Research and the Office of Ordnance Research, U. S. Army. Reproduction
in whole or in part is permitted for any purpose of the United States Government. The
author also wishes to acknowledge the help given Gerald W. Kimble in the preparation of
this paper. The author is now with Scientific Information Treatment Centre, EURATOM.
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We shall say that V is of class 1 if all the first partial derivatives
of all the y^Xi) exist and are continuous; we shall say the V is of class
2 if the same is also true for all the partial derivatives of the second
order.

Let

P\(x) = dy'{X;] (i = 1, 2, m; j = 1, 2, . . . , %) ,
OXi

and

dx = f ύ

The m*n integral'

lv = φ[x, y(x), p(x)]dx

1

is called variety integral in non-parametric form; all the varieties V
where / exists and is finite are called ordinary.

REMARK 1.1. Varieties V of class 1 and 2 are ordinary for any
function φ[x, y, p].

Let p = {pi} Ξ {p{\ denote another variable in the space of the matrix
p,y = {yτ) another variable in the space of the vector y, V~ y(x) = {^0*)}
another variety V; let

the distance p(V, V) between V and V is defined by the formula

p(V, V) - supx, i I Vi(x) - Vi(x) I .

Continuity and semicontinuity of the real function Iv will be considered
throughout with respect to this m-uniform metric.

In one of our previous papers [33] the following theorem was
proved:

CONTINUITY THEOREM 1.2. Necessary and sufficient conditions for
the continuity of Iv at every V is that the function φ[x, y, p] is li-
near with respect to each one of the vectors p{.

REMARK 1.3. As a consequence of Theorem 1.2, the most general
r

function φ[x, y,p], such that \ φ[x, y(x), p(x)] dx is continuous at every

1 For the relation between this integral and non local field theories see bibliography
[1, 6, 27, 2§, 29, 4O,41, 42, 46, 47, 48, 58].
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V, may be written in the form

(1.2) ΣΣΣίV^'^Π^1},

where we assume by convention that, if t] is a variable integer ranging
over a set S and {av} is a sequence of numbers, then

fj α^ = o, whenever S is empty .

Let L[#, y, p, p] denote a polynomial in the indeterminates

(1.3) \pf - P{i]

of degree not exceeding 1 in any of the vectors [p{ — p j , whose coef-
ficients WUqttι(x, y, p) are functions of (x, y, p) which are continuous
together with all their derivatives of the form

Π4)

L[x, yy p, p] may be written in the form

(1.5) Σ Σ Σ {wU qΛχ, v> v) Π [Ί>?ζ) - PΪζ)]}.

Let us define the generalized Weierstrass function EL[x, yf p, p] of
Lv with respect to L[x, y, py p], by the formula

(1.6) EL(x, y, p, p) = φ[x, y, p] - L[x, y, p, p] .

The integral Iv — \φ[x, y{x), p(x)]dx is said to be positively quasi-

regular with respect to L (abbreviation: LPQR) if both the relations

(1.7) EL[x, y, p, p] = 0

(1.8) EL[x, y, P,P]^0

hold for every x e D and for every y, p, p.

REMARK 1.4. Notice that if Iv is LPQR, then the element of
degree 0 of the polynomial L[x, y, p, p] must be φ[x, y, p]f and the
vector consisting of the coefficients of the elements of degree 1 is the
gradient of [x, y, p] with respect to p: therefore, if m = 1, i.e., if TΎ is
a usual multiple integral [60, 62], the fact that Iv is LPQR completely
determines the function L[x, y, p, p]. This does not happen if m > 1,
as was shown by an appropriate example [30], referring to Fubinί-Tonelli
integrals, i.e., to the case (m = 2, n — 1).

We say that Iv is positively quasi-regular (abbreviation PQR) if
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there exists at least one function L[x, y, p, p] such that Iv is LPQR.

REMARK 1.5. Let us say that Iv is negatively quasi-regular with

respect to L (abbreviation: LNQR) if \ — φ[x,y(x),p(x)]dx is LPQR. Then

it is easy to prove that, if Iv is both LλPQR and L2NQR, then

LΊ[X, y, p, p] = L2[x, y, p, p], and φ[x, y, p] is a polynomial of degree not

exceeding 1 in each pt; i.e., by Theorem 1.2, Iv is continuous. Theorem

1.2 also implies that every continuous Iv is both LPQR and LNQR for

some L[#, y, p, p].

REMARK 1.6 In the case m = 1, our definition of positive quasi-
regularity reduces to the one which was given by Tonelli [59, 60] and
Cinquini [1] for simple and multiple integrals. In this particular case,
the positive quasi-regularity of an integral is equivalent to the lower
convexity of its figurative, i.e., of φ[x, y, p] considered as a function of
p only.

In the case n = 1, the definition of positive quasi-regularity reduces
to the one given by this author for the Fubini-Tonelli integrals [30].

REMARK 1.7. If Iv is PQR, then its value is + oo at every non-
ordinary variety.

2. Let us prove the following

THEOREM 2.1. / / Iv is PQR, then it is lower semicontinuous at
every variety V of class 2; i.e., if V is of class 2, there exists a
positive function p(ε) of the positive variable e such that, if V ΞΞ y(x)
is any variety, then

(2.1) Iy — Ir>-e, whenever ρ(V, V) < p(e),

regardless of whether or not V is of class 2.

Proof. Let L[x, y, p, p] be a function, such that lv is LPQR. By
(1.6) we may write

(2.2) Iy-Iv=\ EL[x, y(x), p(x),p(x)]dx - I Eτ\x, y(x), p(x), p(x)]dx

+ [ L[x, y(x), p(x), p(x)]dx - \ L[x, y(x), p(x), p(x)]dx .

Let V = y(x) be a variety of class 2;

P[x, y, p] = L[x, y, p(x), p]
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is a polynomial of a degree not exceeding 1 in each p, and all of the
derivatives

dP[x,y,p] d*P[x,y,p] ^ β«P[x, y, p]
0ps

r ' dpldpl '

(r = 1, 2, , m; s, t = 1, 2, n)

exist and are continuous for every [x, y, p] and for every q, Uq, μ(ζ),
r, s,t as a consequence of the existence and continuity of the functions
(1.4) and of the partial derivatives of the first two orders of the functions
yr(x), (r = 1,2, - - ^ m ) .

By the continuity Theorem 1.2,

Jv = \ P[x, y(x), p(x)]dx

is continuous; hence t h e difference of the last two integrals on the r ight
side of (2.2) is smaller t h a n any predetermined real positive ε, whenever
p{V, V) is less than a certain positive number ρ(έ). Since the first in-
tegral on the r ight side of (2.2) is not negative by (1.8) and the second
vanishes by (1.7), (2.1) holds: the theorem is thus proved.

3 (a) In this section t h e concept of asymptotic evaluabίlity of
the integral Iv is defined; t h e lower semicontinuity on every very variety
V of any positively quasi-regular and asymptocally evaluable integral
is proved. The results of this chapter may be regarded as extensions
of Tonelli's theorems on usual multiple integrals [59, 60], and of our
results on Fubini-Tonelli integrals [30].

(b) Suppose that Iv = \ φ[xf y{x), p(x)]dx is PQR> and let L[x, y,
JD

p, p] be one of the functions, such that Iv is LPQR.
The function

(3.b.l) Φ[x, y, p] = E£[x, y, Ω, p] ,

where Ω is a m n matrix whose elements are all 0, is never negatiΎe.
Furthermore,

(3.b.2) Ίv = \ Φ\x, y{x), p(x)]dx
JD

is LPQR, where

(3.b.3) L[x, y, p, p] = L[x, y, p, p] — L[x, y, Ω, p].

By (1.7), the equation

Φ\x, y,Ω] = 0
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holds for every x e D and every y.
Let R denote a positive real number and let φR[x, y, p] denote a

function such that the following conditions are satisfied:

I. φR[x, y, p] is continuous with all its partial derivatives of any
of the forms

d<pR[x, y, p] d2φR[x, yy p] d2qφR[x, y, p]
dpi ' dprdpl

II. The integral

(3.b.4) Yv = I φR[x, y, (x), p{x)]dx

is PQR.

III. The relation

(3.b.5) 0 ^ φR[x, y, p] ^ Φ[x, y, p]

holds for every y, p and for every xeD; furthermore

m n

(3.b.6) <pR[x, y, p] = Φ[x, y, p], whenever Σ % (pίY ^ R .

IV. There exists at least one function Λ[x, y, p, p], such that Yv

is ΛPQR, and such that, for each T> 1, there exists a number Q, for
which the following condition is satisfied:

Let q, Uq, ξf μ(ξ) be defined as they were in § 1; let Uq denote the
complement of Uq with respect to the set of the first m positive in-
tegers, and let ζ be an index ranging over Uq. Then the inequality

v%aA%, y , P]JQ

where W*qtll[x, y, p] denotes the coefficient of the element

π mίζ} - vfζ)}
ζeuq

of the expression Λ[x, y, p, p], holds for every q, Uq, p, for every x e D
and for every y such that

\Vi\ < T (i = 1, 2, •••, n).

REMARK 3.1. In the case of the usual multiple integrals (m = 1),
Condition IV reduces to the boundedness of the derivatives
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in any domain where y{x) is bounded; this condition is exactly the one consi-
dered by Tonelli [59, 60].
In the case of Fubini-Tonelli integrals (n = 1), this condition reduces
to the one that this author considered in [30, § 1, page 132],

REMARK 3.2. Yv exists and is finite on every variety V, i.e., every
variety V is ordinary for the integral Yv.

(c) LEMMA 3.3. The integral Yv defined by (3.b.4) is lower semi-
continuous at every variety V.

Proof. Let V = y(x) = {yt(%i)} be any variety; and let 1 > ε > 0 and
R > 0 be given, and let π = π(x) = {^(a^)} denote a variety of class 2,
such that

(3.C.1) p(π, V) < ε

Let T = sup I y&i) | + 2 .

L e t π'(x) = \\π'i(x)\\ = \ \ aπ**i} \\, (i = l , 2 , - , m ; j = 1 , 2, •-, n ) ,
I I OOCZ I I

and let ϊ)i c Ώ{ denote set of the points xi9 such that, for some j ,
either pl(Xi) does not exist or it is such that

<3.c.2) In'iixd-p&dl^e.

Suppose further that, for each i (i = 1, 2, , m) ,

•(3.C.3) L ±j [| π'iixt) I + I pifa) \]dx, < ε .
^Di 1

The construction of such a variety π is possible for any V [68],
If V = y(x) = {Vi(x)} is any other variety, we may write

(3.C.4) γΨ- γv=\ Efix, y(x), π'(x), p(x)]dx

- ( E\\x, y(x), π'(x), p(x)]dx

+ Λ[x, y(x), π'(x), p(x)]dx

— Λ[x, y(x), π'(x), p(x)]dx
JD

where

<3.c.5) Eφ

Λ\x, y, p, p] = φ[x, y, p] - Λ[x, y, p, p]
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The first integral on the right side of (3.C.4) may not be negative
because Yv is PQR; since π is a variety of class 2, we may show in
the same way as we did for proving Theorem 2.1, that there exists a
0 < Pi < 1> such that, if P(V, V) < pλ, then the difference between the
last two integrals on the right side of (3.C.4) is less than ε.

Let us consider the expression

(3.C.6) [ I E%x, y(x), π\x), p(x)] \ dx

by (3.C.5), (3.b.7) and (3.C.3), recalling the defininition of A[x, y, p, p\r

i.e., the definition of L[x, y, p, p], since π'(x^ (i = 1, 2, , m) is bounded,
there exists a number k, which depends upon m, n, the variety V and
the diameters of the sets D{ (i = 1, 2, , m), but which depends neither
of π nor of ε, such that the expression (3.C.6) is less than ε fc ([59,
vol. 1, § 11, # 142]; [60, § 3, # 9]; [30, § 3, c]). Consequently the absolute
value of the integral on the right side of (3.C.4) is also less than ε fe;.
hence

Yy > Yv - ε(l + k), whenever ρ(V, V) < p1 .

Thus the theorem is proved.

(d) DEFINITION 3.4. Then integral Iv is said to be asymptotically
evaluable (abbreviation: AE), if it is PQR and if there exists a function
L[x, y, p, p] such that Iv is LPQR and if, for every positive R, there
exists a function φR[x, y, p] (as described in § 3.b).

REMARK 3.5. Tonelli [59, vol. 1, page 398-9] gave a procedure by
which <pR[x,y, p] may be constructed starting from any simple integral
(m = n = 1), which is PQR: he thus proved that, if a simple integral
is PQRy it is necessarily AE. Some criteria of asymptotic evaluability
are exhibited in [30, § 2, page 140]; although it appears intuitively that
every PQR integral is also AE, this fact was never proved, except in
the case (m = n = 1); therefore the statement of any theorem of semi-
continuity in whose proof the function ψR\x, y,p] is used, has to contain
the hypothesis that this function can be constructed, i.e., that the
integral considered is AE.

THEOREM 3.6. If the integral Iv is PQR and AE, it is lo-wer
semicontinuous on every ordinary variety.

Proof. Let us first point out that existence and lowers emi-
continuity on any variety of Iv, and those of the integral ϊv defined by
(3.b.2), are equivalent, since the integral
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ί {Φ[x, y(x), p(x)] - Φ[x, y(x), p(x)]}dx = I L[x, y(x), Ω, p(χ)]dx

exists and is continuous at every variety, by the Continuity Theorem
1.2.

Let V = y(x) = Vi(%i) be an ordinary variety, and let ε > 0 be given.
Since Φ[x, y, p] is never negative, it is possible to find a positive

number R, such that, if D\ (ί = 1, 2, , m) is the subset of D{ con-
sisting of the points Xι such that, for each j (j = 1, 2, , n), the
partial derivative dy^x^jdxl exists and its absolute value does not
exceed R, the inequality

<3.d.l) I F - L , Φ[x, 1/0*0, P(x)]dx < ε/2

holds.
The integral Yv, that we associate with Iv and R (see §3.b) is lower

semicontinuous on V by Lemma 3.3; i.e., there exists a positive number
p such that, for each variety V

<3.d.2) Yy > Ύv - ε/2, whenever ρ(V, V) > p .

From (3.b.5) and (3.d.l) we have

ϊv - Yr < ε/2

whence, by (3.d.2)

Ίy>Ίv — ε, whenever ρ{ V, V) < p

i.e., ϊv is lower semicontinuous at any ordinary variety, and so is 7F_

DEFINITION 3.7. We shall say that the integral Iv is lower semi-
continuous at a variety V, such that Iv = + oo, if there exists a positive
function p(ε), defined for each positive ε, such that, if V is any ordinary
variety, then

Iy > ε, whenever ρ{V, V) < ρ(ε) .

THEOREM 3.8. An integral Iv, which is PQR and AEy is lower
semicontinuous at every variety V.

In the case in which V is ordinary, Theorem 3.6 states the lower
semicontinuity of Ir on V. If V is not ordinary, the value of Iv on V
is + oo (see Remark 1.7).

Let us again consider ϊv instead of Iv. Let ε be a given number,

and let R be another positive number, such that, if S< (ΐ = 1, 2, •••,

m) denotes the subset of A consisting of the points x{ where all the
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partial derivatives of Vi(Xi) exist and are less than R in absolute value r

then

L = Φ[x, y(x), p(x)]dx

Like in the proof of Theorem 3.6, we consider again φR[x1 y, p]»
Yv exists finite and is lower semicontinuous at V: hence we may find
a positive number p, such that, if V is any variety such that

(3.e.2) p(V,V)<p,

then

Yy > Yy - 1 .

By (3.b.5) and (3.b.6) ,

Yv ^ L = <PR[x, y(x), p(x)]dx

[χ,y(χ)f p(χ)]dχ ,

hence, considering (3.e.l), if (3.e.2) is satisfied,

ϊψ> e .

Therefore Tv is semicontinuous at V, and so is Iv. The theorem is thus
completely proved.

Conclusion. Let us list four problems which are still open in the
area of the study of the semicontinuity of the integrals of the Calculus
of Variations in non-parametric form:

Problem 1. No example of any lower semicontinuous integral which
is not PQR is known: it appears worth while to investigate whether or
not positive quasi-regularity is also necessary for lower semicontinuity.

Problem 2. For proving Theorems 3.6, 3.8, we used the construction
of the function φR[x, y, p], and we had to assume that this construction
could be made for every R (see § 3.b). It would be interesting to prove
Theorem 3.8 without using this construction, i.e., dropping the hypothesis
that lv is AE.

REMARK C.I. The semicontinuity at any variety V of class 1, or
even just such that all the functions yι{x%) are Lipschitzian, can easily
be proved for any Iv, which is PQR, without any hypothesis of asymp-
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totic evaluάbility, by generalizing the procedure followed in [30, §3,
First Theorem of Semicontinuity],

Problem 3. No example of any integral Iv, which is PQR without
being AE, is known. It would be useful to devise a general method
by which it would be possible to construct <pR[x,y,p] from R and
Φ[x,y,p]: thus proving that if Iv is PQR, it is necessarily AE.

Problem 4. Only varieties which are absolutely continuous in the
sense of Tonelli [63] and the m-uniform metric were considered in this
paper; however, it appears that positively quasi-regular integrals are
lower semicontinuous even with respect to weaker metrics, on more
general classes of varieties. Generalization of the results contained in
this paper may be considered.
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GAME THEORETIC PROOF THAT CHEBYSHEV

INEQUALITIES ARE SHARP

ALBERT W. MARSHALL AND INGRAM OLKIN

1. Summary. This paper is concerned with showing that Chebyshev
inequalities obtained by the standard method are sharp. The proof is
based on relating the bound to the solution of a game. An optimum
strategy yields a portion of the extremal distribution, and the remainder
is obtained as a solution of the relevant moment problem.

2 Introduction. Let X be a random vector taking values in
J T c R\ and suppose t h a t Ef{X) = E(fx{X), , fr(X)) = (φ19 ---,<pr)

= ψ is given, where/,- is a real valued function on £f. For convenience,
we suppose fx = 1. An upper bound for P{X e J7~}, ^f c gf, may be
obtained as follows. If a = (alf , ar) e Rr and %jr is the indicator of
^ then af ^ χ.χ on gf implies P{Xe y^} ^ ag>', and if J ^ o = {α: af §
Z«r on <%?}, a "best" bound is given by

(2.1) P{XejT~} g inf aφf .

In general, a bound is called sharp if it cannot be improved. For
some cases, when J7" is assumed to be closed, the bound can actually
be attained by a distribution satisfying the moment hypotheses.

The main result of this paper is

THEOREM 2.1. Inequality (2.1) is sharp in the following cases.

( I ) X= (Xu . . . , Xk) with EXiXj or EX, and EXiXj given,
i,j = 1, ••-,&.

(II) X has range ( — oo, oo), [0, oo), or [0,1], and EX3 is given,
3 = 1, •• ,m.

(III) X is a random angle in [0, 2π) and the trigonometric moments
Eeίax, a = ± 1, , ± m are given.

Sharpness has been shown in ( I ) by Marshall and Olkin [6] when
J^~ is convex, and by Isii [3, 4] in the unbounded cases of ( II) . Sharp-
ness has also been proved in a number of specialized situations.

In § 3 the proof for ( I ) will be given in detail. The necessary
alterations for each of the remaining cases will be given in § 4, 5, 6, 7.
The solution of certain moment problems depend on conditions on Hankel
matrices, i.e., matrices of the form H= (hi+j), and some results concer-
ning these matrices are given in § 8.

Received August 31, I960. Research sponsored by the Office of Naval Research at
Stanford University.
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The notation A > 0 (^ 0) is used to mean that the matrix A is
symmetric and positive definite (p.s.d).

3 The multivariate case. The relation between inequality (2.1) and
a game can be greatly simplified if we use matrix theoretic arguments.
This is true in part because functions of the form af, a e jy0, can be
written very naturally as quadratic or bilinear forms.

Let X = (Xl9 , Xk) be a random vector on Rk with EX = μ and
moment matrix EX'X = Σ. If u == u(x) = (1, x) for x e Rk, then Eu'{X)

u(X) — ( , CΛ = 77. We assume Π > 0, for otherwise the dimension-

ality of X can be reduced.
Functions of the form af, a e j ^ 0 can be written as uAu9, A:

H l x H l , Aej^ = {A;A^0y uAu' ̂  1 f or x e ̂ }. Hence

(3.1) P{Xe^-} ^ inf aφ' - inf tr ATI .

Let x19 , xm be points (row vectors) in Rk, ut =
I'Pi = 1 be probabilities, T = « , , < J , Z^ = diag (ply , p J , and
H= TDPT. By H ~ JΓ we mean that all ^ e ^ " . The condition
uAu' ^ 1 for x e J7~ can then be written as tr^Liί Ξ> 1 for Jϊ — J?~, so
that j ^ = {A: A ^ 0, tr AH ̂  1 for Jϊ - j^~}.

With this notation, we can rewrite the bound (3.1) in a form which
is suggestive of a game.

(3.2) inf tr AΠ = inf tr AΠ
{A: inf

= inf
inf_ tvSH =\sloB~^tvSII,

= ( sup inf

In view of (3.2) it is natural to consider the game G = (£f, β^9 g),
where &> = {S: S ̂  0, trS/7 ^ 1} and ̂  = {iϊ: H - ^"} are the strat-
egy spaces for players I and II, respectively, and g{S, H) = tr&ff is the
payoff to player I.

Clearly S^ and ̂ f are closed and convex. Further, S? is bounded
since

= (trSS') ^ (trS)cM(S) g (tr Sf ^ (tr SΠYId(Π) ^ l/c2

TO(/7) ,

where cTO(A), cM(A) are the minimum and maximum characteristic roots
of A. For the present we assume that 3ίf is bounded, then by [2, Sec-
tion 2.5], G has a value and there exist optimal strategies So e £f9 Ho e
such that
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(3.3) trSHo ^ trSoHo = v ^ tr SQH, for all Se^,He %f.

The optimal strategy So has the property that inf Ae^tr AΠ = tr AQΠ,
where Ao — S0/v.

To prove sharpness of (3.1), we must show that there exists a
distribution for X such that P{X e ^} = l/y, and Eu'u = Π. Ho is the
moment matrix of a distribution F± on points in ^ . If we can prove
the existence of a probability distribution F for X of the form F =
JPJV + F2, and with moment matrix 77, then this distribution attains
equality in (3.1). To see this, note that F assigns at least probability
v to ^~, and by (3.1) it can assign at most probability v to J7~ %

To show the above, we need only show that a distribution F2 exists
with total variation 1 — 1/v and moment matrix Ψ = Π — Hojv. The
following Lemma yields this result.

LEMMA 3.1. Let Π > 0, Sf = {S: S ^ 0, tτSΠ ^ 1}.
( i ) // tr SH^ v for all S e ^ , then Ψ = Π - H\v g: 0 .
(ii) If tr SH = v for some So e £f, then Ψ is not strictly > 0.
(iii) If tr SH < v for all S e ^ 7 , then Ψ > 0.

Proof. There exists a representation Π = WW, H=WDBW,
I W\ Φ 0, Do = diag(0o, , (9fc), and hence Ψ ̂  0 if and only if 0< ̂  v,

i = 0, .-.,fc. If T F ' S T F - ( J Q ) , then S e ^ , and from t r S i ί -
trΐ^'S TFJDS ^ u, we obtain θ0 g v. Part ( i ) follows using permutations.
If trSH<v, then in the above argument, each 0f < v. If tτS0H~
tτ(W'S0W)Dθ = v and tr TPSΌTFg 1, then at least one of the 0< is equa
to v.

The condition that Jg^ be bounded now can be removed, since
||flo||a ^ (trίίo)2 ^ \y tr/7]2, by Lemma 3.1.

REMARK 3.1. We note that tr S0Π = 1, for if not, aS0 for a > 1 would
violate (3.3).

So and Ho are related by vSQΠ = SQHQ. This follows from the fact
that trSo^ = tr S0(Π - H0[v) = 0 and ?F ̂  0 implies that Sl'ΨS]12 = 0, or
equivalently that Sll2Ψ112 = 0, which yields the result.

REMARK 3.2. In the above development we assumed that EX = μ

was given. If this is not the case, then choose £>* = {£ = (? ^ Y S > 0,
\υ Ox/

trS/7 ^ 1}, Sii k x k, and the entire development remains unchanged
with S1 replacing S, since S ^ 0 if and only if α: > 0, Sλ ^ 0 and tr SΠ =
a: + tr S^.

We now summarize the essential points of the proof which are ap-
propriately modified in each of the remaining cases.
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( 1 ) Introduce vectors u(x) and v(x) (u = v in the above) such that
( i ) Evr{X)u(X) — 77 is a matrix of given moments,
(ii) α/', α e j ^ o can be written as uAv' with i e j / ,

To define j ^ " we first must characterize j y o

(2) Define <%*% a set of moment matrices of the same kind as 77,
but corresponding to distributions on J/".

(3) Define S? and show that £f is bounded.
( 4 ) Use the game to assert that Ho exists, and show that the

moment problem with moments defined by Ψ = 77 — HQ/v has a solution
with ψu = 1 — 1/v.

4, Univariate distributions on (— °o, oo)φ Let u(x) = i;(#) = (1, #,
•••, ccn). Then polynomials af'(x) of degree ^ 2w which are nonnegatve
in (—oo, oo) can be expressed as uAu', A i> 0, [7, p. 82]. Hence s^ ~
{A: A ^ 0, ?M^' ^ 1 for α? e j7~}, and (3.1) holds. Note that 77 = (;rt +y_2) =
(EXi+j-*),i,j = 1, . . . , % + 1 . Let -ex, < ί < c o , W ί = w(ί.), ΐ = i, . . . , w ,
Γ = « . . . , < ) , Dp = diag(p1, . . . , p T O ) ^ 0 , t r D ^ - 1 , H = TDPT =

(Λ +i-2), i, i = 1, , w + 1. Define .^^ = {7ί: ί, e J^", ΐ = 1, . . . , m}, ^ =
{S: S ^ 0, trS77 <̂  1}. We assume that the moment problem correspond-
ing to the given moments {τr0, , π2n} is not determined so that 77 > 0,
[8, Th. 3.3], and the previous argument that £S is bounded holds.
Assuming that Sίf is bounded, there exists an So and Ho = (fe?+i-2)
satisfying (3.3), and with Lemma 3.1 we conclude as before that the
boundedness condition on £ίf can be removed.

Since π0 = h°0 = 1, ψ0 = 1 — 1/v. Define J r = | ̂ ί + i - 2 |[,y=1; then since
Ψ ^ 0, by Theorem 8.1 it follows that A > 0, , 4-i > 0, 4 = 0, ,
z/% = 0, for some r. The reduced (Hamburger) moment problem has a
solution if and only if ¥ Ξ> 0, in which case there exists a (unique) rep-
resentation ψv = Σί=iPt& i = 0, 1, , 2w - 1, and ^ 2 ϊ l = Σ l = i ^ Γ +
c, c ^ 0, and c = 0 if r = n, [8, p. 85].

In the event c > 0, by using an ε-good strategy for player II to
guarantee Ψ strictly > 0, we obtain a distribution with moments {τr0, ,
π2n), which assigns probability l/(v + ε) to SΓ.

REMARK 4.1. The representation obtained from [7, p. 82] is of the
form {ΣUiCif + (Σuxd$, which is expressible as uAu', where A = e'e + dfd.
However, the same class of polynomials is obtained if we include all

REMARK 4.2. If j/~~ is bounded, there exists an extremal distribu-
tion with a spectrum consisting of at most 2(n + 1) points. This follows
from the fact that the least number of points contributing to Ho is at
most (n + 1), [2, § 2.5], and to Ψ is at most (n + 1) points by the previous
argument.
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5. Univariate Case on [0, oo)φ Consider first the case m = 2n — 1, and
let u(x) = (1, x, , xn~λ)y v(x) = (1, x, , xn). Then polynomials afr{x)
of degree gΞ 2w — 1 can be expressed as u[(B, 0) + (0, C)]v' = wAv', where
1? ^ 0, C ^ 0 are n x n matrices (See [7, p. 82] and Remark 4.1). Hence
j y = {A: B ^ 0, C ^ 0, wAi;' ^ 1 for XG ̂ ""}, and (3.1) holds. Now
Π = (πi+j_2) = (EXi+J~2), i = 1, , n + 1; j = 1, ., n. Let 0 < ί< < « ,
tti = wfo), ^ = v(ίi), ί = 1, , m, ϊ\ = (%ί, , O , T2 = « , vy,
A, = diag (P l, •, pm) fe 0, tr Dp = 1, .ff = Γ ^ , ϊ7^ = (λ ί + i_a), i = 1, , w +
l ; i = l, . . . ,w. Define β^^iHit.e^, i = 1, -- ,m}, ^ = {S =
<Slf S2): S2 ^ 0, S2 ^ 0, tr^SΊ, 0) + (0, S2)]/7 ^ l } , S , S 2 : ί i x ^ 0 : w x 1.
Assuming that the moment problem corresponding to Π is not determined,
i.e., /7(1) = (τrί+y_2), i, i = 1, , n, Π{1] = (^ ί + i-i), i, i = 1, , n, are posi-
tive definite, [8, p. 6], the argument of § 3 that £s is bounded holds, with

Assuming that ^f is bounded, there exists an So = (S10, 0) + (0, 520)
and ίί0 = (λ + i _ 2 ) , i = 1, , n + 1 i = 1, * ,n, satisfying (3.3). Define
Ho{1) and H^ in the some manner as Πω and Π{1). An application of
Lemma 3.1 yields Ψω = Πω - Hm)lv ^ 0 and Ψω - /7(1) - H^/v ^ 0.
The boundedness condition of £ίf can now be removed since |(iϊoli2 ~
]|H01||

2 + \\H^\\2^vtr{Π{1) + 77(1)). Also ψ0 = π0 - ho/v = 1 - l/v.

In order for the reduced (Stieltjes) moment problem to have a solu-
tion, it is necessary that both Ψω and Ψ{1) be ^ 0.1

Recall from § 4 that Δr = | ^ i + i _ 2 | , ΐ, i = 1, , r + 1. Now define
jw = Iψ'.+^l, i, i = 1, . ., r + 1. From Theorem 8.1 it follows that
either

( i ) Λ > 0, , Δr > 0, J r + 1 = = Jw = 0 and 4 υ > 0, • , Δ? >
0, 4 ϊ i = = ^ 1 } = 0, or

(ii) Λ > 0 , - - . , 4 > 0 , J r + 1 = . . . = ^ = 0 and 4 x ) > 0 , •••,
J ^ ! > 0, 4 υ = * — ^n] = 0, for some r. But these are the conditions
that there exist a distribution whose spectrum consists of r + 1 points
distinct from 0 in case ( i ) and including 0 in (i i) .

If m = 2n, let u(x) = v(x) = (1, x, , ccw). Then polynomials af\&)

of degree ^ 2^ can be expressed as vΪB + (^ Q j h;', where B: n + 1 x

w + 1, C:n x n, B ^ 0, C ^ 0, [7, p. 82]. The remainder of the proof

is essentially the same as for the case m — 2n — 1 above.

6. Univariate distribution on [0, 1]. We first deal with the case
when an odd number of moments is given. Let u(x) — (1, x, •••, x71'1),
v(x) = (1, a?, . ., xn). Now Π = (π i + i_2) - (£7X ί+^2), i = 1, . . . , n + 1;
i = 1, •••,%. Then polynomials aff(x) of degree ^ 2 ^ — 1 which are

1 This result was communicated to the authors by S. Karlin. The proof is similar to
that for the reduced Hausdorff moment problem given in [5].
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nonnegative in [0, 1] can be expressed as u[(B, 0) + (0, C — B)]vr = uAv',
where B and C are n x n matrices, B Ξ> 0, C ^ 0, (See [7, p. 82] and
Remark 4.1). Hence j ^ = {A : B ^ 0, C ^ 0, uAv' ^ 1 for a? e jΓ~}, and
(3.1) holds. We assume that the moment problem corresponding to the
given moments {π0, , π2n^} is not determined. This means that 77(1) —
fa+i-i), i, i = 1, , w, and /7(2) = (τrί+i_2 — πi+j^)f i, j = 1, . . . , ^, are
both positive definite, [5, p. 55] or [8, p. 77]. (In the latter reference
the conditions are presented for the interval [ — 1, 1].)

Let O^U^l, Ui = Ufa), Vi = v(ti), i = 1, , m, Tx = (u[, , O ,
Γ2 = (v[, , O , Z), = diagfo, , 3>J ^ 0, tr Z?p = 1, 77 = Γ ^ Γ J -
(Ai+i_2), i = 1, , n + 1; j = 1, , n. Define <%̂  = {-ff: ί4 e ^~, ί = 1,
. . . , m}, ^ = {(Slf St): S, ^ 0, S2 ^ 0, tr [($ 0) + (0, S2 - S0]/7 ^ 1}. We
first show that 6^ is bounded:

= II(Si, 0) + (0, S2 - S,)|| ^ 2trS? + trS^ ^ 2(trS,)2 + (trS2)
2 .

But trSII = trS1/7(a) + trS2/Z(1) ^ 1, and 77(2) > 0, /7(1) > 0, so that
trS x ^ l/cm(/7(2)), t r S 2 ^ l/cm(/7(1)), and ^ is bounded.

Assuming that <%̂  is bounded, there exists an So = (S10, 0) + (0, S20 — S10)
and jffo = (ΛJ+J _2), i = 1, , w + 1; j = 1, , w, satisfying (3.3). Define
fZo(2) and if,;15 as for 77(2, and 77(1); then an application of Lemma 3.1
yields

Ψw = 77(2) - H0{2)/v ^ 0 , Ψ^ = 77(1) - mηv ^ 0 .

The boundedness condition on £$f can now be removed since ||ί7ol|2 ^
2||7?o(2)||

2 + 2 | | ί7ΠΓ ^ ^tr(77 ( 2 ) + 77(1)). Also ψ0 = π0 - hojv = 1 - 1/v.
In order for the reduced (Hausdorff) moment problem to have a

solution, it is necessary that both Ψ{2) and Ψ{1) be ^ 0, [5, p. 55].
If an even number of moments is given, we let u(x) = v(x) = (1, a?,

• , a;n). Now 77 = (τrί+J _2), i, i = 1, , n + 1. Polynomials af'(x) of
degree S 2n which are nonnegative in [0, 1] can be expressed as
tt[(?o) + (oo) + (o -c)]u' = uAu'> w h e r e B and c are n x ^ ma"
trices, S ^ 0, C ^ 0, (See [7, p. 82] and Remark 4.1). Hence J^ =
{A: 5 ^ 0, C ^ 0, ^A^' ^ 1 for x e ^}, and (3.1) holds. We assume
that the moment problem corresponding to the given moments {π0, •••,
π2n} is not determined. This means that 77 and 77(3) = (^i+i_i — ^i+j),
i,j = l, •••yU, are positive definite, [5, p. 55] or [8, p. 77].

The remainder of the argument is analogous to the odd moment
case.

REMARK 6.1. As in Remark 4.1, if ^f~ is bounded, there exists an
extremal distribution with a spectrum consisting of at most 2{n> + 1)
points. This follows from [2, § 2.5] and [5, § 17].
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REMARK 6.2. A condition for the solution of the Hausdorff moment
problem with an infinite number of moments is the condition that

+ + ( - i m +* ^ 0, k, j = 0, i f . . .

However, this condition with k, j = 0, 1, , n is not sufficient fora
solution of the reduced moment problem. It is interesting to note that
this condition enters naturally using an alternative formulation. Poly-
nomials af'(x) which are nonnegative in [0, 1] may be represented as
Σai3-(1 - x)ιxj, where aiS έ 0. If we let u(x) = (1, (1 — a?), - , (1 — $)%
v(x) = (1, x, , xn), then the representation is uAvr, a{j Ξg 0. Now
Π = (E(l _ χγ-*X>-*) - (^-1ft _1), i, j = 1, , n + 1. Using a similar
development as before, S^ = {S: s{j ^ 0, trSΠ <Ξ 1}, and from Lemma
3.1, Ψ = Π -Holv = ( ^ f t - O - (^^ft-i/v) ^ 0. Let f, - A - Λy/v,
?Γ = (^'"Vi-i); w e w i s ^ t o show that ^ί'"1^-! ^ 0. By choosing S to
have all zeros except si5 = IIA*-^^, trS/7 = 1. The result follows after
using (3.3).

7. Random angle in [0, 2τr). If ΐ φ ) = v(x) = (1, βinx, . , einx), then
polynomials α/'(a?) which are nonnegative in [0, 2π) can be expressed as
uAu', A ^ 0, (See [7, p. 82] and Remark 4.1). Hence sf = {A: A g 0,

A ' ^ 1 for # e ^"}, and (3.1) holds. Now Π = (πy_fc) = (£e ί (^ λ ) x),
j , k = l, -- ,n + 1.

The proof is virtually that of § 4, noting only that the reduced
trigonometric (Herglotz) moment problem has a solution if the Toeplitz
matrix 77 > 0. (See footnote, § 5.)

7.1. An example* The authors are unaware of any Chebyshev
inequalities when trigonometric moments are available, and we present
a simple illustration.

THEOREM 7.1. If X is a random angle in [0, 2π) and E sin X = a,
EcosX = /S, then

(7.1) P{20 < X < 29} > 1 -
1 — cos(̂ > — Θ)

(7.2) P{20 ^ X ^ l + ^sin(fl+ ?>) + /?c
1 +

Proof. Choose /(x) = cx + c2 sin a? + c3 cos x. The conditions
f(θ + φ) = 0, /(20) = /(29>) - 1 lead to (7.1), and the conditions
f(θ + φ + π) = 0, /(2^) - f(2φ) = 1 lead to (7.2).
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8* Properties of Hankel matrices* In this section we obtain several
properties of Hankel matrices which were required in §§ 4 and 5. These
properties are known as a consequence of the solution of moment pro-
blems, but it may be of interest to present matrix theoretic proofs. We
need the following preliminaries.

A matrix U = (ui+j-2), i, j = 1, -•-, n is called a Hankel matrix.
By the rth compound, A[r\ of a matrix A: n x n we mean the matrix
whose elements are the r th order minors of A arranged in lexicographic

ίn\ ίn\

order; thus A[r) : ί j x ί j . The following properties of compound ma-

trices are well-known, e.g., [1],

(8.1) Let A be symmetric. The characteristic roots of A{r) are the

(r) products of r characteristic roots of A. Thus, A{r) ^ 0 if and only

if A ^ 0.

(8.2) \A{r)\ = \Afz^ .

T H E O R E M 8 . 1 . / / the Hankel matrix U = ( u i + j - 2 ) , i,j = l, •••,
r + 1, is ^ 0, and if Δ r — \ui+j-2\

r

itj=1 = 0, then Δ r + 1 = 0.

Proof. Suppose u0 = 0, then by nonnegativity of each 2 x 2 prin-

cipal minor, it follows t h a t u0 = uλ — = u2n-1 — 0, u2n ^ 0. B u t

U{r) ^ 0 has first element 0, and hence its first row is 0, so that Δr = 0.

THEOREM 8.2. Let U = (ui+j-2), ί, j = 1, , r + 1, V= (ui+J^)9

i, j = 1, •••, r + 1, C/^0, F ^ 0 . Then Δr = 0 =φ 4 υ = 0φΔ r + 1 == 0,
where Δm = \ui+j-2\, i, j = 1, , m; Δ™ = 1%+y-J, ί, j = 1, , m.

Proof. In the r th compound U{r), Δr — uj? — 0 implies that u!£ =
4 υ = 0. In the r th compound V{r), Δ^ = vff = 0, and hence all v$ = 0,
except possibly the last diagonal element, which is a function of u2?+1.
In ?7(r+1), the last column does not depend on u2r+1, and its elements are
the v% which are zero. Hence | U{r+1) | = 0, so that Δr+1 = 0.

9 Acknowledgment* We are grateful to Herman Rubin for some
valuable discussions. He also pointed out that sharpness of Chebyshev
inequalities can be proved quite generally without knowledge of moment
problem solutions by an application of the Hahn-Banach extension theorem.
However, the present proof provides considerable information concerning
extremal distributions.
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PRIMITIVE ALGEBRAS WITH INVOLUTION

WALLACE S. MARTINDALE, 3RD

A well known theorem of Kaplansky ([1], p. 226, Theorem 1) states
that every primitive algebra satisfying a polynomial identity is finite
dimensional over its center. Related to this result is the following con"
jecture due to Herstein: if A is a primitive algebra with involution
whose symmetric elements satisfy a polynomial identity, then A is
finite dimensional over its center. Our main object in the present
paper is to verify this conjecture in the special case where A is assumed
to be algebraic. In the course of our proof we develop some results,
which may be of independent interest, concerning the existence of non-
trivial symmetric idempotents in primitive algebras with involution.

l Some preliminary remarks* In the present section we mention
•a few definitions and observations which we shall need in the remainder
of this paper.

By the term algebra over Φ we shall mean an associative algebra
{possibly infinite dimensional) over a field Φ. A primitive algebra over
Φ is one which is isomorphic to a dense ring of linear transformations
of a (left) vector space V over a division algebra Δ containing Φ (see
[1], p. 32). The rank of an element a of a primitive algebra is the
dimension of Va over Δ. We state without proof the following three
remarks.

REMARK 1. Let A be a primitive algebra with identity 1 contain,
ing a set of nonzero orthogonal idempotents e19 e2, * ,em such that

(a) ex + e2 + + em = 1
(b) rank e< = r{ < oo, % — 1, 2, , m.

Then the dimension of V over Δ is ΣΓ=î » < °°

REMARK 2. Let A be a primitive algebra with center Z. If za = 0
for some z Φ Oe Z and some ae A, then a = 0.

REMARK 3. Let A be a primitive algebra. If a and b are nonzero
elements of A, then aAb Φ 0. More generally, if a19 a2, , αn are non-
zero elements of A, where n is any natural number, then

aλAa2A an-λAan Φ 0 .

An I-algebra is an algebra in which every non-nil left ideal contains
a nonzero idempotent. An algebra over Φ is algebraic in case every

Received September 23, 1960.
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element satisfies a non-trivial polynomial equation f(t) = 0, where f(t) =
Σ<****» a i e Φ One can show that every algebraic algebra is an I-algebra.
In the proof of this fact (see [1], p. 210, Proposition 1), however, the
following sharper result is obtained.

REMARK 4. Let a be a non-nilpotent element of an algebraic alge-
bra. Then the subalgebra [[a]] generated by a contains a nonzero
idempotent.

An involution* of an algebra A over Φ is an anti-automorphisrn of
A of period 2, that is,

(a + b)* = α* + 6*

(aa)* = aa*

(ab)* = δ*α*

α** = α

for all α, 6 e A, a e Φ. It is to be understood that in the rest of this
paper the characteristic of Φ is assumed to be unequal to 2. An element
a is symmetric if α* = a; a is skew if α* = — a. * is an involution of
the first kind in case every central element is symmetric. * is an in-
volution of the second kind in case there exists a nonzero central ele-
ment which is skew. Every involution is of one of these two kinds.

2Φ Sn*algebras The notion of an algebra satisfying a polynomial
identity can be generalized according to the following

DEFINITION. A subspace R of an algebra A over Φ satisfies a poly-
nomial identity in case there exists a nonzero element f(tlft2, •••,£„)
of the free algebra over Φ freely generated by the t{ such that

f(x19x2, ~-,xn) = 0

for all x{e R. R will be called a Pl-subspace of degree d if the degree
d of f(tly t2, , tn) is minimal.

The element f(tlf t2, , tn) is multilinear of degree n if and only if it
is of the form

tσ2 ί , a(σ) e Φ, some a{σ) Φ 0 ,
c

w h e r e σ r a n g e s o v e r a l l t h e p e r m u t a t i o n s of ( 1 , 2, • • • , % ) .

LEMMA 1. Let R be a Pl-subspace of degree n of an algebra A.
Then R satisfies a multilinear polynomial identity of degree n.

This lemma is a slight generalization of [1], p. 225, Proposition 1.
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The same proof carries over directly and we therefore omit it.
Our main purpose in this paper is to study algebras of the follow-

ing type.

DEFINITION. Let A be an algebra with an involution * over Φ.
Suppose that the set S of symmetric elements is a P/-subspace of degree
^ n. Then A will be called an Sn-algebra. In case * is of the first
(second) kind, we shall refer to A as an S^-algebra of the first (second)
kind.

It is surprisingly easy to analyze ^-algebras of the second kind, as
indicated by

THEOREM 1. Let A be a primitive Sn-algebra of the second kind.
Then A is finite dimensional over its center.

Proof.1 According to Lemma 1 S satisfies a multilinear polynomial
identity of degree n:f(t19t29 9tn) = 0. Let z be a nonzero central
element of A which is skew. If k is skew, then

(zk)* = k*z* = ( - k){- z) = kz = zk ,

and hence zk is symmetric. Therefore we have

0 = f(zk19 s2, s3, , sn) = zf(k19 s2, s39 , sn)

for all kλ e K, Si e S, where K is the set of skew elements. By Remark 2
f(k19 s2f s3, , sn) = 0. It follows that f(x19 s2, s3, , sn) — 0 for all xx e A,
Si e S, since every x e A can be written x — s + k9 s e S, k e K. Continuing
in this fashion we finally have f(x19 x%1 •••, xn) = 0 for all x{eA. The
conclusion then follows from the previously mentioned theorem of Kaplan-
sky ([l], p. 226, Theorem 1).

3 Some basic theorems^ The assumption that the symmetric ele-
ments of an Sn-algebra satisfy a polynomial identity is used chiefly to
prove

THEOREM 2. Let A be a primitive Sn-algebra over Φ. Then there
exist at most n orthogonal non-nilpotent symmetric elements.

Proof. Suppose slf s29 , sn+1 are n + 1 orthogonal non-nilpotent
symmetric elements. Using Remark 3 and the fact that the s{ are non-
nilpotent we may choose elements x19 x29 , xn e A so that

A similar proof was communicated orally to the author by I. N. Herstein.
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Now set ui = SiXiSi+1 + si+1xfsiy i = 1, 2, , n. By Lemma 1 S satisfies
a multilinear identity of degree n:

where σ ranges over all the permutations of (1,2, •••,%) except the
identity permutation J. /(ί^, w2> > wn) = 0 since the u{ are symmetric.
To analyze the right hand side of (1) we first note that if u^μ^ Φ 0,
i, j , k distinct, then either j = i + 1 and fc = i + 2, or j = ΐ — 1 and
& = i — 2, because of the orthogonality of the s{. It follows that

f(u19 u2, , un) = ̂ 2 . -. wn + α%A-i ^i

for some α e Φ , Hence

(2) 0 = s^s^s^ slxnsn+1 + as^x^slx*^

Multiplying (2) through on the left by s19 we have 0 = 8\xxs\x% .. slxn$%+1,
a contradiction.

An idempotent e of an algebra A is called non-trivial in case e φ 1
(if A has an identity) and β Φ 0.

THEOREM 3. Lei A be a primitive I-algebra with an involution*.
Then:

(a) If there exists an x Φ 0 e A such that xx* — 0, then either A
contains a non-trivial symmetric idempotent or A is isomorphic to the
total matrix ring Δ2J where Δ is a division algebra. In the latter case
En — E22, where the Ei5 are the %nit matrices, i, j = 1, 2.

(b) If xx* Φ 0 for all x Φΰe A, then either A is a division
algebra or A contains a non-nilpotent symmetric element which has
no inverse in A. If xx* Φ 0 for all x Φ 0 e A and A is algebraic over
Φ, then either A is a division algebra or A contains a non-trivial
symmetric idempotent.

Proof. Suppose first that there exists an xΦOe A such that xx* = 0.
We can choose an α e i such that e — αx is a nonzero idempotent, be-
cause A is an I-algebra. Since xx* — 0, e Φ 1. From the equations
ee* = (αx)(αx)* — αxx*α* = 0 it is easy to check that e + e* — e*e is a
non zero symmetric idempotent. We may thus assume that le A and
e + e* — e*e = 1. eAe is a primitive /-algebra ([1], p. 48, Proposition 1,
and p. 211, Proposition 2). If eAe is not a division algebra, then it contains
an idempotent / = ebe, f Φ 0, f Φ e. Since ff* — ebee*b*e* = 0,
/ + / * — / * / is a nonzero symmetric idempotent. It is unequal to 1
since otherwise e = e(f + f* — /*/) — /• We may therefore assume
that eAe is a division algebra and consequently that rank e = 1. Since
(1 — e*)(l — e) = 1 — (e + e* — e*e) = 0, a repetition of the above argu-
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ment allows us to assume that 1 — e is also an idempotent of rank 1.
It follows from Remark 1 that A is the complete ring of linear trans-
formations of a two dimensional vector space V over a division algebra Δ.

If e*e — 0 as well as ee* = 0 it is easy to show that relative to a
suitable basis of V e = En and e* = E22, In this case we are finished.
Therefore suppose e*e Φ 0. We shall sketch an argument, leaving some
details to the reader, whereby a non-trivial symmetric idempotent can
now be found. First find a basis (u19 u2) of Fsuch that uxe = u19 u2e = 0,
^xe* = 0, u2e* = Xuλ + u2, where λ Φ 0 e J . By setting ^ = λ"1^ and
^2 = u2 we obtain a basis (v19 v2) of F relative to which e = En and
e* = 2£21 + i?22. From this we have

21

E* = [(E21 + E22)EnY = (E21 + E22)EU = E2

E22 = e — i?2*i = JSΊi ~~ E21 .

Set ^ί 2 = aEn + βE12 + 7£;21 + 8E229 a, β, γ, δ e zί. From the following
three equations

£7n — E21 = £"2*2 = (E21E12)* = E*2E2l = βEn + SE21

E21 + E22 = # * - ( E i , ^ ) * = ^£ί?i*a - OLEΆ + βE22

aEu + βE12 + 7E21 + 8E22 = E*2 = (EnEu)* = E*E*

we obtain a = 1, /S = 1, γ = — 1, and δ = — 1. Hence

Έ*2 = En + E12 -- £21 — E22

and —El2E*2 = ί7u + £712 is then a non-trivial symmetric idempotent.
There remains the case in which xx* Φ 0 for all x Φ OeA. We

note that in this situation there exist no nonzero nilpotent symmetric
elements, for, if s Φ 0 is symmetric, then s2 = ss* Φ 0. If A is not al-
ready a division algebra then we can find an element x Φ OeA such
that xA is a proper right ideal. It follows that xx*A gΞ xA is also a
proper right ideal, and so xx* is a nonzero, and hence, non-nilpotent
symmetric element which has no inverse. In case A is algebraic over
Φ the subalgebra [[xx*]] generated by xx* contains a non-trivial sym-
metric idempotent, by Remark 4.

4. Total matrix rings with involution* We begin by proving

THEOREM 4. Let A be the total matrix ring Am with an involution
*, where Δ is a division algebra over Φ. Then there exists a set of
orthogonal symmetric elements ex, e2, , eOTl,/i/2,

 # ,/W 2 such that:
(a) The βi are non-nilpotent elements of rank 1. In case A is
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algebraic over Φ, the e* are idempotents of rank 1.
(b) The fj are idempotents of rank 2, and fjAfά is isomorphic to

Δ2, with En — E22 (see Theorem 3).
(c) mx + 2m2 = m.

Proof. Let su s2, , sh be a set of nonzero orthogonal symmetric
idempotents, with h maximal. By the maximality of h we have

Each SiAs{ may itself be regarded as a total matrix ring Δr with an
involution induced by *, where r* is the rank of s{. We first consider
those SiASi having the property: there exists an x Φ 0 e ŝ As; such that
xx* — 0. Theorem 3, together with the maximality of hy then says
that SiASi is isomorphic to Δ2, with E*λ = E2i. Relabeling these sύ as
/iff*, •• ,/«2, we have taken care of (6).

The remaining sif of course, have the property that xx* Φ 0 for all
as =£ 0 e S As;. As we have noted before, SiASi can have no nonzero
nilpotent symmetric elements, since xx* φ 0. Consider a typical s^S;
and select from it an element xλ of rank 1. Then yx = s^f ^ 0 is a
non-nilpotent symmetric element of rank 1. Now assume that fc(<rΐ)
orthogonal non-nilpotent symmetric elements ylfy2, , yk of rank 1 have
been found. Since the dimension of W= Σ ί ^ i F ^ is less than rif we
can find an element xk+1 of rank 1 such that Wxk+1 = 0. Then yk+1 =
xk+1x*+1 is a non-nilpotent symmetric element of rank 1 such that
Wyk+1 = 0, that is, yiyk+1 = 0, ΐ = 1, 2, , k. Also i/fc+1y. = 0, i =
1, 2, , fc, since (yk+1y%)* = 2/**2/?+i = 2/<2/Λ+I = 0. It follows that there
exists in s^Si a set of r< non-nilpotent orthogonal symmetric elements
2/1.2/2, •• ,2ΛV each of rank 1. If A is algebraic over Φ the subalgebra
iίVj]] generated by each yά contains a nonzero idempotent z3- (necessarily
of rank 1), and so we have rt orthogonal symmetric idempotents
z19 z2, •••, zr., each of rank 1. Repeating the argument for all the
SiASi and labeling either all the yi or all the z3- as elf e2, •• , e w , we
have completed the proof of (a), (c) follows readily from the fact that
rank et = 1, rank f5 = 2, and Σi e ΐ + Σ i / i = !•

To illustrate Theorem 4 we consider the following simple example.
Let A — Φ2J where Φ is a field, and define an involution * in A by:

αj \1 0 Λ«. ccj\-l θ)'

The reader may verify that A contains no symmetric elements of rank
1. Similar examples of higher dimension can also be given.

In the remainder of this section we derive a result which will enable
us, at least in the algebraic case, to "pass" from the total matrix ring
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Δm to the division algebra Δ itself.

LEMMA 2. Let A be the total matrix ring Δ2, algebraic over Φ, with
an involution *, where Δ is a division algebra over Φ. Suppose En=E22.
Then one of the following two possibilities must hold:

(a) A contains a symmetric idempotent of rank 1.
(b) The involution * in Δ2 is of the form:

«i ocλ* _ / 0 -β-Λίct! aλί 0 β

a3 aj V/5"1 0 )\a2 aj\—β 0

for all a% e Δ, some β φ 0 e Δ, where a^>a is an involution in Δ.

Proof. It is well known (see for example [2], p. 24, Theorem 9)
that the involution * in A has the form:

a, aλ

aB aj \a2 aj

/ 7 β\
where U = _ is a nonsingular element of Δ2 and ̂ - > α is an in-

\±β δ/
volution in Δ. Consider the equation E22 = E*± = U^E^U, that is,

7 /3\/0 0\ __ /I OW 7 /3

±/9 δ/\0 1/ "" VO 0/V±^ δ

0 β
It follows that γ = δ = 0, and hence U = ,

\±β 0
/cy ry \

At this point we observe that an element [ ) e A is a non-
\Ύi Ύ2J ί±β β\

nilpotent element of rank 1, unless 7i + 72 = 0. Now set B =
^±^8 ±β\ \±β β)

It is easy to check that B* — U'H _ _ \U = ± By and hence B is
\ β. β I i o β\

either symmetric or skew. If β ± β = 0, i.e., 17= K we are
finished. Therefore assume that /5 ± β Φ 0. We then apply the ob-
servation made at the beginning of this paragraph to conclude that B
is a non-nilpotent element of rank 1. Since B is either symmetric or
skew, it follows that B2 is a non-nilpotent symmetric element of rank
1. The proof is complete when we note that, as A is algebraic over
Φ, the subalgebra [[B2]] generated by B2 over Φ contains a symmetric
idempotent of rank 1.

THEOREM 5. Let A be the total matrix ring Δm, algebraic over Φ,
with an involution^ *, where Δ is a division algebra over Φ. Then
there exists a division subalgebra D of A such that D* = D and D is
isomorphίc to Δ.
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Proof. Theorem 4 asserts the existence of either (a) a symmetric
idempotent e of rank 1 or (b) a symmetric idempotent / of rank 2,
where fAf is isomorphic to Δ2 with the induced involution * such that
JEΊ* = E22. In case (a) we merely set D ~ eAe and the required con-
clusion follows. In case (b) Δ2 satisfies the hypothesis of Lemma 2. If
Δ2 contains a symmetric idempotent of rank 1 we proceed as in case (a).
Otherwise we conclude from Lemma 2 that the involution * in Δ2 is
given by:

L aλ* = / 0 -β-Λ/a, aλί 0 β

a3 aj [-β-1 0 )\a2 aj\-β 0

Let D be the division subalgebra of Δ2 consisting of all elements of the
[a 0)

form ] I, aeΔ. D is obviously isomorphic to Δ. Furthermore, one
(0 a)

verifies that

la 0 ) *

(0 a

β-λocβ 0 )

0 β-'aβ]
eD

and we see that D* — D.

5. Division ίvalgebras We begin this section by stating

LEMMA 3. Let Δ be an algebraic division algebra over its center
Φ for which there exists a fixed integer h such that the dimension of
Φ(x) over Φ is equal to or less than h for every separable element
x e Δ. Then Δ is finite dimensional over Φ.

Except for the restriction of separability, this lemma is virtually
the same as [1], p. 181, Theorem 1. The proof appearing in [1] carries
over directly, and we therefore omit it.

LEMMA 4. Let Δ be an algebraic Sn-division algebra of the first
kind over its center Φ. Suppose E is a finite dimensional field exten-
sion of Φ. Then E(&ΦΔ is isomorphic to the total matrix ring Γm,
where Γ is a division algebra and m ^ 2n.

Proof. E (g) Δ is well known to be a simple algebra over Φ with
minimum condition on right ideals. Hence E® Δ is isomorphic to Γm,
where Γ is a division algebra and m is a natural number.

An involution τ can be defined in E§§ Δ as follows:

(a 0 x)τ = a 0 x*

for ae E, x e Δ. It can be verified that τ is a well-defined involution
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and that every symmetric element (under τ) in E 0 Δ can be written
in the form:

Let f(tlf t2, , tn) — 0 be the multilinear polynomial identity of degree
n satisfied by S. Because this identity is multilinear and because E is
the center of E§t)Δ> it follows from (3) that the set of symmetric ele-
ments of i?(x) Δ under τ also satisfies f(tlf t2, , tn) = 0.

Now regard E(g> Δ as the total matrix ring Γm9 with involution τ.
By Theorem 4 there exists in Γm a set of at least k non-nilpotent
orthogonal symmetric elements, where 2k ^ m. Theorem 2 tells us that
k ^n, and hence m ^ 2k ^ 2n.

We are now able to prove

THEOREM 6. Let Δ be an algebraic Sn-dίvision algebra. Then Δ
is finite dimensional over its center.

Proof. By Theorem 1 we may assume that Δ is an Sn-algebra of
the first kind over its center Φ. Suppose Δ is not finite dimensional
over Φ. Then by Lemma 3 there exists a separable element x e Δ whose
minimal polynomial g(t) over Φ has degree r > 2n. Let E be a finite
dimensional field extension of Φ containing the r distinct roots
a19a2, •••,<*„ of g(t).

We claim now that the element x — a{ is a zero divisor in E® Δ,
i = 1, 2, , r. Indeed,

0 = g(x) = Π (« - <*i) = (χ - ad Π (» - a,-) ,

and it suffices to show that Γ L v ^ ~ aj) is a nonzero element of E(&Λ.
Suppose ΐ[j¥:i(x — a;) = 0, that is,

(4) ( x r - 1 ® l ) - ( a r - a < g > Σ * i ) + ••• ± ( l ® Π α i ) = 0 .

Since of"1, xr"2, , 1 are linearly independent over Φ, all the correspond-
ing terms of E in (4) must be zero, which is clearly impossible. There-
fore x — cti is a zero divisor in Eζ>§ Δ.

According to Lemma 4 E 0 z/ is isomorphic to the total matrix ring
Γmf where m ^ 2w. We may therefore regard E§§ Δ as the complete
ring of linear transformations of an m-dimensional vector space V over
the division algebra Γ. Set Vt = {v e V \ v(x — a{) — 0}, i = 1, 2, , r.
Vi is a nonzero subspace of V since a? — a{ is a zero divisor in E(& Δ.
Using the fact that the a{ are distinct elements belonging to the center Ey

we have that V{ are independent subspaces of V. It follows that
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m ^ dim Σ V{ = Σ (dim V̂ ) ̂  r > 2w .
ι = l ι = l

A contradiction now arises since m ^ 2n. We must therefore conclude
that Δ is finite dimensional over its center.

6. Primitive Sn-algebras. We are now in a position to proceed with
the proof of our main result.

THEOREM 7. Let A be a primitive algebraic Sn-algebra. Then the
center of A is a field, and A is finite dimensional over its center.

Proof. Since A is primitive, A may be regarded as a dense ring
of linear transformations of a vector space V over a division algebra
Δ. According to Theorem 2 there exist at most n orthogonal symmetric
idempotents. Let elfe29 ,em be a set of m orthogonal symmetric
idempotents, with m ( ^ n) maximal. For each i, β A^ is again a primitive
algebraic algebra with involution induced by *. The same is true for
(1 — e)A(l — e), where e — eλ + e2 + + em1 if A should not already
happen to have an identity. We now use Theorem 3 in conjunction
with the maximality of m to assert that the rank of each e{ is 1 or 2, and
that A does have an identity 1 = eλ + e2 + + em. It follows that
the dimension k of V ^ 2m and consequently that A is isomorphic to
the total matrix ring Δk. The center of A is, of course, a subfield of
Δ. Theorem 5 now says that Δ is an algebraic S^-division algebra. By
Theorem 6 Δ is finite dimensional over its center. Hence A is finite
dimensional over its center.

COROLLARY. Let A be a primitive algebraic algebra with an in-
volution * such that the set K of skew elements is a Pl-subspace of
degree n. Then A is finite dimensional over its center.

Proof. Let f(t1912, , tn) = 0 be the multilinear polynomial identity
of degree n satisfied by K, according to Lemma 1. If su s2eS, where
S is the set of symmetric elements of A, then sλs2 — s2sλ e K. From this
it follows that f{uιv1 — vλuλ, u2v2 — v2u2t , unvn — vnun) = 0 is a non-
trivial polynomial identity of degree 2n satisfied by the elements of S.
In other words, A is a primitive algebraic S2n-algebra, and the conclusion
follows from Theorem 7.

Note. Herstein's original conjecture was: if A is a simple ring (or
algebra) with involution whose skew elements satisfy a polynomial identity,
then A is finite dimensional over its center. In this paper we have
verified his conjecture in the special case where A is a simple algebraic
algebra which is not a nil algebra.
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DECOMPOSITION OF HOLOMORPHS

W. H. MILLS

Let G be a group, and let H be its holomorph. There are two
situations in which H is known to be decomposable into the direct product
of two proper subgroups. If G is the direct product of two of its proper
characteristic subgroups, say Gλ and G2, then H is the direct product of
the holomorphs of Gλ and G2. If G is a complete group, then H is the
direct product of G and G*, where G* is the centralizer of G in H. In
this paper we will show that if G is not the direct product of two proper
characteristic subgroups, and if G is not complete, then H is indecom-
posable. Thus we have a complete characterization of those groups
whose holomorphs are indecomposable.

A decomposition of H into the direct product of indecomposable
factors is known for the case where G is a finite abelian group [1], Our
present results enable us to generalize this and give a decomposition of
H into the direct product of indecomposable factors, whenever G is the
direct product of a finite number of characteristically indecomposable
characteristic subgroups. In particular this gives a complete decomposi-
tion of H whenever G is a finite group.

Peremans [2] has shown that a necessary and sufficient condition for
G to be a direct factor of H is that G be either complete or the direct
product of a group of order two and a complete group that has no sub-
groups of index two. This result is related to the present paper. In
fact Peremans' result can be deduced from Lemma 1*.

l Preliminaries, Let G be a group, and let A be the group of all
automorphisms of G. Let e and / denote the identities of G and A
respectively. The holomorph H of G can be regarded as the semi-direct
product of G and A, i.e., the set of all pairs {g, σ), g e G, σ e A, with
multiplication defined by

(flr, σ)(h, τ) = (g(σh), στ) .

We identify g in G with (g, I) in H. Then H is a group that contains
G as an invariant subgroup, and every automorphism of G can be ex-
tended to an inner automorphism of H.

For all a in G we let λα denote the inner automorphism of G cor-
responding to the element α. Thus Xag = ago,'1.

All the results of this paper depend on the following lemma:

LEMMA 1. Let H = Hx x H2. Then G Π Hx and G Π H2 are char-
acteristic subgroups of G and

Received November 1, 1960.
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G = (G n m x (G n

Proof. We note first that G Π Hx and G f) H2 are normal subgroups
of H, and hence they are characteristic subgroups of G.

For i = 1 or 2, let £; denote the projection of i ί onto H{ correspon-
ding to the decomposition H = fζ x fζ. Thus if ae Hx and β eH2, then
^(α/3) = a and ε2(α:/3) = /S. Put J{ = ε,G. Clearly J, g if, and /, is a
normal subgroup of H. Let F; and S< denote the set of all first and
second components respectively of elements of J;. Thus F^G and
SiSA.

Let (α, σ) be an element of Jλ. Then for some # in G we have
£i£ = (α, tf). Put ε2# = (6, τ). Then # = (α, σ)(6, r). Therefore τ = α-1

and (σδ-1, σ) = (6, τ)" 1 e J2. Hence σ e S2. It follows that Sx S Sa. By
symmetry S2S S19 and hence Sλ = S2.

Let σ be an element of Sx and let | be an element of A. Put
ε^e, I) = (gi9 ξ.)f ί = 1, 2. For some α and c in G we have (α, σ) e Jx and
(c, ί?) e J 2. Now

and

(<?, σ)(θu li) = (0i, li)(«, ^)

Comparing second components we see that σ commutes with both ξt and
ξ2. Since ξ = ^ | 2 , we have σ | = |<r. It follows that Sx is contained in
the center of A.

Let (α, tf) be an element of Jλ and let (d, //) be an element of J2.
Since σ is contained in the center of A and since (α, σ)"1 = (σ^a"1, 0~ι),
it follows that

d(a, σ)d-\e, λσΛ)(α, σj-^β, λ^)" 1

Therefore dίσcϊ)"1 € JEζ. Moreover

d M ) - 1 - (d, μ){e, σ){d, μ)-\e, σ)-1 e H2 .

Hence d{σd)~ι e Hx Π H2. This gives us d{σdyι = e and σd = d. Thus σ
leaves every element of 2^ fixed. By symmetry, since σ e SΊ = Sa, it
follows that σ leaves every element of JFΊ fixed. Now let g be an
arbitrary element of G. Then g = (/, v)(λ, ξ") with (/, ι̂ ) e Jλ and (A, f)
6 J2. Since gf = /(^Λ), σf = /, and σvfe = v^Λ = i Λ, it follows that σg = flr.

Hence σ = I. Therefore Ŝ  and S2 consist of the identity alone. I t fol-
lows that JΊ S G Π ίίt, / 2 C G Π iϊ2, and

G s Λ x Ji C (G Π fli) x (G n fli) S G .

Therefore G = (G Π ί ζ ) x (G Π ίί2) and the proof is complete.
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2 Some known results. Suppose G = Gx x G2 x x G B , where
the Gi are characteristic subgroups of G. Let A{ denote the group of
all automorphisms of G> We identify σt in At with the element σ\ in
A such that

σ i g ~ \ σ i g iί geGt.

Then A = 4i x 4 2 x x An. Moreover Hif the holomorph of Gi9 be-
comes a subgroup of if, and H — Hλ x iί2 x x i ί n .

The centralizer of a group in its holomorph is called its conjoint.
The conjoint G* of G consists of the elements {g~\ Xg), g e G. The map-
ping y] defined by

η(g, σ) = Gr\ λ,σ)

is an automorphism of H that maps G onto G* and maps G* onto G.
Therefore G and G* are isomorphic, and G is the centralizer of G* in
H. Furthermore Lemma 1 is equivalent to the following:

LEMMA 1*. Let H = Hλ x iϊ2. Then G* n ίfi and G* n ί ζ are
characteristic subgroups of G**

G* = (G* n fli) x (G* Π

If G is complete, i.e., if G is a centerless group with only inner
automorphisms, then H=G x G*.

3 Decomposable and indecomposable holomorphs. If G is the
direct product of two proper characteristic subgroups, then G is said to
be characteristically decomposable. If not, then G is said to be char-
acteristically indecomposable.

THEOREM 1. Let G be a group, and let H be its holomorph. If G
is either characteristically decomposable or complete, then H is decom-
posable. If G is characteristically indecomposable and not complete,
then H is indecomposable.

Proof. We have seen in § 2 that H is decomposable if G is either
characteristically decomposable or complete. Suppose that G is char-
acteristically indecomposable and that H = Hλ x H2. It follows from
Lemma 1 that either G Π Hx = G or G Π H2 = G. Thus either Gg JSi
or G S H2. Similarly it follows from Lemma 1* that either G* £ fli or
G* s H2. Without loss of generality suppose that G s f f 1 ( Then iJ2 is
contained in the centralizer of G, that is H2 §Ξ G*. If G* £ fζ we
ίί 2 £ Hx and i ϊ — i^. Thus we need only consider the case G* £
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Here G* = H2 and Hx is contained in the centralizer of G*. Thus Hλ £ G,
and hence Hλ = G. Now G Π G* is the center of G, and G Π G* =
JBi Π H2. Hence G is centerless. Since if = Hx x ff2 = G x G*, it
follows that G has only inner automorphisms. Therefore G is complete.
This completes the proof of the theorem.

4. Decomposition of the holomorph into indecomposable subgroups.
To complete our discussion we need the following result:

LEMMA 2. If a group is complete and characteristically indecom-
posable, then it is indecomposable.

Proof. Let G be a complete group and suppose G — Gλ x G2. Since
every automorphism of G is inner, it follows that every automorphism
of G maps Gλ and G2 onto themselves. Hence G± and G2 are character-
istic subgroups of G. This establishes the lemma.

THEOREM 2. Suppose G is the direct product of a finite number
of characteristically indecomposable characteristic subgroups: G =
Gi x G2 x x Gn. Suppose that G{ is complete for 1 fg i <; r, and
that Gj is not complete for r + 1 ^ j ^ n. Then a decomposition of H
into indecomposable subgroups is given by

(1) H=UGi x flGΐ x f[Hif

where G* and H{ are the conjoint and holomorph respectively of Gif

and where Π denotes a direct product.

Proof. It follows from § 2 that (1) is a decomposition of H. By
Lemma 2 the groups Gt and G* are indecomposable for 1 fg i <; r, and
by Theorem 1 the groups Hi are indecomposable for r + 1 g % £ n.

Since a characteristic subgroup of a characteristic subgroup of G is
itself a characteristic subgroup of G it follows that G satisfies the con-
dition of Theorem 2 whenever the characteristic subgroups of G satisfy
the descending chain condition. In particular Theorem 2 gives us a
decomposition of H into indecomposable subgroups whenever G is a finite
group.

If G is the direct product of an infinite number of characteristic
subgroups, then H is not the direct product of their holomorphs. Thus
Theorem 2 does not hold in this case.
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ON THE REPRESENTATION THEORY

FOR CYLINDRIC ALGEBRAS

DONALD MONK

The main purpose of this paper is to give some new sufficient con-
ditions for the representability of infinite dimensional cylindric algebras.
We also discuss certain problems and results in the representation theory
reported on by Henkin and Tarski in [5].

In general we adopt the notation of [5]. § 1 contains some ad-
ditional notation, the statement of a representation theorem of Henkin
and Tarski frequently used in this paper, and an embedding theorem
which throws some light on that representation result. § 2 is devoted
mainly to some simple proofs for known results about the general alge-
braic theory of representable cylindric algebras. Then in § 3 we turn
to representation theory proper. The first result of this section gives
a sufficient condition for representability in terms of isomorphic reducts
of an algebra (this result was independently obtained by Alfred Tarski).
Then follows the definition of a new class of cylindric algebras, diagonal
cylindric algebras. The main theorem of this paper is that every diago-
nal cylindric algebra is representable; this result represents a consider-
able improvement of some previously known representation theorems.
Several interesting corollaries are derived from this result.

1. Introduction, We use the notation of [5] with the following
additions. For abbreviational purposes we use standard logical notation:
-* (implies), V (there exists), and A (for all). The identity map on a
set A is denoted by δ^. The function / restricted to the subset A of
its domain is denoted by / f A. If R is a binary relation and A is a
set, then B*(A) = {y | V*eX*3/> 6 12}. If 21 - <A, + , , - , cκf dκk\κ<Λ is
a CAa, then 2I0 = <A, + , , — > is the Boolean part of 21. Directed
systems are understood in the sense of [7] p. 65.

We need some notions of general algebra, adapted from [9]. Let K
be a class of similar algebras; say all algebras of K are indexed by a
nonempty set Nκ, so that if 21 e K then 21 = <A, 0^}ieNκ, the 0{ being
operations on A. We let HK = the class of all homomorphic images of
algebras of K, PK = the class of all Cartesian products of systems of

Received December 15, 1960. The results of this paper were obtained in part while
the author was a National Science Foundation predoctoral fellow and in part while the
author was engaged in a research project in the foundations of mathematics directed "by
Alfred Tarski and supported by the National Science Foundation (Grant No. G-14006) The
author wishes to thank Professor Alfred Tarski for the valuable advice he gave during the
preparation of this paper. The results of this paper constitute part of the author's doctoral
dissertation submitted in May 1961 at the University of California, Berkeley.
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algebras of K, and SK = the class of all subalgebras of algebras of K.
If J S Nκ and 21 e K, we let %3 = <A, 0 , > i e j ; and we let Kj = {&, | 21 e K}.

To fit cylindric algebras into this scheme of universal algebra, let
us make the following agreement. For each ordinal α, let Ma —
{0,1, 2, <0, /t>, <0, ic, λ>}K i λ < Λ. If 21 = <A, + , - , - , cκ, d κ λ χ . λ < β is a CAΛ,
we let O 0 = + , Oχ = , O2 = —, 0<0ιK> = cκ, and 0<0>/c>λ> = dκλ for all
ic, λ < α; finally we let 21* = <A, O ^ e * „. We let CAZ = {21* | 21 e CAα}.
Thus CAl is a class of similar algebras in the above sense. When no
confusion results we shall identify CAΛ with CAZ.

In several of the proofs below we use a method of construction
whose general form is as follows. We are given a class K of similar
algebras, a directed system ® = ζD, ^)>, and, for each d e D, an element
2Id of tf. We let Λ - {</, <?> |/, flr e naej,Ad and VdenAeeD(d ^e-^fe =
ge)}. Clearly R is a congruence relation on I L e i ^ ; J? is called the
eventually equal congruence of 21 and S. 1 In case K = CA* for some
#> { / K / > 0 ^ e ^ } is called the eventually zero ideal of 21 αm£ ©. In
case J S JVA- and SB is a subalgebra of 3tdJ for each d e J9, we may define
natural isomorphisms g and / of 39 into I L e z ^ j and [ΠdeΛ/-B]j r e~
spectively. For each δ e δ and d e JD let g(b)d = b. For each b e B let
/(^) =

 [QΦ)]- If ^ — CΆ* and J = {0, 1, 2}, ^ and / are called the natu-
ral Boolean isomorphisms of S3 into ΐ[dejMd and Πdez)2IΛ/i2 respectively.

The essential steps in the proofs of the representation theorems here
presented use the following theorem of Henkin and Tarski (see [5] Theo-
rem 2.15).

THEOREM A. A CAa 21 is representable if and only if for each
ic < ω 21 can be neatly embedded in some CAΛ+IC.

There now exist purely algebraic proofs of this theorem. Theorem
A is to be contrasted with the following theorem:

THEOREM 1. If 8 ^ a ^ ω, then every CAa is embeddable in some
CAz, i.e., is a subalgebra of the a-reduct of some CAδ.

2

Proof. I t suffices to take the case 8 = a + 1. For each β < α> we
define τ ( β ) with domain a + 1 by:

Ίc if ic < β ,

1 ιc + 1 if β g ic < ω ,

ic if ω g ic < a ,

,/9 if Λ: = a ,
1 ΠdezΛ/ϋί is a reduced product in the sense of Frayne, Scott, and Tarski (Notices

Amer. Math. Soc, 5 (1958) 673). In fact, let J= {X\X^ D and VaeDΛeeo (d g e->e $ X)}.
Then J is an ideal in the field of all subsets of D, and R is the congruence relation on
ΠaezΛ determined by J.

2 This theorem, due to the author, is stated in [5].
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for all K < a + 1. Thus 7{β) is one-to-one. Let 31 be a given CAa, and
let 33β be the a + 1, γ(β)-reduct of St. Let J b e the eventually zero ideal
of 33 and <ω, ^ > . Let (£ = Πβ<ω33β//, and let g, f be the natural Boolean
isomorphisms of 21 into ΐlβ>j&β and K respectively. If 0 ^ K < β < ω
or 0 g ; / 3 < ω ^ Λ ; < α : , then yf = Λ:, and so, with α e A , (c^(α))β =
c?Pg(ά)β = c^β)α = c^α = g(cκά)β; similarly for diagonal elements. It fol-

lows that / is a cylindric isomorphism of 21 into the α:-reduct of E, as
required.3

Since for each a ^ ω there are non-representable CAa's, Theorems
A and 1 indicate the significance of the notion of neat embedding.

2. Universal algebra and cylindric algebra. In [5], Henkin and
Tarski state several universal algebraic properties of representable cy-
lindric algebras, indicating that their proofs use in an essential way some
metamathematical results. Thus after proving that RCAa is a universal
class, they infer that

(i) a cylindric algebra is representable if and only if every finitely
generated subalgebra of it is representable, and

(ii) a cylindric algebra is representable if and only if every finite
reduct of it is representable.

Further, after proving that RCAΛ is equational they infer that RCAa

is closed under the taking of homomorphic images. For all these
algebraic results they raise the question concerning the existence of simple
algebraic (as opposed to metamathematical) proofs.

With the essential help of Theorem A, which, as mentioned above,
has algebraic proofs, we shall give algebraic proofs of the above results.
In addition, we obtain a new proof of the equational character of RCAX.

THEOREM 2. A homomorphic image of an RCAΛ is an RCAΛ.
A

Proof. Suppose 21 is an RCA^ and / is a cylindric ideal in 21; we
want to show that 21// is an RCAa. Let 33 be a CAa+κ such that 21 is
neatly embedded in S3 (by Theorem A), where tc < ω. Let J be the
ideal in S3 generated by /. Clearly J = {b \ b e B and yaei(b ^ α)}, and
so J Π A = I. It follows that the natural Boolean homomorphism of
21// into 33/ J is a cylindric isomorphism of 21/J onto an algebra neatly
embedded in 33/J, and by Theorem A our theorem follows.

It is easy to see that RCAΛ is closed under direct products and
subalgebras. Hence by Birkhoff's theorem (Theorem 2.1 of [9]), RCAa

is equational. Thus in particular, RCAa is a universal class, and the
above characterizations (i) and (ii) of RCAa follow. Recently the author

3 Theorem 1 can also be easily proved metamathematically. In fact, it was such a
proof that first occurred to the author.

4 [5], Theorem 2.20,
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obtained simple algebraic proofs of these two characterizations. Alfred
Tarski, upon being informed of these proofs, recalled that in 1955
Saunders MacLane outlined to him a proof of a universal algebraic theo-
rem from which (i) follows; the author's proof of (i) was a specialization
of MacLane's proof. Since MacLane's proof has never appeared in
print, we shall take this opportunity to present it here. Subsequent to
the above work, the author obtained a corresponding algebraic proof of
a generalization of (ii).

Of the two corollaries below, the first is a strict specialization of
the universal algebraic case, while for the second corollary we apply an
additional argument.

THEOREM 3. Let K be a class of similar algebras such that HK —
K, PK = K, and SK = K. Then for every algebra 21, WeK if (and
only if) every finitely generated subalgebra of 21 is in K.

Proof. The necessity of the condition is obvious. Now suppose that
every finitely generated subalgebra of 31 is in K. Let / = [F \ F is a
finite subset of A], and for each Fel let 33^ be the subalgebra of 21
generated by F. Let R be the eventually equal congruence of 33 and
</, 2>, and let (£ = Urei^rlR- By hypothesis, (£ e K. Define g with
domain A and range included in Y[FeiBF by:

(any element of BF if a 0 BF ,
9(a)F = .

[a if a e BF ,

for all ae A and Fel. It is easy to see that the function /, defined
by f(a) = [g(a)] for all ae A, is an isomorphism of 21 into K. Hence
%eK.

From Theorems 2 and 3 we obtain:

COROLLARY. 21 e RCAΛ if (and only if) every finitely generated
subalgebra of 21 is representable.5

THEOREM 4. Let K be a class of similar algebras such that HK =
K, PK = K, and SK = K. Then 21 e K if (and only if) for every finite
subset F of Nκ we have 21^ e SKF.

Proof. The necessity is obvious. Now suppose that the above con-
dition holds. For each finite subset F of Nκ choose 95(i?>) e K such that
% S 33^. Choose i0 e Nκ. Let I = {F\ F is a finite subset of Nκ and
ί0 e F}. Let R be the eventually equal congruence of S3 and <Γ, Ξ2>,
and let (£ = T[Fei%5{F)IR Let g and / be the natural isomorphisms of

5 [5], Theorem 2.13 (i).
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aί{ίo, into ΐlFe&i(<!} and (£{io} respectively. We claim that / is an iso-
morphism of 51 into (£. For, if i e Nκ, say with Of binary, and if
a,beA, we have for {i} Q Fe I:

[g(Of(a, b))]F = Of (a, b)

= Or (a, b)

= OfF (α, 6)

= O?F)([g(a)]F, [g(b)]F)

), g(b))]F .

Thus /(Of (α, b)) = O,(/(α), /(&)). We deduce that 21 e K by the hypothe-
sis of the theorem.

Again, we have a corollary for cylindric algebras. As mentined
previously, this corollary is not quite as immediate as the corollary to
Theorem 3; we need the following lemma in order to derive the corollary
easily.

LEMMA 1. Let K be a class of similar algebras such that PK — K
and SK = K. Suppose that 21 is an algebra such that for all x,y e A
with x Φ y there is a homomorphism f of 21 onto an algebra S3 e K
such that f(x) Φ f(y). Then 2ί e K.

In case additionally K = CAa it is enough to assume that for all
xe A with x Φ 0 there is a homomorphism fof% into an algebra 35 e K
such that f(x) Φ 0.

The proof of this lemma is simple; it is essentially due to Birkhoff

([1]).
The proof of necessity in the following corollary gives a simple

proof of Theorem 2.12 of [5].

COROLLARY. 2ί e RCAΛ if and only if every finite reduct of 21 is
representable.6

Proof. Necessity. Suppose 21 e RCAΛJ i.e., 21 is isomorphic to a
sub-direct product of CSAΛ's. Now a reduct of a product of CAΛ's is
equal to the product of the corresponding reducts. Hence we may as-
sume that 21 is a CSAΛ, say with base U. Suppose tc < ω and θ eaκ is
one-to-one; let S3 be the K, #-reduct of 21. Suppose b e B and b Φ 0;
choose feb. For each g e Uκ we define g* e TJΛ by:

gθ~iλ if λ e range θ ,

/ λ otherwise.

6 [5], Theorems 2.12, 2.13 (ii).
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Define F(x) = {g e Uκ | g* e x) for each H G B . It is easy to verify that
F is a homomorphism of 33 onto a CSAK such that JF(&) ^ 0. Since b
is arbitrary, we deduce from Lemma 1 that 93 e RCAK.

Sufficiency. We now assume that every finite reduct of 2ί is repre-
sentable. Let a finite subset F of Ma be called regular if there is a
finite subset G of a such that F = {0, 1, 2, <0, /r>, <0, IC, X)}κ>λ€Q. Now
it is known, and easy to see, that an RCAa can be neatly embedded in
an RCAβ for each β ^ a; if we apply this argument here we see that,
by our assumption, 2ί| £ 33^* for some 33(i?r) e iϋCA*, for each regular
finite subset F oΐ Ma. If ί 7 is any finite subset of Ma9 then there is a
regular finite subset G such that F g G , and so 21 £ = ( 2 1 ^ s (33^)5fc)F e
[(RCA*)Θ]F = CBCA*),. Hence by Theorem 4, 21* e ΛCA*, i.e., 2ί e i2CAα.

We conclude this section with the following theorem.

THEOREM 2\ Let a and K be ordinals. Let K be the class of all
CAΛ's which can be neatly embedded in a CAa+κ. Then K is an equa-
tional class.

Proof. Clearly K is closed under direct products and subalgebras.
The proof of Theorem 2 may be applied to show that K is closed under
homomorphisms. Our theorem is now a consequence of Birkhoff's theorem.

From this theorem we can derive two corollaries similar to the aΐove
stated corollaries. This can be done metamathematically, in the obvious
way, or mathematically as follows. For the first corollary we can again
use Theorem 3, while for the second we can use a direct argument
similar to the proof of Theorem 4. (We do not know of any way of
using Theorem 4 or something like it to derive the second corollary.)

3. Some representation theorems* Now we shall prove several new
sufficient conditions for the representability of cylindric algebras. The
following simple lemma will be found useful in the proofs of the main
results.

LEMMA 2. Let a, β, and y be ordinals^ and suppose that τ e βa+y

is one-to-one. Suppose 2ί is a CAΛ1 33 is a CAβ, T e BΛ, and the follow-
ing conditions hold:

( i ) T is a Boolean homomorphism of 2X into 33,
(ii) cfκoT - Tocf for all tc < a,
(iii) T(dl) = d?κ,τλ for all ιc,X<a.

Then T is a cylindric homomorphism of 21 into the a-reduct of some
CAΛ+ . If in addition the following condition holds:

(iv) cfκoT = T for a^tc<a + y,
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then T is a cylindric homomorphism of 2ί into an algebra neatly
embedded in some CAa+ .

Proof. Let (£ be the a + 7, τ-reduct of 33, and let © be the
α-reduct of (£. Then T is a cylindric homomorphism of 21 into 2), for
Tocf = cfκoT (by (ii)) - cfoΓ = cfoT for each A; < a, and Γ(d?λ) -
d«,rλ = dfκ = cZ® for all /r, λ < α:. If in addition (iv) holds, then for
a^κ<a + ywe have cfoT = cfκoT = T.

As a consequence of Theorem A and Lemma 2 we have the follow-
ing representation theorem, which was independently obtained by Alfred
Tarski.

THEOREM 5. Assume that % is a CAΛ, σ is a one-to-one element of
a* such that a ~ range (σ) is infinite, and 33 is the a, σ-reduct of 31.
Suppose T is an isomorphism of 21 into 33 such that cfT(x) — T(x)
whenever x e A and tc ea ~ range (σ). Then 21 is representable.

Proof Let τ be a one-to-one element of aa+<a such that r \ a — o.
Then for all tc < a we have cψκoT = cfκoT = cfoT = Tocf. Moreover,
for all K, X < a we have T(dfλ) = d® = dψKtTλ. Finally, if a g K < a + a>,
then c E ° Γ = T7. Hence by Lemma 2 21 can be neatly embedded in a
CAΛ+ω, and our theorem follows from Theorem A.

We should mention that recently Tarski obtained a stronger version
of Theorem 5, in which the condition "a — range (σ) is infinite" is
replaced by the condition "a ~ range (σ) Φ 0".

Theorem 5 leads to an interesting insight into the relationship be-
tween cylindric and polyadic algebras, of a different kind from the
insight obtained from the relationships established in [2]. A polyadic
algebra with equality is, roughly speaking, a cylindric algebra with two
additional structures: infinite cylindrification, and substitution (see [3]).
If we eliminate only the infinite cylindrification, we arrive at a notion
of a substitution on a cylindric algebra. A substitution on a CAΛ 21 is
a function S e {AAy* which satisfies certain natural conditions (due to
Halmos). As a corollary of Theorem 5 we easily see that if SI is a CAΛ

with a substitution and if a ^ ω, then A is representable. Now from
[6] it is known that every infinite dimensional polyadic algebra is re-
presentable, while there are infinite dimensional polyadic equality alge-
bras which are not representable (with equality corresponding to the
functional equality). Here by representable we mean as in cylindric
algebras—isomorphic to a subdirect product of Ovalued functional poly-
adic algebras. Our corollary shows that by eliminating infinite cylindri-
fication we recapture representation.

It is natural to ask if the corollary can be strengthened by re-
placing "substitution" by "finite substitution"—a concept defined like
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that of substitution, but in which S applies only to those τea" for
which there is a finite subset F of a such that τ \ a ~ F = 8a»F. The
answer is no: for each a }> ω there exists a CAΛ with a finite substitu-
tion which is not representable. The construction of such algebras de-
pends on the results of [8], which in turn depend upon unpublished work
of Henkin and Tarski.

We now define a class of cylindric algebras which includes both the
class of simple infinite dimensional cylindric algebras and the class of
dimensionally complemented cylindric algebras. A CAΛ Sϊ is called a
diagonal cylindric algebra (GCAΛ) provided that for every non-zero a e A
and every finite subset F of a there are distinct K, λ e a ~ F such that
a*dκλ Φ 0. The importance of this concept derives from the following
theorem:

THEOREM 6. Every diagonal cylindric algebra is representableJ

Proof. Let 5ί be a GCAa. We want to apply Lemma 1, with K
replaced by the class of all CAa's which can be neatly embedded in
CAΛ+1'8. Hence suppose that ae A and a Φ 0. Since 51 e GCAa we can
define functions μ, v with domain ω inductively by letting μκ and vκ be
distinct members of a ~ {μλ, vλ \ X < tc} such that a dμ<Vιc Φ 0.

Now we prepare to apply Lemma 2. It is easy to see that there
is a unique τ e a*+1 such that the following conditions hold:

(1) τ is one-to-one,

(2) τ is the identity on a — {μκ, vκ \ K < ω},

(3) τμκ = vκ for each tc < ω,

(4) τvκ — μκ+1 for each tc < ω,

(5) τa = μ0.

For each fc < ω, let S5K = 51. Let I be the eventually zero ideal of SB
and (ω, ^ > , and let (£ = 2tω/J. For each x e A and K < α>, define

where S°z = cθ(dθp x) for all θ, p < a and x e A. Let T(x) = [f(χ)~\ for
all u; 6 A. The following statements may now be verified:

(6) T is a Boolean homomorphism of 51 into C,

(7) cfλoT = ΓocF for all λ < or,

7 After reading a preliminary draft of this paper, Henkin obtained a generalization of
this theorem, which may be stated as follows. If for every nonzero xβA and for every finite
Γ g α there is a ξea~Γ and an endomorphism Tof Sίo such that c^oΓ = Γ, cκoT = Γαc* for
each * 6 Γ, and T(x)^0, then 2ί is representable.
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(8) T(d%) = dfKτ, for all λ, μ < a,

(9) cfΛoT= T.

In verifying (7), one can make use of the following easily verified
arithmetic law:

(10) Sp

θcpS
θ

πx = cθS
p

θS
θ

πx for all x e A and all distinct p, θ, π < a.

We can now apply Lemma 2, and infer that T is a cylindric homo-
morphism of 21 into an algebra neatly embedded in a CAa+1. Suppose
T(a) — 0. Choose k < ω such that f(a)κ = 0. Applying successively
Syv

0°, Sζ}, •••, S^_x we infer that S%a = 0, and so a-dμ^κ - 0, which is
a contradiction. Since a is arbitrary, from Lemma 1 we conclude that
21 can be neatly embedded in some CAa+1 ®. Let g be an isomorphism
of 21 onto an algebra neatly embedded in 3).

Let N be maximal among ideals P such that g * ( 4 ) f ] P = {0} (by
Zorn's lemma). Let @ = ®/iV, and let pr be the natural homomorphism
of ® onto ©. Clearly pro# is an isomorphism of 21 onto an algebra
neatly embedded in ©. Suppose x e D, F is a finite subset of a, and
[#] ^ [—dκλ] for all distinct k,Xe a ~ F. Suppose that xφN. Then
iVu {x} generates an ideal P such that P(Ί #*(A) =£ {0}. Choose ye A
such that g(y) Φ 0 and ί/(τ/) e P. Then there are ιc0. , ATV_! e α + 1 and
n e N such that g(y) ̂  ^ + cKo c,,^^. Let F = F U K, ., fcv_J.
Then [̂ (2/)] g [—cίKλ] for all distinct tc, Xea ~ Ff; but this contradicts
the fact that 21 is a diagonal cylindric algebra.

It follows that 6f is a G(L4α+1. Hence all the preceding proof can
be applied inductively to give, in virtue of Theorem A, the desired
result.

We now proceed to derive some consequences of Theorem 6.

THEOREM 7. Every simple infinite dimensional algebra is a diago-
nal cylindric algebra, and so is representable.

Proof. Suppose 21 is a simple CAΛ, a ^ ω, ae A, a ψ 0, and Fis a
finite subset of a. There are λ e ω ~ 1 and μeaλ such that eμo c μ λ i α =
1. Choose K, v distinct in a ~ {F\J {μ0, , /^-J) . If a-dκv = 0, then,
applying cμQ c μ λ i , we see that dκv = 0; hence 0 = 1, contradicting the
simplicity of 21.

From Theorem 7 we can infer the following negative theorem which
limits the possible extensions of Theorem 1.

THEOREM 8. If 1 < a < ω, then it is not the case that every CA<»
can be embedded (in the sense of Theorem 1) in a CAω.

Proof. Assume the contrary. Henkin and Tarski have constructed
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a non-representable CAΛ 21, in unpublished work. Clearly we may as-
sume that 21 is simple. Let 93 be a CAω such that 21 is a subalgebra
of the α-reduct of 23. Let / be a maximal ideal in 93, and let (£ = 33//.
By Theorem 7, (£ is representable. Since 21 is simple, An/—{0}, and
so the natural homomorphism of 21 into (£ is an isomorphism. It follows
that 21 is representable; but this is a contradiction.

A CAa 21 is weakly dίmensionally complemented, 21 e WDCA* if
a ~ Δx is infinite for every x e A.

THEOREM 9. Every weakly dimensionally complemented cylindric
algebra is a diagonal cylindric algebra, and so is representable.6

Proof. Suppose 2ί is a WDCAa, ae A, a Φ 0, and F is a finite
subset of a. Choose K, X distinct in a ~ F such that cκcλa = α. If
α dκλ = 0, then a = 0, contradiction.

THEOREM 10. Let a be an infinite ordinal, and let 21 be a CAa.
Suppose there is a finite subset F of a2 ~ δΛ such that Π<κ,λ>ej — dκλ =
0. Then 21 is a diagonal cylindric algebra, and so is representable.9

Proof. Suppose a e A, a φ 0, and G is a finite subset of a. Choose
fc e ω ~ 1 and μeaκ such that μ maps K one-to-one onto the field of F,
i.e., onto {λ | V v < β«λ, i/> e F or (y, λ> e F)}. Also choose v e aκ such that
v is one-to-one and range v Q a ~ G ~ (field of F). Let

H - {<vμr% vμ-'xy \ <jc, λ> e F} .

Applying Sζg Sΐ*i} to Π^^ei . - dκλ, we see that U{K,KeH ~ dκK = 0.
Moreover, ί ί is a finite subset of a2 ~ Sa such that (field of H) Π G — 0.
Since α ̂  0, choose (jc, λ> e i ί such that a-dκk Φ 0. Thus 21 is a diagonal
cylindric algebra.

In conclusion, we would like to make a few remarks about the
general theory of diagonal cylindric algebras. In the first place, GCA^
is properly included in RCAa; the cylindric set algebra formed from all
subsets of ωω forms an example of an element of J?CAα — GCAa; in this
algebra the element {δω} is included in the complement of every non-
unity diagonal element. Clearly GCAa is closed under direct products
and subalgebras. But from Theorem 2.19 of [5] it follows that GCAΛ

is not equational, and so is not closed under homomorphisms. For,

8 This is a solution of a problem of Henkin and Tarski, who showed that S2ί is represen-
table if a — {Δx U Δy) is infinite for all x, y 6 A.

9 Actually a somewhat stronger theorem holds. In fact, instead of assuming that F is
finite, it suffices to assume that a ~ Field {F) is infinite. Then, in general, the product
mentioned in Theorem 10 may be an infinite product.
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LCAa s GCAΛ c RCAa, and by the quoted theorem RCAa is the smallest

equational class including LCAa.
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A NOTE ON

GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

SHU-TEH C. MOY

l Introduction^ This paper is a sequel to an earlier paper [6].
All notations in [6] remain in force. As in [6] we shall consider tw
probability measures μ, v an the infinite product σ-algebra of subsets
of the infinite product space Ω = πX. v is assumed to be stationary
and μ to be Markovian with stationary transition probabilities. Ex-
tensions to ϋΓ-Markovian μ are immediate. vm,n, the contraction of v to
^ , B , is assumed to be absolutely continuous with respect to μm<n, the
contraction of μ to ̂ £ i W , and fm<n is the Radon-Nikodym derivative. In

[6] the following theorem is proved. If γo%f^dv < °o and if there is

a number M such that

( 1 ) \(logfo,n - logfo^dv £ Mfor n = 1, 2, .

then {wrMog/oJ converges in L^v). (1) is also a necessary condition
for the Lτ(v) convergence of {n^logfo^}. We consider this theorem as
a generalization of the Shannon-McMillan theorem of information theory.
In the setting of [6] the Shannon-McMillan theorem may be stated as
follows. Let X be a finite set of K points. Let v be any stationary
probability measure of άK and μ the equally distributed independent
measure on ̂ Γ Then {n~ι log/0 n} converges in Lλ{v). In fact, the
P(x0, #!,•••, xn) of Shannon-McMillan is equal to K{nλ 1}f0>n. The convergence
with probability one of {n~x log P(x0, , xn)} for a finite set X was
proved by L. Breiman [1] [2]. K.L. Chung then extended Breiman's
result to a countable set X [3]. In this paper we shall prove that the
convergence with i -probability one of {n^1 log/0,TO} follows from the follow-
ing condition.

( 2 ) \-I^-dv ̂  L, n = 1, 2, .

(2) is a stronger condition than (1) since by Jensen's inequality

log? f° n dv ̂  flog f° n dv .
^ Jθ,n-1 J J0,n-l

An application to the case of countable X is also discussed.

Received November 28, 1960.
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2. The convergence theorem* As was proved in [6], condition (1)
implies the Lλ(v) convergence of {log/_Λ0 — l o g / ^ - J ([6] Theorem 1, 4).
The convergence with v-probability one is automatically true ([6] Theorem
3). Applying a theorem (with obvious modification for T not necessarily
ergodic) of Breiman ([1], Theorem 1) the convergence with ^-probability
one of {w""1 log A*} follows from the condition

(3) isup I log/_fc,0 - log/_*,_! \dv < co ,

We shall now investigate conditions under which (3) is valid.

Lemma 1. The following inequality is always true.

(4) t s u p l o g ^ " * " 1 ^ < oo .
J *** f-k.O

Proof. Let vf_k>0 be as in Lemma 1 [6]. Then

and

Since μ is Markovian, i/_fc0 are consistent for k — 1, 2, . We shall
prove (4) under the assumption that there is a probability measure v'
on ^Co.o which is an extension of vLkt0 for k = 1, 2, . We shall also
prove Lemma 2 under this assumption. If no such i/ exists, the usual
procedure of representing Ω into the space of real sequences may be
used and the same conclusion follows (cf. the proof of Theorem 4[6]).

Let m be a nonnegative integer and

E{m) = [sup log £=±=± > m] ,

Ek(m) = [sup log j /~ i '" 1 ^ m, log ^-fe " 1 > m ] .
W<* / /

On ^ ( m ) we have

Hence

so that
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v[Ek(m)] £ 2-"v'[Ek(m)] .

Therefore

v[E(m)] ^ 2-mv'[E(rn)] ^ 2~m

and

Note that (4) is proved without assuming the integrability of either

log/-*,<> or log/-*,-! or logJ-k,

J-k.-i

LEMMA 2. // there is a number L such that

(5) [l^Ldv ^ Lfor fc = 1, 2, •

then

(6) ί s u p l o g - ^ ^ d v < Co .

Proof. It is clear that

where v' is defined in the proof of Lemma 1.
Since {/-*,0//-*,-i, ft = 1, 2, •} is a v'-martingale, {(/-..o//-,,-!)2, fc

1, 2, •••} is a v'-semi-martingale. Hence (5) implies that

are uniformly i/-integrable and {(/-i,0//-i.-i)2> (/-2,o//-2>-i)2

is a ^'-semi-martingale (Theorem 4.1s, pp. 324[5]).
Hence for any set F defined by %0, x_19 , X-k

so that

( 7 ) ( -t^-dv < ί j r-( f e + 1 ) ° dv <

In fact, we have just proved that
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( /-i,o /-2.0 . . . dv

is a y-semi-martingale. Now let

F(m) = [sup log ^ ^ 2 . > mj
*** f-k,-i

and

^ ( r a ) = [ s u p log £zi±. ^ m, log -£^s_ > m]

On Fk(m) we have

/_,,_, ^ 2-»/-*.o

Hence

( J £ 2
k,_J^dμ

f-k.-l

= 2 " m ί
J

Applying (7), we obtain

ίm) av

therefore,

—dv ^ 2"WL .
d

Hence

(sup log -£^-dv ^ Σ ^[^(m)] g Σ 2~mL <
J Λ£l f-k.-l m-° m-°

Combining Lemmas 1, 2 and noting that

-A^dy = [ ^~w ° dv

(cf. Theorem 1, [6]), we obtain the following theorem.

THEOREM 1. // there is a number L such that

J±n_dv ^ L for n = 1,2, " then
fθ,n-l
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Isup I logf-kt0 — log/_£,_! I dv < oo

and {w1 log/<,,»} converges with v-probάbility one.
Extensions of Lemma 1, Lemma 2 and Theorem 1 to if-Markovian

μ are immediate.

3 The countable case. Let X be countable with elements denoted
by α. Let v be an arbitrary stationary probability measure on JC Let

P(a0, a19 , an) = v[x0 = α0, ^ = α^ , xn = an] .

Let

fli = - Σ P(«) log P(α) = - (log P(xn)dv .

Carleson showed that

( 8 ) fli<oo

implies the Lx(v) convergence of {n^log P{x0, x19 , xn)} [3]. Chung
showed that (8) also implies the convergence with v-probability one of
{n~λlogP(x0, x19 •••fXn)} [4]. Let μ be defined by

μ[xm = a09 xm+1 = au , xn = α n _J = P(αo)P(α1) . P(αw_m) .

fί may be called the independent measure obtained from v. Then vm<n <
jWTO>n with derivative

and

( 9 ) log jkjL. = log p(χ»> ' " > ^ ) - log P(xn) .
/ P(» x)

It follows from (9) that

5(log/o>w - log fo,n-i)dv ^ j - log P(xn)dv = fli .

Hence (8) implies that (1) is satisfied, therefore {rr1 logfQn) converges
in L^v) by Theorem 5 [6], Since

log/o, = log P(x0, , xn) + Σ log P(xk) ,

Carleson's theorem follows immediately. Furthermore, it follows from
(9) and Lemma 1 that
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Jsup [log P(χ,k> "I'*'1] + log P(xo)]dv < co .

Hence (8) implies

P(x-k, •••, x0)

and Chung's theorem [4] follows.
By using a similar approach we shall give a sharpend version of

Carleson's and Chung's theorems.
Let

P(a ! a α - P ( α - z ' -- , α - i , a0)
P(α_ z , •••, α_α)

and let

Hτ = — Σ ^(α-z> » α0) log P(α 01 α_ί, , α_x)
tt-i α - l

= - llog P(xn I xn-τ, , a?n-i)^^ -

Hz is nonnegative but may be + ° ° . It is known that

H^H^H^

Let

H = lim Hτ .

The limit is taken to be + oo if all Ht are + co.

THEOREM 2. If H < oo then {n~x log P(xOf , #„)} converges both in
Lλ(v) and with v-probability one.

Proof. There is an I such that Hz < co. We define an ί-Markovian
measure μ on ^ " a s follows.

μ[xm = α0, α;w+1 = αx, , xn = αΛ_w] = P(α 0 , , α n _ J

if n — m ^ ϊ,

/^[α;TO = α 0 , ^ w + i = «i , , x n = α w _ m ]

= P(α0, , α z)P(α i + 11 alf , a%) P(an-m \ α n_m_ z, •, αn_m_!

if ^ — m > i. I t is easy to check t h a t μ is well defined and vm<n < μmtΛ.
It is clear t h a t , if n — m > I,

log ^kjL. = log ζ(*~ •••>**) _ log P ( ^ Λ i Xn_u

Jm,n-l % X
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The rest of the proof goes in the same manner as for the case Hx < °o
since Theorem 5 [6] and Lemma 1 of this paper remain true for I-
Markovian μ.
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AN IMBEDDING SPACE FOR SCHWARTZ

DISTRIBUTIONS

DONALD E. MYERS

1. Introduction^ We consider here a facet of the problem of justi-
fying the methods of the operational calculus and in particular the use
of the "Dirac Delta Function". L. Schwartz's "Theorie des Distribu-
tions* ' [6] is the most complete exposition to date on generalized func-
tions but the operational calculus as such is largely omitted. B. Van
Der Pol [8] discusses the latter but not in the context of distributions.
Ketchum and Aboudi [4] suggested using unilateral Laplace Transforms
to construct a link between Schwartz's theory and the operational calculus.
This paper will enlarge on the latter suggestion. Two principal results
are obtained. An imbedding space is constructed and a comparison be-
tween the topologies is made.

Let S denote the strip σx < R(z) < σ2, in the complex plane. Con-
sider the one parameter family of functions {ezt}, where the parameter
z ranges over S and — oo < t < oo. This family is not a linear space
but each member possesses derivatives of all orders. In a manner analo-
gous to Schwartz we define an L5-Distribution to be an analytic complex-
valued functional on the above family of functions, where by analytic
we mean with respect to the parameter z. If a is any complex scalar
and F, σ are two such functionals then we require that F ezt + σ ezt —
(F+σ)-σzt, and (aF) ezt = F-{aezt). The latter property then allows
us to define the derivative in a manner similar to that of Schwartz,
that is Ff -ezt = F-(ezt)' = F - zezt = zF-ezt. It also follows that the
Laplace Transform supplies an integral representation of some of the
functionals. The other L?-Distributions define generalized functions for
similar integral representations. That is, each function analytic for z e S
has for its values, the values of an L5-Distribution acting on a function
ezt and the L9-Distribution has an integral representation utilizing the
symbolic inverse Laplace Transform of the analytic function. In most
of this paper we deal only with analytic functions whose inverse trans-
forms exist but the definitions and theorems will be stated without this
restriction where possible. Following a practice used by other authors,
we will call the inverse Laplace Transform, symbolic or not, an L5-
Distribution rather than the functional. Because of the relation between
the functional and an analytic function we concentrate on the latter and
utilize the already known properties of such functions. By emphasizing
the integral representations rather than the functionals we utilize the

Received January 3, 1961. Based on the author's thesis at the University of Illinois,
1960 (unpublished).
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Riesz Representation Theorem for continuous linear functionals to es-
tablish a correspondence to Schwartz Distributions.

As stated above each functional has a representation by an analytic
functions, using this we will define convergence in a fashion similar to
that of Schwartz. That is, a sequence of L5-Distributions will converge
if the sequence of values, when operating on an arbitrary member of
the one-parameter, converges. Because of the parameterization this
definition can be stated directly in terms of the representations by the
analytic functions.

2 Ls-Distributions,

DEFINITION 1. If an L^-Distribution is determined by an analytic
function f(z), then f(z) is its bilateral Laplace Transform. Denote this
Ls-Distribution by [f(z)]t or ft. Further, abbreviate I/^-Distribution by

DEFINITION 2. The derivative of an L -̂D, [f(z)]t = ft is the WD,
[zf(z)]t = ft- For a fixed S, the set of all L^-D's is metrized by a
Frechet type metric on the transforms. See [7], page 137. For a pair
of functions f(z), g(z) analytic in S, denote the metric by Ns(f, g). The
following property of this metric could have been used a definition since
it is the only property used in this paper.

THEOREM 3. A sequence of functions, all analytic in S, converges
with respect to the metric Ns if and only if the sequence converges
uniformly on every compact subset of S.

DEFINITION 4. ρs(ft, gt) = Ns(f, g) where ft, gt are the L5-D's whose
transforms are f(z), g{z) respectively.

DEFINITION 5. If f(z), analytic in S, is the bilateral Laplace Trans-
form of a point-function F(t), then F(t) is called a Point-Function L̂ -D
or P.F.Lj-D.

THEOREM 6. If Fi{t), i = 0,1, 2, 3, all possess bilateral Laplacd
Transforms analytic in a strip S, σ1 < R(z) < σ2y and

|e-σ»tjP<(t)|adt<
J - σ o

for all i, then let
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d(Fk, Fj) =
ηi/2

Fk(t) - F,{t) |2 dtJ

l/2

If d(F{, F ^ O a s i - c o then

^(ί) -> F0(ί) as P.F.LS-D's.

Proof. Write the transform of F&) - F0(t) as

f° e-tι-'i>e-**[F((t) - F0(t)]dt

+ ("e-t<«- i»e-<r' [F<(ί) - F0(t)]dt .
Jo

By the Cauchy-Schwartz Inequality

^ ["Si ^ Γ T i Γ
L.2[<72 - i?(z)]J

2[R(z) — σj]

If

= max 1 , J 1 Ί
) - σ,) y 2(σ2 - R(z))J

then

and hence ft(z) —* fQ{z) uniformly on each compact subset in S if d(Fif Fo) —••
0 a s i —• oo.

An interpretation of Theorem 6 might be that if {e~σitFi(t)} converges
in L2[0, oo] to e-σίtF0(t) and {e-^F^t)} converges in L2[oo, 0] to e'σ^F0(t)
and each F^t) has a bilateral Laplace Transform then the sequence of
P.F.L5-D's converges with respect to the metric ps.

THEOREM 7. Let fj(z), j = 0, 1, 2, 3, be an infinite sequence of
functions analytic in a strip S, σλ < R(z) < σ2, and further suppose
there exists a C such that \f3 (z) | < Ce~volIiz)] for some ηQ > 0, in all of
S. If Nsifj, /0) —> 0 as j —• oo then F5{t) —> F0(t) uniformly on every
bounded interval in the t-line. Fά{t) denotes the inverse bilateral Laplace
Transform of fά{z).

Proof. The hypothesis is sufficient to ensure the existence of the
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inverse transform of each fj(z), [2]. That is,

F&) = Γ ~AeitvUχ +
for σ1 < x < <72 .

Then

~2jt

l l fPil
27Γ

\ " eitv[fΛ% + iy) ~ fo(x + i.

- iy) — fo(n + iy)]dy \

2π I Jp

For ε > 0, and α < t < b, let p be such that ^ ^ g

and / such that Γ—1 Ns(fj9 /„) < ε/2 for j > J, then
L 7Γ J

I Fs(t) - F0(ί) I <ε for i>and

< ε/2 and J such

THEOREM 7.1. / / m Theorem 7, OΊ < 0 < σ2 then F, (t) —> F0(t) uni-

formly fOr — OO < t < CXD .

DEFINITION 8. For each Ls-D, /„ define / ί+f t to be [eΛβ/(«)]t.

THEOREM 9. If ft is an arbitrary Ls-Ό then

pi ft+n. - ft , // ) -> o as Λ -> 0 .
\ h I

Proof. By definition

so that

it

h

_ϊeh°f(z)-f{z)-zf{z)-
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and since

hz2 , hV , _ n+ -j- —> 0
2! 3!

uniformly on each compact set in S as h —• 0, the theorem is proved.

DEFINITION 10. An L -̂D ft is said to have point-values F(t) for
c < ί < d if there exists a σ(t) such that for some k, f(z) = 2*0(2), #(2)
being the bilateral Laplace Transform of σ(t) and finally that σ{k)(t) —
F(t) for (c < t < d).

For example [l]t has zero-point values in every open interval, in
the ί-line, that does not contain the point t — 0. Since

(1, ί > 0 has for
w ~ j θ , t > 0

its transform 1/2 and [1^ = [z—]t finally iϊ '(0 = 0 for all t Φ 0. UL is
2

the ^Dirac Delta Function'\

THEOREM 11. If {nft} is a sequence of Ls-D's converging to an Ls-D
o/t ίλe^ {TO//

fc)} converges to Jίk) for all k = 0, 1, 2,

Proof. By definition {n/J converges to

0/ t ϋ; max | w/(«) - J(z) \ -> 0
zβK

as w-* 00 for all compact KczS. Since in the complex plane, a set is
compact !z; if it is closed and bounded, there exists an Mκ for each
K\z\ :g Mκ for 2Gfc.

Then max \J(z) - 0/(s) | - 0 ^
zeK

\Mκ\
k\ J{z) - f(z) I -> 0 as w -> co for each fixed

positive integer fc apply Definition 2.

EXAMPLE. The following will be used as a counter-example in the
last section. Consider the Taylor-expansion for

[e~z]ί is the "Delta Dirac Function'' translated so that L5-D has zero
point-values for all t except for

t = 1. [(-i) -̂ L = ( - ^ m =-^τίίiL(n).
! ! !
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The latter L -̂D has zero point-values for all t Φ 0. Since the Taylor
Series converges for all z and hence uniformly for compact sets the
series of Ls-D's converges

3* General L5-Distribution* The set of all L^-D's for any fixed
S does not contain a subset isomorphic with the set point-functions having
pointvalues a.e. For example, the function F{t) = 1 does not have a
transform even though it is continuous for — co < t < oo. However
each member of the sequence of functions

= 0, (t > i, t < —i)

i = 0, (0,1,2,3,4, . . .)

does possess a transform. Further for each open interval (c, d) only a
finite number of the elements of the sequence have different point-values
than F(t) in (c, d). The sequence represents F(t).

DEFINITION 12. A sequence {nft} of L5-D's is called Fundamental
if for each open interval (c, d) there exists an integer N such that for
w > Nnft — n+pft, p = 0, 1, 2, 3, is an L -̂D with zero point-values in
(c, d). Fundamental sequence of Ls-D in abbreviated by F.S.S.

DEFINITION 13. Two F.S.S.'s, {ngt} and {nft} are said to be Similar
if for each open interval (c, d) there exists an integer N such that for
n> Nngt — nft is an Ls-D with zero pointvalues in (c, d).

LEMMA 14. The Similarity defined in Definition 13 for pairs of
F.S.S.'8 is an Equivalence relation and is invariant under addition
and differentiation.

THEOREM 15. The equivalence classes under the Similarity relation
are called G.L5-D's or General L5-D's. They form an Abelian group,
closed with respect to scalar multiplication and differentiation.

The Representation Theorem.

THEOREM 16. Let A denote the entire complex plane, then there is
a subset, D, of the set of all G. LA-D's that is isomorphic with the
set of all Schwartz Distributions. The isomorphism is invariant v)ith
respect to addition, scalar multiplication and differentiation.

(a) By definition, a Schwartz Distribution is a linear functional on
the space of infinity differentiable point-functions with compact supports
and is continuous when restricted to the set. Each Schwartz Distribu-
tion has an integral respresentation when restricted to a bounded closed
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interval, [3]. This representation has the form

Dt(ψ) = (~iγ\bF{twt]dt

where F(t) is continuous on [a, b] and r is an integer dependent on [a, b\
and the distribution Dt. φ(t) is any function with support the closed
interval [a,b]. Let [an, bn] be a sequence of intervals where — ™ <—
an+ι ^ an <Ξ bn ^ 6n+1 -> oo as n -> oo. For each n there is an FJt) and
an rn. Let

Gn(ί) - ( - l r ^ ί ί ) , ( α ^ ί ^ δn)
- 0, (ί > bn, t < αj .

Then let

/n(«) - \bne-"z'»Gn(t)dt .

It remains to be shown that the sequence {nft} is an F.S.S. and that
the equivalence class is independent of the sequence of covering intervals.
The G.Ls-D determined is the representative of Dt.

(b) Let / be an arbitrary open interval in the £-line, denoted (c, d).
There exists an N then such that for n > N[an, bn] ID (C, d). Let Fn(t),
Fn+P(ί), rn, rn+p be the continuous functions and integers given for the
representation of the distribution Dt on the intervals [an, bn] and [α%+p,
bn+p] respectively. Using Halperin's notation, let S[an, bn] denote the
class of testing functions associated with the interval [an, bn] that is, if
φeS[an, bn] then φ{IC](t) is zero for tφ[anJ bn], and φ<]c){t) exists for all
t e [αn, bn] for k = 0, 1, 2, 3, . It is seen that S[an, bn] c S[αn4ll, bn+p\.
If 0eS[αw, 6Λ] c S[anlp, bnVp\ then

( - i r«+p ίδw 'pFn+

or

- 0

since

φ ( Λ ) ( 0 - 0 for tφ[an,bn]

Let

T-Fn(t)= Γ Fn(
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T*-Fn(t)= T.[T.Fn(t)]

Then if rn+p ^ rn

0 =

It follows then that

is a polynomial Qw(ί) of degree m ^ rn+p — 1 for an ^ t ^ bn. Similar
results are obtained if rn ^ rn + p.

Using QJt) we have

~ «/(*) = P e-'z'»* *Gn+p(t)dt

The first integral can be considered as the transform of the r w + p t h
derivative of a function with zero point-values exterior to the interval
[an+p, an] and hence interior to the interval (c, d). The second integral
can be considered as the transform of the rnlpth derivative of a poly-
normial of degree less than or equal to rn+p — 1. Hence the Ls-Ό
determined has zero pointvalues on the interior and exterior of the inter-
val [αn, bn] and hence on the interior of (c, d). This L5-D may not have
zero point-values at t — an or t = bn. Finally then the third integral
considered as a transform determines an Ls — D with zero pointvalυes
exterior to the interval [bn, bn+p] and hence on the interior of (c, d).
n+pft — nft is an L<j-D with zero pointvalues on the interior of (c, d),
if n > N. The sequence constructed in part (a) is an F.S.S.

(c) Suppose [an, bn] and [cn, dn] are two expanding sequence of closed
intervals covering the real line. Let {nft} and {ngt} be the F.S.S.'s
obtained from the consturuction of part (a) using the former sequences.
Let I be an arbitrary open interval in the ί-line. Then there exists
integers N}, JV/ such n+pff — nft for n < Nj and n+pgt — ngt for n g ΛΓΓ

2

Ls-D's with zero point-values for t e I. Further there exists an integer
MB [an, bn] c [CN, dN] for n ^ M and N = N}. Consider
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,// - nΰt = nft - Kft + Kft - Kgt + Kgt - ngt

where K is the largest of N}, N}9 M. For n > K then the first differ-
ence on the right is an L5-D with zero point-values for t e I since
{nft} is an.F.S.A. The second difference can be shown to be an L5-D
with zero point-values for t e I by the method of part (b). Finally the
third difference is an L^-D with zero point-values for t e / since {ngt}
is F.S.A. The two F.S.A.'s are similar and hence determine the same
G.LA.-D. The correspondence between the Schwartz Distribution and
the G.L4.-D. is one-to-one. The invariance of this isomorphism with
respect to addition, differentiation and scalar multiplication follows from
Lemma 14.

4. A Topology for G.L-D's

DEFINITION 16. An F.S.S. {nft} is said to have point-values F(t)
for t e (c, d), an open interval, if there exist an integer NiCιd) such that
for n > N, nft is an Ls-D possessing pointvalues F(t) for t e (c, d). A
G.L5-D is said to have pointvalues F(t) for t e (c, d) if there is an F.S.S.
unit equivalence class possessing that property.

DEFINITION 17. Let {nft}19 •••,{»/*}*> ••• be a sequence of F.S.S.'s.
Denote the wth element of the i t h F.S.S. by (nft)j. Then sequence is
said to converge to the sequence of Ls-D's {nft}0, if for ε > 0 there
exist integers N2, J2 such that p [(nft)j, (nft)o\ < e when n > AΓε, j > J ε.

DEFINITION 18. Let Dlf D2, be a sequence of G.L^-D's. Further
suppose Llf L2, ••• is a sequence of F.S.S.'s each having support [a, b]
and that for each j — 1, 2, Lj represents D3 is (a,b). That is, for
some F.S.S. in Djy the difference of Lj and the F.S.S. has zero point-
values in (α, b). Then if Lly L2, is convergent in the sense of Defi-
nition 17, Dly D2, is said to converge to Do where Do is the G.L5-D.
determined by Lo.

THEOREM 19. // a sequence of Schwartz Distributions is convergent
in an open interval (α, b) in Schwartz's sense then the sequence ofG.Ls-D's
isomorphic to the respective Schwartz Distributions is convergent in
the interior of every closed interval contained in (a, 6).

Proof. Let D19 D2, be a sequence of Schwartz Distributions con-
vergent in Schwartz's sense in (α, 6). For any closed interval [c, d] con-
tained in (α, b) there exists a sequence of representation
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for φ e S[c, d\. Since the sequence D19 D2, is convergent there exists
one integer r c which can be used in all the representations and also the
limit representation.

For each j , construct the F.S.A. {nft}j where {nft}ό = (ft)s and

where

Gj(t) = (-l)'^(t) , c^t^d

— 0 , otherwise .

Since the sequence of Distributions is convergent

lim TrcFj(t) = FQ(t) [uniformly [c, d]] j — oo

K = I \Λz^e-βt[τ^Gj(t) - G0(t)\dt

^\d-c\ e~c^ I T^Gjit) - Gd(t) \\ dr* \ .

It follows that

K = I (f(z)h - (/(^))01 ^ Me

for j > Js, M=\d- c\ e~cσi \ σ2

r* \ .

Then (f(z))j -> (f(z))0 uniformly on every compact set in the strip a1 S
R(z) £ σ2 and hence in the metric p8. By definition then (ft)β —> (ft)0

and hence

{nfthf •> L/ί}i, converges to {W/Jo in the interior of (c, d). The
sequence of G. L^-D's converges for t e (c, d).

The example given earlier for a series representation of "Delta"
Distribution with a discontinuous at t = 1 converges in the sense defined
herein but not in Schwartz's sense. The L5-D [e~z]t and its series
representation furnish a solution to the differential equation
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CATEGORY METHODS IN RECURSION THEORY12

J. MYHILL

The heavy symbolism used in the theory of recursive functions has
perhaps succeeded in alienating some mathematicians from this field, and
also in making mathematicians who are in this field too embroiled in
the details of thier notation to form as clear an overall picture of their
work as is desirable.3 In particular the study of degrees of recursive
unsolvability by Kleene, Post, and their successors4 has suffered greatly
from this defect, so that there is considerable uncertainty even in the
minds of those whose speciality is recursion theory as to what is super-
ficial and what is deep in this area.5 In this note we shall examine
one particular theorem (namely the Kleene-Post theorem asserting the
existence of incomparable degrees6) and show that it is a special case
of a very easy and well-known theorem of set-theory. Exposition will
be such as to require (except in a few footnotes) no preliminary ac-
quaintance with recursive matters. It is to be hoped that some mathe-
maticians in other areas may be stimulated by this exposition to try their
hand at some open questions about recursive functions: it is to be hoped
also that they will not carry away the impression that all of recursion
theory is as trivial as this paper will show the Kleene-Post theorem to be.

First let me describe in an informal way what relative recursiveness
is. The only properties of it which we shall need will be apparent from
this informal discussion.

Denote by ε the set of all nonnegative integers. A function shall
mean a number-theoretic function / : ε —• ε. A function is called recursive
if it can be computed in an effective (mechanical) manner: we shall
not need the details of the definition.7 Sometimes two functions / and
g are so related that the function / can be calculated in an effective

Received December 27, 1960.
1 Composition of this paper was supported by NSF grant G-7277.
2 Category methods have also been used by the author in [12], and form the basis of

the entire treatment of degrees in [3],
3 A related (but much deeper) contribution to the methodology of recursion theory has

made by Addison, e.g., in [1].
4 See, e.g., [7], [14], [15], [19]. A sadly neglected paper in the same area which

completely avoids these unnecessary complications is Lacombe [10].
5 The principal result of Spector [19] (minimal non-recursive degrees) is probably

'deep' in this sense, as is likewise the Friedberg-Muc'nik proof ([4], [11]) of the existence
of incomparable degrees of recursively enumerable sets.

6 Strictly speaking, the Kleene-Post theorem ([7], p. 390) gives more information than
our version, since it gives incomparable degrees <O r. But this result too can be obtained
by a category argument, as I shall show in a later publication.

7 Cf., e.g., Davis [2], p. 41.
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(mechanical) way apart from requiring, for the computation of each
particular function-value f(n0), a finite amount of information concerning
values of the function g: in this case we say that / is recursive in or
relative to g. The simplest way to envisage this relation is probably in
terms of Turing machines.8 We say that / is recursive in g if there
exists a Turing machine with input and output tapes such that if the
values g(Q), g(l), g(2), . . . are fed in that order into the input, then for
every nonnegative integer n the unique true statement of the form
f(n) = m will appear after a finite time on the output tape (and no
false statement of that form will ever appear). Another characterization
which may also aid the intuition is the following: / is recursive in g if
there is a formal system9 Σ such that every true statement of the form
f(n) = m, and no false statement of that form, is deducible in Σ from
a finite number of true statements of the form g(x) = y. The exact
definitions of Turing machine and formal system are quite irrelevant
for our purposes: all that matters is that

(1) only finitely many values of g are used to compute any value
of / and

(2) the total number of Turing machines or formal systems
is countable.

In both cases (2) is a consequence of the fact that the process of
computation of one function from another can be described by a finite
description using only symbols belonging to a finite alphabet fixed in
advance; the same will be true if we characterize relative recursive-
ness in some way other than by Turing machines or formal systems.10

To every Turing machine or formal system corresponds uniquely a
mapping Φ from functions to functions, called a partial recursive oper-
ator. It is important to notice that certain such Φ may not be defined
for all functions as arguments. It may well be that a certain Turing
machine T, on being supplied with the values of a certain function g,
will print statements of the form f(m) = n on its tape only for certain
m. In that case we say that T computes only a partial function from
g. We regard the operator Φ as defined on the family of all those g
from which T computes a full (everywhere defined) function. For
example, suppose we consider the mapping which assigns to every function
/ the function < Φf > such that

< Φf >(x) = (μy) (f(y) = 0);11

8 Davis [2], Ch. 1-2.
9 For 'formal system' see Davis [2], Ch. 6 and 8, Smullyan [17] passim. The first

use of formal systems to define partial reqursive functionals seems to date from Myhill-

Shepherdson [13], p. 315, where we followed a suggestion of Marian Boykan (now Pour-El).
1 0 E.g., by systems of recursion equations (Kleene [5], pp. 326-327).
1 1 (μy) ( V •) denotes the least y satisfying the condition . . . ί/... if such exist,

and otherwise is meaningless.
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then Φ is a partial recursive operator whose domain of definition is the
family of all functions which vanish for at least one value of the argu-
ment (and whose range is the family of all constant functions).

We denote by ^~ the family of all functions, and we topologize it
as the product of countably many replicas of the integers each with
the discrete topology. This corresponds to the metric

p(f, g) =
(μx)(f(x) Φ g(x)) + 1

or 0 if / — g. It is well-known12 that this is a complete metric space,
hence of second category on itself. This is the basic fact that we shall
use in what follows.

By a finite function we mean a mapping of a finite subset of ε into
ε; if /0 is such a function, we define, ^K(f0) as the family of all (full)
functions which extend /„. We can take as a (countable) basis for JίΓ
the collection of all families ^ (/<,). Φ : ^-^ ^~ with ^ g J^is con-
tinuous (in the induced topology on ^ ^ ) 1 3 just in case

(3/0) (/ e ^/(/ 0 ) and (v/')

> < Φf' > (x) = y)) ,

i.e., if and only if any value < Φf > is determined by finitely many
values of /. In view of what was said above it follows that all partial
recursive operators are continuous14" (on their domain). For use later on
we observe also that the domain of definition of such an operator is a
Gδ set; this too is an immediate consequence of the preceding informal
remarks.

We write / g g if / is recursive in g,f<g if / ^ g but not g fg /.
The relation / ^ g is a pre-order; hence its symmetrization f=g (i.e.,
/ ^ g and g gΞ /) is an equivalence relation. The equivalence classes
into which it divides ^ ~ are called degrees) we call one degree & lower
than another degree 3ί * and write 2$ < & * if / < g for all (equiva-
lently, for some) / G ^ , ^ G ^ * .

Now we can prove the existence of incomparable degrees. Observe
first the there are exactly c degrees, since there are c functions and at

12 Sierpinski [16], p. 191.
13 A partial recursive operator defined on a dense subset of -^ need not have a continuous

extension to the whole space (Kleene [5], p. 685); and even when it does this extension
need not be partial recursive (Lacombe [10], p. 155, Theorem XIX). Hence it will not
suffice for our purposes to consider only everywhere defined operators.

14 This observation is essentially Kleene's (cf. the proofs of Theorems XXIa and XXYI
in [5], pp. 339, 348-349); that the property in question amounted to continuity was observed
apparently independently by Lacombe (in a series of papers in Comptes Rendus going back
at least to 1953) and later by Trahtenbrot [2O3. Davis ([2], pp. 164 seqq.) oddly uses the
word 'compact' to mean 'continuous'.
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most (in fact, exactly, but we shall not need this) ^ 0 functions belong-
ing to any given degree. Observe also that there are at most ^ 0 degrees
lower than a given degree. For let ^ * be a degree; then if /belongs
to a degree lower than ^ * it must be of the form < Φg > where
# e ^ * and Φ is partial recursive. But there are only countably many
g's in £^* and only countably many Φ's; hence there are only countably
many functions of degree < ϋ ^ * and a fortiori only countably many
degrees < ^ * . 1 5 This gives a plausibility argument for the existence
of incomparable degrees, for if every two degrees were comparable we
would have a simply ordered set of the power of the continuum in which
each element had only a (finite or) countable number of predecessors;
and this is easily seen16 to imply the continuum hypothesis.

The continuum hypothesis is equivalent17 to the assertion that the plane
is the union of countable many curves (where a curve is the set of all
points (x,f(x)) or of all points (f(x), x) for some (not necessarily every-
where defined) real function / ) . We know also that the plane is not
the union of countably many continuous curves,18 since each such curve
is nowhere dense and the plane is of second category on itself. These
considerations yield at once the existence of incomparable degrees. If
every two degrees were comparable the space J^2 would be the union
of all curves {(/, < Φf >)} and {(< Φf>,f)} with Φ partial recursive.
But this is impossible because as we have seen each of these curves is
continuous and hence by a classical argument nowhere dense,19 and
because j ^ 2 , like J^", is a complete metric space and hence of second
category on itself, q.e.d.

Now we use the same method to establish a stronger statement
which answers a question rather recently raised (and still more recently
settled) by Shoenfield.20 Do there exist uncountably many degrees any
two of which are incomparable? We shall obtain an affirmative answer
to this question using only the hypotheses that ^7~ is a complete metric
space and hence of second category on itself, and that there are only
countably many partial recursive operators each of which is continuous

15 For the lowest degree (that to which recursive functions belong) there are of course

no degrees lower. There are also degrees than which only a finite nonzero number of

degrees are lower (Spector [19], Theorem 4).
16 Sierpinski [16], p. 23.
17 Sierpinski [16], p. 11.
1 8 Nor of countably many measurable curves (i.e., Lebesgue measurable in the plane);

this is the foundation of Spector's proof in [18] of the existence of incomparable hyper-

degrees. (Measure arguments have to replace category arguments in the study of hyper-

degrees because hyperarithmetic operators are in general discontinuous.)
19 The only hypothesis needed is that ^ is a Hausdorff space with no isolated points.
2 0 Raised in [15], settled in [14]. More recently Sacks has obtained (unpublished) a

continuum number of pairwise incomparable degrees and Lacombe and Nerode (unpublished)

have obtained a continuum number of independent (and minimal non-recursive) degrees

(see [7], p. 383 for the definition of independence).
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in the topology induced on its domain.
Given any basic open set ^/K(f0) and any partial recursive operator

Φ, it may or may not be the case that < Φf> has the same value for
all fe^Kifo) for which it is defined. If this happens for some
we call < Φf > a singular function; in symbols

g singular «-• (a/0) (30) (Φ partial recursive and

(v/e ^r(/o)) « Φf > defined - < Φf > = g)) .

A function which is not singular we call regular. Clearly there are c
regular and at most ^ 0 singular functions.21

We wish to exhibit an uncountable collection of pairwise incomparable
degrees, or, what comes to the same thing, an uncountable family of
functions none of which is recursive in any other. We prove this by
establishing successively the following propositions.

A. If / is regular and Φ partial recursive, then Φ~ι{f) is nowhere
dense.

B. If / is regular, then the family of all functions of degree ^
the degree of / is of first category.

C. If / is regular, then the family of all functions of degree
comparable with the degree of / is of first category.

D. If ^""is a (finite or) countable family of regular functions, then
the family of all functions which are either singular or of degree compa-
rable with that of some function belonging to ^ " i s of first category.

E. If J^ is a (finite or) countable family of regular functions,
there exists a regular function of degree incomparable with the degree
of every function in

F. There exists an uncountable family of pairwise incomparable
degrees.

Clearly A->B-»C-»D->E—>F, so we have only to prove A. Let
then / be regular, Λ" a basic open set, Φ a partial recursive operator.
We seek a subneighborhood ^<Γ of Λ^ such that for all g e Λς, Φg is
undefined or Φf. If < Φg > is undefined for all g e ^Y\ take Λ* — <yT*
If on the other hand < Φg > is defined for some g e <Λ'\ then there
exists (since / is !*egular) such a g for which < Φg > Φ f. Let &~ be

21 The singular functions are precisely the functions / for which the relation f(x) = y
is hyperarithmetic (see Davis [2], p. 192 for the definition of hyperarithmetic). The proof
is essentially contained in [8].
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the domain of Φ. Then {g | < Φg > φ /} = ^Vx ΓΊ ̂  for some open
*yV[. Consequently we can take ^^— Λ^ Π -^Γ &nd Φ~\f) is nowhere
dense, q.e.d.

It must be stressed that some existence thorems in the literature
of degrees apparently cannot be reduced to category arguments, at least
not in the topology which we used.22 Also Shoenfield's proof of the
existence of ^ pair wise incomparable degrees is essentially different
from the above, and yields the further information that given any
countable family of non-recursive functions (i.e., not of the lowest
degree, not effectively calculable) there is a function of degree incompara-
ble with all of them. We only obtain the statement (E above) reading
'regular' for 'non-recursive'; and this is weaker as we have seen. If
possible we seek a category argument which will yield this stronger
result. However we cannot do this without more structure on ^ . For
we can exhibit a countable family of continuous operators

with the following four properties:

I . They are closed under composition* whenever possible,

II. They contain the identity.

III. The domain of each is a Gδ.

IV. There exists a minimum in the induced ordering f^g

such that it is false that given any countable family of functions none of
which is minimal in the sense of IV, then there is a functions incompa-
rable with them all.

The following additional assumption however, which is true for
partial recursive operators, yields enough additional structure for us to
obtain Shoenfield's result by essentially his method.

V. If the domain of Φ is dense on an open set, its intersection
with that set contains a minimal (i.e., recursive) point.

It is obviously enough (in view of the earlier part of this paper) to
prove that Φ~ι(f) is nowhere dense for each non-recursive f For this,
consider such an / and let ^ be a basic open set and Φ a partial
recursive operator. We seek again a subneighborhood Λ^ of ^\r disjoint
from Φ~\f). If the domain ^ of Φ is not dense on yj/\ this is trivial;

22 Spector's proof in [19] of the existence of minimal non-recursive degrees has been
made into a category argument by Lacombe (unpublished); but the topology used is highly
artificial.
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so assume it is dense. By V, its intersection with ^ίr contains a re-
cursive point g. If < Φg > = f, f would be recursive, contradicting
the hypothesis. Hence < Φg > Φ f and as alove we can take ΛΊ =
<Λl (Ί ΛT where ^ " i s an open set such that {g \ < Φg > Φ /} —JΫX Π ^Γ
q.e.d.

The proof of V however seems to require essential use of (non-topo-
logical) properties of recursive functions as distinguished from operators,
specifically their closure under a certain iterative procedure. We conclude
that ShoenfiekΓs result (and a fortiori the results of Sacks and Nerode
mentioned in footnote 20) probably do not, like some of the other theo-
rems on degrees mentioned in this note, rest solely on elementary set-
theoretic considerations. However, the distinction between those which
do and those which do not require more advanced and specialized means
(i.e., between those which are truly 'recursive' and those which are
merely set-theoretic) seems worth making, if only because it throws
some light on aspects of the methodology of the whole domain which
the present treatment in the literature leaves almost completely in the
dark.
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ON EXTREMAL PROPERTIES FOR ANNULAR
RADIAL AND CIRCULAR SLIT MAPPINGS

OF BORDERED RIEMANN SURFACES

PAUL A. NICKEL

Introduction* There exist functions which map a planar Riemann
surface W of arbitrary conectivity conformally onto plane slit regions.
Functionals J, extremized in the class of all conformal mappings of W
by only one slit mapping, are known. Such functionals can be repre-
sented as limits of functionals InJ where each In is itself extremized by
a horizontal or vertical-slit mapping with domain of finite connectivity.

A planar bordered Riemann surface of finite connectivity can be
mapped conformally onto a radial or circular-slit annulus with inner and
outer boundaries corresponding to any two contours of the surface. In
this investigation, extremal properties of such mappings are obtained
and extended to surfaces of infinite connectivity. The geometric nature
of the extended mappings, called principal analytic functions, is then
deduced from the extended extremal properties. In addition, certain
combinations of principal analytic functions are investigated from both
extremal and geometric points of view.

First, we consider a planar bordered oriented Riemann surface W9

of infinite connectivity. It is assumed that W has two compact border
components, δ and γ, such that no point of δ U 7 is a limit point of
points of any other boundary components. Such contours are called isolated.
W is "approximated" by a sequence of compact bordered Riemann
surfaces {Wn}, where each Wn is of finite connectivity. On Wn, an-
nular radial and circular-slit mappings FOn and Fln are constructed.
Among all normalized conformal annular mappings F of Wn, FOn max-
imizes

2πlog(r(F)) +

and Fln minimizes

2πlog(r(F)) - μn(F) .

Here, r(F) is the quotient rylrB, where ry and rδ represent the radii of
the positively oriented F(y) and the negatively oriented F(S) respectively,
and μn(F) is the complementary area of log(F(Wn)).

It is then shown by the reduction theorem (Sario[4]) that these ex-
tremal properties hold in the limit for the limit functions JP0 and FΊ*

Received August 22, 1960. The results of this paper are part of the contents of the
author's Ph. D. thesis, done under the direction of Professor Leo Sario, to whom I wish to-
express my most sincere gratitude.
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Furthermore, the extremal properties of FQ and Fx imply that the former
is a radial slit mapping of W and that the latter is a circular slit mapping.
By establishing a deviation formula, it is seen that the functions Fo and
Fλ are, up to a rotation, the only normalized conformal annular maps
of W extremizing the limit functional. As another application of the
reduction theorem, we find that the univalent function Λ/F0 Fλ max-
imizes μ(F), the complementary logarithmic area, among all conformal
annular mappings of W.

Next we pose the question: When does W have distinct radial and
circular-slit mappings. The answer is given in terms of AD-removability,
at least when W is a plane region bounded by an outer contour γ and
an inner contour δ. A point set E of the extended plane is called ΛD-
removable when the only analytic functions with finite Dirichlet integral,
defined on the complement of E, are the constant functions. In partic-
ular, we find that the principal analytic functions are, up to a rotation,
identical, if and only if the plane region bounded by 7 and δ minus W
is AD -removable.

1. We consider W an open planar bordered Riemann surface with
two compact non-point border components, δ and γ. In order to describe
the remaining part of the boundary of W, we recall that such a
surface can be embedded in a Riemann sphere S2. With respect to this
embedding, we assume that W and its boundary components satisfy the
following conditions:

( 1 ) no point of δ U 7 is a limit point of points of any other bound-
ary components, and ( 2 ) W — (δ U 7) is open in S\ Operations in W
such as interior, boundary, etc., are referred to S2.

It is possible to exhaust an open Riemann surface by a countable
collection of compact approximating regions {Wn}. In fact, W can be
countably exhausted in the following modified sense:

1. δ U 7 c Wn.
2. Wn c Int Wn+1.
3. The boundary of Wn consists of a finite number of disjoint an-

alytic Jordan curves.
4. Each component of W — Wn is relatively non-compact.
5. W = U Wn .

There is no loss in generality in assuming that each Wn contains a
ζ e W, where ζ is arbitrary but fixed in advance.

Evidently δ and 7 are two border components of Wn. The remaining
border components will be denoted A(WW), βΛ(Wn), , βk{n){Wn). When
only one approximating subregion is under consideration, the notation
for these remaining border components will be shortened to βlf β2, •••,
βk{n). For convenience we define βn as
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I Extremal Properties of Harmonic Functions Defined on Approxi-
mating Regions*

2. We consider, in this and the following section, certain classes of
harmonic and analytic functions defined on an approximating region Wn.

DEFINITION. Hn(h + k) is the set of functions p, harmonic on Int
Wn U δ U 7 and satisfying

(1) p(z) = c2(p) = const, for z e γ with I dp* = 2π(h + Jc),

(2) p(?) = 0,

(3) p(z) = cx(p) for z e δ with \ dp* = -2π(h + k), and
J δ

(4) [ dp* = 0 for i = 1,2, -- ,/φO.

A and k are real numbers. When the function p is defined only on Int

Wn U δ U 7, then the integrals I dp* and! pdp* are understood
Jβi(Wn) Jβί(Wn)

as liml dp* and liml pdp*. Here {Wr

k) is an exhaustion of the sur-
k-+°°Jβi(W'}c) k-^c^Jβί(w'k)

face Int Wn and each βi{W'k) is homologous (in Wn) to A(WW). An ap-
plication of Green's formula shows that these limits are independent of
the exhaustion {W'k}. The class Hn(l) will be denoted Hn.

Principal harmonic functions pQn and pln, belonging to Hn are obtained
as harmonic extensions of functions constructed by use of linear operators
on Riemann surfaces (Sario [2]). In fact on each βi9i = 1,2, •• ,ft(n),
dPoJdn = 0 and pln = const. Hence for arbitrary Λ and fc, the function
Piikn = ^Po% + &2>iΛ belongs to the class Hn(h + fc), which is then not
empty.

3. THEOREM 1. Phkn minimizes the functional \ pdp* —

2π(h — k)c(p) among all p e Hn(h + k), where c(p) = c2(p) — cx(p).
The value of the minimum is —2π[h2c(pOn) — k2c(pln)].
The deviation of this functional from its minimum is DWn(p — phkn),

and the minimizing function is unique.

Proof. Let B be the entire border of Wn. Then by Green's for-
mula, we have

DWn(v - Vhicn) = 1 (P - Phkn)d(p - phkn)* .
JB

Since p and phkn e Hn{h + k), we conclude at once that \ (p — phkv)
Jδ+γ

d(p — phkn)* = 0. Green's formula becomes



1490 PAUL A. NICKEL

DWniV - #»*») = L PUP* + \_ Vnicndvtkn ~
Jβn Jβn

We now expand the last term and find that

L Pnjcndp* + pdptkn = h\ Pondp* + pdptn + k\_ plndp* + pdpt .
Jβn Jβn Jβn

But on βny pOn has vanishing normal derivative, and pln is constant.

S r
pdpon — \ _ plndp* ~ 0 when p e Hn(h + k). Thus we

βn hn

can infer from Green's formula that

L Pukndp* + pdptkn =h\ Pondp* - pdpt + k\ plndp* - pdpt .
Jβn Jδ+7 Jδ+γ

A direct application of the conditions (1), (3), (4) of Hn(h + k) now
yields the formula

\ - Phhndp* + pdptkn = 2π(h - k)(c2(p) - cλ

~2πh(h + k)(c2(p0n) - d(pOw))

+2πk(h + k)(c2(pln) - cλ(p1%)).

We obtain in a similar fashion

L Pnkn
] a

= ~hk\ pOndpΐn - Pindpt
Jδ+γ

= -2πhk[c2(pQn) - cx{pQn) - (c2(pln) - ^(p^))] .

Collecting contributions, we find

DWn(p - phkn) - 2π[h\c2{pQn) - ^(poJ) - k\c2{pln) - ^ ( p j

- k)(c2(p) - Cl(

Since the Dirichlet integral is nonnegative, we have that phkn minimizes
the given functional. Clearly, for any peHn(h + k) the deviation of
the functional from its minimum is DWn{p — ρhkn).

We consider now the uniqueness of the minimizing function. For
another minimizing function p', we would have a deviation of the func-
tional from the minimum equal to DWn{p' — phkn). But pf also minimizes,
so DWn(p' - Pukn) = 0. Since phkn{ζ) = p'{ζ) = 0, we see that phkn = p\
This completes the proof of Theorem 1.

4. Our interest in Theorem 1 will be with the following special
cases which we state as corollaries.
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COROLLARY 1. pOn maximizes the functional 2πc{p) — \ pdp*

among all p e Hn.

COROLLARY 2. pln minimizes the functional 2πc(p) + \_ pdp*

among all p e Hn.

COROLLARY 3. — (pOn + pln) minimizes the functional
2 Γβ7t

among all pe Hn.

COROLLARY 4. pon — pln maximizes the functional Aπc{p) — DWn(p)
among all p e Hn(0).

Each extremizing function is unique.

Corollaries 1, 2, and 3 follow immediately from Theorem 1 for

h + k = 1. As for Corollary 4, clearly pOn — pln e Hn(0). Now for any

peHn(0), Green's formula reads DWn(p) = \ _ pdp* = \ pdp*, and

Corollary 4 follows.

II. Geometric Properties of Analytic Functions Defined on Approx*
imating Regions.

5. DEFINITION. An is the class of functions F analytic on Int
Wn U δ U 7 such that

(1) F(γ) is a circle traced once in the positive direction,
(2) 12^)1 = 1,
(3) F(8) is a circle traced once in the negative direction,
(4) F is univalent on Int Wn U δ U 7.

In this definition, F(i) and F(8) are understood as oriented images of
oriented border cycles and the radii of these images are denoted ry(F)
and rb{F).

Some useful relations between the classes An and Hn are expressed
in the following theorem.

6. THEOREM 2. (a) For any FeAn, \og\F\ is of class Hn.
(b) The following analytic functions are of class An:

FOn = exp(pOw + ipo *) , (2) Fln = exp(pln + ipln*) .

The functions Fin are referred to as principal analytic functions.

Proof of (a). Evidently 2π = ( d(argF(z)) = ( dQog\F(z)\)* and
JY JY
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Condition 1 of Hn is verified. Condition 3 is checked just as easily and
(2) is apparent. As for (4), let βt be any component of the border of

Wn other than 8 or γ. Suppose that β[ ~ βi and that f ,d{\og\F\)* =
Jβi

2πk, where k is an integer. There exists a path from δ to γ which
does not meet βl But if Jc φ 0, then every path from F(8) to F(7)
meets F(β[). But F is univalent, so k = 0.

Proo/ o/ (6). We consider first the function JF1W and omit the

analogous proof for FQn. First, it is evident that 2π = 1 cίpίn = I d{axgFln)

and r 7(F) = exp c2(pln) = const. Certainly JFΊnίγ) is a circle traced once
in the positive direction, and (1) of No. 5 is satisfied. Condition 3 is
verified in a similar manner and (2) is trivial.

To verify the Condition 4, we consider the extended version of the
argument principle, and reason in a manner analogous to Ahlfors [1],
p. 203.

7. DEFINITION. The multiple-valued functions Pin are defined as
Pin = Pin + iPin However POn — Pln is single-valued, and the principal
analytic functions are expressible as Fin = expP ίw, i = 0, 1. We also fix
the following terminology: r(F) denotes the ratio rΎ(F)lrs(F) and μn(F)

denotes the complementary logarithmic area —1_ log\F(z)\d(argF(z)), a

nonnegative quantity when FeAn.

THEOREM 3. FOn maximizes 2π\ogr(F) + μn(F) among all FeAn.
Fln minimizes 2π\ogr(F) — μn(F) among all FeAn.
Pn = VFOn Fln maximizes μJJF) among all Fe An .

FoJFm maximizes Aπlogr(F) — DWn(log\F\) among all quotients of
functions in An.

Pon — Pm maximizes kπ\Re{F(z^) — F{z^)\ — DWγι{F) among all an-
alytic functions on Wn the real part of which is constant on δ,constant
on γ, and 0 at ξ. Here z2 and zx are on γ and 8 respectively.

Proof. We have \og\F0n(z)\ = pOn(z), so it follows from Corollary 1

of Theorem 1 that log| FOn \ maximizes the functional 2πc(p) - I _ pdp*

among all peHn. But according to Theorem 2, when FeAn, the
log|F(^)| e Hn. Hence FOn maximizes the functional 2πlogr(F) + μ^(F)
among all FeAn. The proof of the second part of this theorem is
analogous, and so is the proof of the third part when it is shown that
Pn = "l/jFon Fln is of class An, a fact that is proved in the appendix.

It is easily seen that log| F0JFln \ = pOn — Pm, hence according
to Corollary 4 of Theorem 1, log\F0nIFln\ maximizes 4πc(p) - DWn(p)
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among all peHn(Q). If F = G/H, where G and HeAn, then it follows

from Theorem 2 that log|G | and log \H\ e Hn, and we have \ d(log|l*Ί)* =

\ d(argF) = \ d(argG/if) = 0. Other similar calculations show that

log|F(z) I e Hn(0). Thus FJFln maximizes Aπlog r(F) - Dwβog\F\) among
all quotients of functions in An.

The extremal property of POn — Pln follows from Corollary 4 as well
when it is observed that Re(POn — Pln) = pOn — pln, and that ReFe H^{0)
when F is analytic on Wn.

The following corollary of Theorem 3 will be useful when we are
considering geometric properties of conformal maps of W.

COROLLARY. The functional r(F) is maximized, uniquely up to a
rotation, by FOn and minimized, uniquely up to a rotation, by Fln among
all FeAn.

Proof. It follows from the definition of FOn given in No. 6. that
d(argFθΛ) = dp*n, which is 0 on βn. Since μn(F) ^ 0, we have 2π log r(F) g
2ττlog r{F) + μn(F) ^ 2π log r(FOn) + μn(FOn) = 2π log r(FOn), that is, r(F)
is maximized by FOn.

Analogous reasoning shows that Fln minimizes r(F) among all Fe An.
In order to establish the uniqueness, we let r(F) = r(FOn) for some

Fe An. Then an application of Theorem 3 yields 0 < μn(F) ^ μn(FOn) ^ 0,
which means that F also maximizes the functional 2π log r(F) + μn(F)
among FeAn. But an application of the deviation formula of Theorem
1 shows that Dwβog\FIF0n\) = 0, from which it follows that F= cFQn

with I o I = 1.

III. Extremal Properties of Principal Harmonic Functions.

8. We propose in the present section, to develop for domains of
infinite connectivity, extremal theorems which will generalize the results
of § 1 for finite connectivity. An essential role is played by the

Reduction Theorem (Sario [4]).
Assume that Z and Zn are classes of functions with domains W,

an arbitrary open Riemann surface, and Wn, an exhausting subregion
of W, respectively. In addition, suppose that real-valued functionals
m and mn, defined on Z and Zn, satisfy the following conditions.

(Rl) If Wm c Wn and if fe Zn, then f\Wm e Zm .

Here Wn may be replaced by W, and Zn by Z.

(R2) If {fk} is a sequence the elements of which belong to Zn, and

if {fk} converges uniformly to feZn, then mn(fk) converges to m%(f).

(R3) m(f) = lim mn(f), for any feZ.
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(R4) There exists a function fn e Zn such that fn minimizes the
functional mn among all feZn.

(R5) For k < h, and feZh, mk(f) ^ mh{f) .

(R6) The family {fn;fn minimizes mn among feZn} is a normal
family, and the limit functions belong to Z.

Then any limit function f — lim^^fn minimizes m among all feZ,
and value of minimum is m(f) = Iimίl_+Oomίl(/Λ).

The proof of the reduction theorem is established by selecting an
exhaustion of W, and can be carried out for a bordered surface W as
well, as soon as an exhaustion is known to exist.

9. Let W be an open planar bordered Riemann surface, {Wn} an
exhausting set, δ and y separated boundary components, all as described
is no. 1.

LEMMA 1. The families {pOn} and {pln} are normal.

Proof. If {FQn} ({Fln}) is a normal family, then so is {pQn} ({pl7l}).
Hence it suffices to show that for every compact set S, there exist a
constant M and and integer N such that \FOn(z)\ < M(\Fln(z)\ < M) for
all n > N and all ze S. Let S be any compact subset of W and choose
n sufficiently large so that S a Wn. For any ze S and Wp c Wn, since
FOp(y) is the outer contour of an image annulus we have 2π log| FOp(z)/
rδ(FOp) I g 2π log (r(FOp)) + μn(F0p). But according to Theorem 3, the right
hand side is bounded by 2π\og(r(F0n)). We now recall that \FOp(ζ)\ — 1>
that is rδ(FOp) < 1. Hence \FOp(z)\ is bounded for all zeS and for all
p ^ n, and the family {FOn} is normal.

As for {Fln}, we have

2π log| Fln{z)jrB{Fln) \ ̂  2π log (r(Fln)) ^ 2π log (r(FOn)) .

The second inequality follows from the Corollary of Theorem 3. We
conclude that {Fln} is bounded on any compact set S and is normal. This
completes the proof of Lemma 1.

An immediate consequence of Lemma 1 is that the family {phΊc^} is
normal.

10 LEMMA 2. If n < n', then the inequality

\_ pdp* ^ I pdp*

holds for all p e Hn,(h + k).

Proof. We apply the first form of Green's formula to the region



ON EXTREMAL PROPERTIES FOR ANNULAR MAPPINGS 1495

Wn, - Wn and find

(_ Pdp* - (_ pdp* = DWn,_Wn(p) s 0 .
Jβn' Jβn

DEFINITION. H(h + k) is the class of functions p, harmonic on ίV,
satisfying

1 l ) p(z) = c2(p) = const, for zey w i th i dp* = 2π(h + ft) ,

( 2 ) p(?) = 0 ,

( 3 ) ^(z) = d ( p ) = const, for z e 8 w i t h I dp* = —2ττ(fe + ft), and
Jθ

(4) I dp* = 0 where σ is any cycle which is homeomorphic to a

circle and which does not separate δ and 7. A cycle σ is said to separate
δ and γ if every path from δ to γ intersects σ. Let H denote the class

DEFINITION. For any p e H(h + k), \_pdp* is understood to be

lim _ pdp*. The existence of this limit is guaranteed by the monotoni-

city condition of Lemma 2.

LEMMA 3. If the sequence {pn; pn e Hn(h + k)} converges on compact
subsets to p', then p' e H(h + k).

We recall that a sequence {fn} converges on compact sets if for every
compact set S, there exists an N such that {/»; n ^ N} converges uni-
formly on S.

Proof. The convergence pn —> p' is uniform on compact sets. The
conditions (1), (2), and (3) for H(h + k) can therefore be inferred from
those of Hn(h + k). Let σ be any cycle which does not separate 8 and
γ. Then there exists n such that the compact σ c: Wn, and we have

where the β\ are homologous to components of the border of Wn (Ahlfors
and Sario [1]). We embed Wn in the complex plane with γ as an outer
boundary, and fill in the ''holes'' whose boundaries are the βfs. Now
o — bλ8 = ΘA, and every path from 8 to 7 meets σ. This is a contradic-
tion, unless bλ = 0.

Using the uniform convergence of {pn} along with Green's theorem,
we obtain

( dp'* = limί dp: - limί dp: = limΣflJ ,dpt = 0 .
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DEFINITION. A harmonic function phk is defined as the limit of any
sequence of the normal family {phkn} which converges on compact sets.

THEOREM 4. phk minimizes the functional \__pdp* — 2π(h — k)c(p)

among all p e H(h + k).
The minimum value of this functional is —2π(h2c(p0) — fc2c(pa)).
The deviation of this functional from its minimum value is

D(p — phk) and the minimizing function is unique.

l l There exists a subsequence [phkn] of {phkn} which converges to
phk on compact sets and satisfies limn/_»oβpΛfcn, = hp0 + kpx where pζ =
limn/_oopiw., i = 0, 1. The uniqueness of Theorem 4 then allows us to as-
sume that phk = hpQ + kpλ for all h and k.

Proof. That phk minimizes and gives the functional the value
—2π(h2c(p0) — k2c{pλ)) will follow from Theorem 1 if we can verify
(Rl) — (R6) of the reduction theorem. The functionals mn and m are

taken to be \ pdp* — 2π(h — k)c(p) and \jpdp* — 2π(h — k)c(p) respec-

tively, while the classes Zn and Z are HJJh + k) and H(h + k).

If p e H(h + k), then p\Wn satisfies the Conditions 1,2, and 3 for

Hn(h + k). Since no βi(Wn) separates δ and γ, \ dp\w* = 0 and (4)
Jβi(wn)

 n

is satisfied. Hence p\WneHn(h + k) and (Rl) is verified. The uniform

convergence of fk to / makes (R2) evident, and the functional I pdp* —

2π{h — k)c(p) is defined as limπ_oo\_ pdp* — 2π(h — k)c(p), as required by

(E8). k

Theorem 1 shows that (R4) is satisfied, and Lemma 2 of no. 10 shows
the same for (R5). That the family {phkn} as defined in no. 2 is
normal, follows from Lemma 1 of no. 9, and that the limiting functions
belong to H(h + k) is then a consequence of Lemma 3 of no. 10. Thus
by the reduction theorem, the limit function, phk, minimizes the limit
functional among p e H(h + k) and the minimum value of the limit
functional is the limit of minimum values.

12. In order to establish the deviation formula, we first denote
the functional of Theorem 1 by ψn and consider its value on the func-
tion pe — Phk + e (p — phk). Upon expanding, we find

- 2π(h - k)c{phk) + ax{h)e

(p - phk)d(p - phk)* ,
β
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where for each n, this is a polynomial in ε, and ajji) is the coefficient
of the ε term. But the last integral is

_ (p ~ Phk)d(p - VuicT = (_ (P - Phk)d(p - phk)* = Dw(p - ph7c) .

The first equality follows from the fact that p and phh both belong to
H(h + fc). Therefore, in the sense of limits, we write

r
UP - Pnk)d(p - phkY = D(p - phk) ,
Jβ

where D is the integral over the entire bordered surface W. In a
similar fashion, we find

- 2π(h - k)c(phk) = D(phk) - 4πkc(phk) .

By an earlier part of this theorem, the left hand side of equation (3)
is finite. Thus we have that D{phk) < oo.

We assume that D(p — pk) is finite. By the triangle inequlity for

the Dirichlet integral (Courant [1]), D{p), and consequently \j9cίp* are
Jβ

both finite. Now in equation (2), with ε — 1, consider the limit as
n—>oo. The limit of every term, except a^n), exists and is finite.
Hence the same can be said of lim^^ajji). But ψ(ps) = Hm ôo'ψvίPε)
has, by part (1) of our theorem, a relative minimum for ε = 0. There-
fore, lim^^a^n) = 0, and the deviation formula ψ(p) = ψ(phk) + D(p —
phk) results when ε = 1 is substituted into equation (2) after taking
limits.

When D(p — phk) = oo, this formula holds in the sense that ψ(p) = co
as well. This completes the proof of Theorem 4.

IV Extremal and Geometric Properties of Principal Analytic Func*
tions

Extremal properties for harmonic functions defined on a surface of
finite connectivity were used in § 2 to establish extremal properties of
analytic functions, also defined on a surface of finite connectivity. In
the present section, we exploit the extremal properties of harmonic
functions, now defined on a surface of infinite connectivity, for the
purpose of establishing both extremal and geometric properties of analytic
functions.

13. A competing class of analytic functions is defined as follows.

DEFINITION. A is the class of analytic functions on W such that
(1) F(γ) is a circle traced once in the posititive direction, (2) \F(ζ)\ =
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1, (3) F(S) is a circle traced once in the negative direction, and (4) F
is univalent on W.

THEOREM 5. For any Fe A, \og\F\ e H. Furthermore F{ = exρ(P;
+ ip*)eA, i = 0, l .

No ambiguity will result in referring also to Fo and Fx as principal
analytic functions.

Proof. For any FeA, consider log |F | , which clearly satisfies (l)-(3)

of the definition of H in no. 10. Then let ί d(\og\F\)* Φ 0 for σ not
Jσ

separating δ and γ. If 1 d(log\F\)* = 2πk, k an integer, then F(σ)

separates F(S) and F(y). But F is univalent on W and we have the
contradiction that σ separates δ and y. This means that \og\F\eH.

Let Fi = exp(Pi + ipf), i = 0,1. Conditions 1-3 for A are easily
verified. An application of the extended argument principle to any
exhausting subregion Wn shows that F{ is univalent on δ (J 7, when
univalence is established at interior points. For interior points of W,
Fi can be represented as exp(p< + ipf) = lim n_exp(p^ + ipfn) = l im^^F^.
So each Ft is univalent by Theorem 2 and the well-known Hurwitz
theorem.

14. The following five theorems are concerned with analytic func-
tions constructed from the harmonic functions p0 and puw hich are
uniquely defined by Theorem 4.

DEFINITION. F is an annular radial (circular) slit mapping of W
provided that F( W) is an annulus minus a point set each component of
which is a radial (circular) slit or point. Let {w; r5(F{) ^ \w\ S
ry(Fi)} - Fi(W) be denoted by Si9 i = 0 ,1 .

DEFINITION. For a surface of infinite connectivity, the comple-
mentary logarithmic area μ(F) is defined as limn_»ooμΛ(2<7) for any FeA.
That this limit is defined independently of an exhaustion follows from
Theorem 5 and Lemma 2.

THEOREM 6. Fo = exp(p0 + ίPo*) maximizes 2πlog(r(F)) + μ(F)
among all FeA.

The value of the maximum is 2π\og(r(F0)).
The deviation from the maximum is D(log\FIF0\), and the maxi-

mizing function is unique up to a rotation.
The 2-dimensional Lebesgue measure of the point set So is 0.
Fo is an annular radial-slit mapping.



ON EXTREMAL PROPERTIES FOR ANNULAR MAPPINGS 1499

Proof. We apply Theorem 4 with h = 1, k = 0 and obtain that

log|jF0| minimizes ι_ pdp* — 2πc(p) among all p e H. According to The-

orem 5, we may use Theorem 4 on logarithms of functions in A as well,
that is, Fo maximizes the functional 2πlog(r(F)) + μ(F) among all FeA,
the maximum value of this functional is 2π log(r(F0)), and the deviation
from the maximum is D(\og\FIFQ\).

As for the 2-dimensional Lebesgue measure of S09 consider the
annulus

\w\ ^ ry(F0)}

and set t — log w. The transformation mapping w into log w is denoted
L, and the image of {w; rδ(F0) ^ \w\ ^ ry(F0)} under L is called R. Now
it is easily seen that

LS0=f\[CΛ(L(F0(Wn)))],
ΐ = l

where CR is understood to mean complement with respect to R. L(F0( Wn))
is compact and closed in R, and this means that CR[L(FQ(Wn))] is open
and measurable. Hence, LS0, a countable intersection of measurable
sets, is measurable. Its measure M is then given by

where μn(F0) is defined in no. 7. But according to an earlier part of
this theorem, the term on the right is 0. When we observe that L>
defined on the cut annulus, preserves sets of measure zero, we conclude
that the 2-dimensional Lebesgue measure of So is zero.

Suppose that the complement, with respect to {w; r8(FQ) ^ | w \ ^
ry(F0)}, of F^WO is a point set, the components of which are not all
radial slits or points. The full annulus

{w;rδ(F0)^ \w\ ^ ry(F0)}

minus such a component, denoted η, is called Wo. We embed Wo in the
Riemann sphere S2 and consider the simply connected point set S2 — rjf

which can be mapped conformally onto the complement of a unit disc.
Let E be this conformal mapping, and denote by γ" and δ" the sets
E(80) and E(Ύ0), where δ0 = F0(S) and γ0 = F0(v). Now E(W0) is of finite
connectivity, so we can apply Theorem 2 to construct a radial-slit mapping
φ of E(W0) onto an annulus, minus one radial slit, with inner boundary
φ(δ") and outer boundary φ(y"). φ is normalized by \φoEoF0(ζ)\ = 1,
and belongs to An for E(WQ). We then apply the corollary of Theorem
3 to φ and find that 2τrlog(r(^>)) > 2π\og(r(E-1)) = 2ττlog(r(F0)). Then
the map <poEoF0, where E and φ are properly restricted, belongs to A.
But 27rlog(r(^oJ5ΌF0)) == 2π log(r(φ)) > 2π\og(r(F0)). This is a contradίc-
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tion, for according to an earlier part of this theorem Fo, up to a rota-
tion, uniquely maximizes the functional 2πΊog (r(F0)) in A. This completes
the proof of Theorem 6.

COROLLARY. The principal analytic function Fo maximizes the
functional r(F) among all FeA.

Proof. The maximum value of the functional in Theorem 6 is 2π
log(r(F0)), that is JK(F0)= 0. The proof is complete when we observe
that μ(F) is nonnegative f or all FeA.

THEOREM 7. i^^expfe + ip*) minimizes 2π\og(r(F)) — μ{F)
among all FeA.

The value of the minimum is 2π log ( r ^ ) ) .
The deviation from the minimum is DiloglF/F^), and the mini-

mizing function is unique up to a rotation.
The 2-dimensional Lebesgue measure of the point set Sλ is zero.
Fλ is an annular circular-slit mapping.
The proof is analogous to that of Theorem 6 and uses h = 0, k = 1.

COROLLARY. The 'principal analytic function Fx minimizes the
functional r(F) among all FeA.

THEOREM 8. P-\/F0.Fλ maximizes μ{F) among all FeA.

The value of the maximum is μ{P).
The deviation from the maximum is D(log\FIP\), and the maxi-

mizing function is unique up to a rotation.

The proof uses h = 1/2, k = 1/2.

THEOREM 9. Q = FίiIF1 maximizes 4ττlog(r(F)) — ̂ (loglFI) among
all quotients of functions in A.

The value of the maximum is 2π log (r(Q)).
The deviation from the maximum is D(}og\FjQ\).

Proof. When the condition h = 1, k — — 1 is substituted into The-
orem 4, it is easily seen that the technique of Theorem 3 will establish
Theorem 9.

Consider the multiple-valued functions Po = p0 + ipt and P1 = φx +
ip*. The difference of these functions has zero flux around any cycle
of W and is single-valued.

THEOREM 10, P<ί~Pι maximizes
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4π[Re(F(z2) - Ffo))] - D(F)

among all analytic functions on W the real part of which is constant
on δ, constant on γ, and 0 at ξ. Here zlf and z2 are on y and 8 re-
spectively.

The value of the maximum is —2πRe[(P0 — PJfe) — (Po — Pi)(Zi)]
The deviation from the maximum is D(F — (Po — PO).

The proof again applies Theorem 4, with h = 1 and k = — 1, as well
as the observation that Re(PQ — Px) — p0 — Pi and ReFe H when F is
analytic on W.

V. The Existence of Distinct Principal Analytic Functions*

15. We consider the problem of determining conditions under which
there exist two different principal analytic functions on the planar
bordered Riemann surface W of no. 1. The principal analytic functions
under consideration are defined in no. 13, and have properties described
in Theorems 5, 6, and 7 of no. 14. The following- concepts are dealt
with in Ahlfors and Sario [1].

DEFINITION. TWO compact sets in the plane, each with connected
complement, are Said to be equivalent if their complements are con-
formally equivalent.

For the remainder of this chapter, we let E be a compact plane set
with connected complement.

THEOREM (Ahlfors and Sario [1]). The complement of E is of class
OAD tf and only if every set which is equivalent to E has 2-dimensional
Lebesgue measure 0.

DEFINITION. Let U be any open set which contains Ey and suppose
that a function F is analytic on U — E. E is said to be a removable
singularity for F if there exists analytic extension of F to {7.

THEOREM (Ahlfors and Sario [1]). E is a removable singularity for
all functions of class AD in a neighborhood of E if and only if the
complement of E {with respect to the Riemann sphere) is of class 0AZ?.

16* DEFINITION. A planar bordered Riemann surface W as de-
scribed in no. 1 is said to have rigid radius when r(F) is constant for
every F in the class A of no. 13.

THEOREM 11, Let FQ and Fx be the principal analytic functions
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belonging to A. The surface W has rigid radius if and only if Fo =
cFu where \c\ = 1.

Proof. If W has rigid radius, then according to Theorems 6 and
7, both Fo and Fx minimize the same functional. Hence Fo = cFu with
\c\ = 1, On the other hand, if F o = cFu we conclude from the corollaries
of Theorems 6 and 7 that Fo maximizes, and Fx minimizes the functional
r{F) among all Fe A. Because | c | = 1, we have that the radius is rigid.

6 AD-Removability

17 Our next condition for distinguishing FQ from Fx is most natu-
rally stated if we take the bordered Riemann surface W to be a plane
region, with γ and S as outer and inner boundaries respectively. In
addition, we let Wx denote the plane point set bounded by γ and δ, with
E the difference Wx - W.

THEOREM 12. Let Fo and F1 be the principal analytic functions
of no. IS. Then Fo = cFlf with \c\ = 1, if and only if S2 — EeOAD.

Sufficiency. Fo and Fx map a neighborhood U of E onto an open
set of finite area and are of class AD in this neighborhood of E. Then
according to no. 15, the principal analytic functions may be extended to
all of W. If the extension Ft of F{ satisfies Fi(z0) = w0 for some w0

with rs(Fi) < \wo\ < rγ(F,), then

( H 9
vFi - Wo h+yFi - Wo

Since F^ A, the second integral is 1 and the extensions are univalent.
This means that Fx o Fόι is a conformal mapping of a full closed annulus,
and in fact that r(F0) is equal to r{FΎ). We have FQ = cF l y with |c | = 1,
as a consequence of Theorem 11.

Necessity. If S2 — E is not of class 0ΛD, then, according to no. 15,
there exists a one to one conformal mapping with positive complementary
area. Such a mapping will have positive complimentary logarithmic area
as well. Therefore, according to Theorem 8, μ(]/F0 Fx) is positive, and
Theorem 6 guarantees that FQ Φ cFx.

APPENDIX

An argument of Ahlfors and Beurling [1] (p. I l l ) , which will be
referred to and not repeated, is crucial in the proof of:

18. THEOREM 11. The analytic function Pn = VFOn'Fln is of
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class An.

Proof. Verification of the Conditions 1, 2, and 3 for An of no. 5
is immediate. Only (4) remains to be checked. If log Fln and log FOn

are considered in the roles of q and p of Ahlfors and Beurling [1],
p. I l l , then log VFOn-Fln may be considered in the role of l(q + p).
We observe that cZ(log Fln)ld(\og FOn) is well defined on the approximating
Wn. Hence, by the technique of Ahlfors and Beurling already cited, we
may conclude that Re(d log Fln\d log FOn) is of constant sign with no zeros
in Wn. This implies that the image of each contour β{ is a convex
curve, and each image is traced once as each β{ is traced once. This
also implies that each of the curves F(βτ) is traced in the same direc-
tion, and this direction will be determined now for one F{β%).

We observe that for each i, Pn(βχ) is a compact set, and we may
then choose w{ and w\ so that w% is that point of Pn{βi) which is closest
to Pn(γ) and w\ is that point of Pn(y) which is closest to Pn{β%). We
now assume that the βt are indexed so that mm{d(wi9 w'{)] i = 1, 2, •• ,
k(n)} is d(wly w[) where d(w, w') is the usual Euclidean distance from w
to w'. That is to say, Pn(A) is a s close to Pn(γ) as any of Pn(/92), •• ,
Pn(βk(n)) The line segment Γ joining w1 to w[ is a univalence path for
Pn in the sense that each point of Γ is taken exactly once by a point
of Wn. Clearly Pn is one to one on PΰιFy and we may conclude that
βλ and PW(A) are similarly oriented. The reasoning in the paragraph above
then establishes that each Pn(βi) is oriented as is Pn(A), and in fact, for
each ί we have that the winding number for points inside Pn{βτ) is — 1.

An application of the argument principle is now all that is needed
to show that Pn is univalent on Int Wn U δ (J y.
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PRIMAL CLUSTERS OF TWO-ELEMENT ALGEBRAS

EDWARD S. O 'KEEFE

1. Introduction. The development of a structure theory for uni-
versal algebras which subsumes the familiar structure theory of Boolean
and Post algebras and p-ήngs (Foster, [l]-[4]) has focused attention on
certain classes of functionally complete universal algebras, called primal
clusters. A primal cluster is a set of primal algebras in which every
finite subset is strictly independent (see definitions § 2, below). Each
such cluster determines a unique subdirect factorization for each algebra
satisfying all the identities common to some finite subset of the cluster.
In other words, every function over a direct product of strictly inde-
pendent primal algebras, expressible in terms of the algebras' operations,
has a decomposition and reconstruction analogous both to the Boolean
theory and the Fourier transform theory. In order to broaden the domain
of application of the generalized theory, we must find strictly independent
sets of primal algebras.

The purpose of this paper is to present the theory of independence
of primal algebras in a new dimension. Simple necessary and sufficient
conditions for strict independence of primal algebras of one primitive
operation, regardless of the number of elements, have been obtained [5]-
We now give necessary and sufficient conditions for strict independence
of certain two-element primal algebras of the same species, regardless
of the number of primitive operations.

2 Basic notions, the φ'condititiotu The following definitions a*e
stated for easy reference.

Let SI = {A, ol9 o2, •) be a universal algebra.

2.1. The species Sp = [nly n2y •] of 21 is the sequence of ranks of
the primitive operations ô  of 21, where n{ is the rank of o<.

2.2. An expression φ(ξlf ••-,!*) of species Sp is a finite set of one
or more indeterminate symbols ξi9 composed by operation-symbols of Sp'

2.3. A strict yi-function is an expression interpreted in algebra 2ί.
The notation φ = χ(2t) means that the strict function represented by Φ
in algebra §ί is the same as that for χ.

2.4. 21 is a primal algebra if every transformation oίAx Ax-- x A
into A can be represented by a strict ^-function, and Sp is άenumerable.
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2.5. A finite set of algebras {%, 2I2, , 2ίp}, all of the same species
Sp, is strictly independent if each given set of strict functions Φι has
a single expression ψ which reduces to the given function φ{ in the
algebra 3^; i.e., ψ = Φii^d.

2.6. SI is a primal cluster if SI is a set of primal algebras and every
finite subset of 21 is strictly independent. The totality of pairwise non-
isomorphic primal algebras of species [s] constitutes a primal cluster [5],
Various other categories of primal clusters are known, largely of species
[2, 1].

The φ-condition is analogous to the factorization of functions of real
numbers. It is simply that any strict function may be represented by
any expression operating on some set of strict functions.

2.7. The φ-condition. F o r e v e r y s t r i c t 2 I - f u n c t i o n , Θ{ξ,Ύ], •••,£),
and every strict 3I-function, tc(ξu * , | m ) , provided t h a t no variable | 4

occurs twice in /c, there exist strict 2I-functions, ψλ(ξ, η, ., ξ), • ••,
ψm(ξ,V, •••,?), such t h a t

(2.1) Kfaiξ,)?,...,?),. , ψm(ξ, η, , ?)) = θ(ξ, η, , ζ) .

Formerly primal algebras were defined to be finite. However, this
property is now derived from the denumerability of Sp.

THEOREM 2.8. Every primal algebra is finite.

Proof. Let 31 = ζA, ol9 , ow, •> be a primal algebra. The two-
valued functions on any infinite set have a larger cardinal number than
the set of expressions made of a denumerable set of operations. There-
fore, the fact that the functions on A x A to A are represented by ex-
pressions in the operations of A means that A is not infinite.

From [5], we require the following basic results.

THEOREM 2.9. In any primal algebra in which the primitive
operations are onto transformations, the φ-condition holds.

THEOREM 2.10. Let SI = (A, o, •) and SI = (B, o, •) be two non-

isomorphic primal algebras of the same species, Sp. Then there exists
a set of unary expressions {φj = {φ19 , φp} of species Sp such that

(2.2) & = & = . . . = φp(%)

and such that every unary ^-function is equivalent modulo 33 to one
of the φlf φp.
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THEOREM 2.11. Let {2 ,̂ •• ,2In} be a set of universal algebras of
species Sp, in which every pair of algebras is strictly independent.
If the φ-condition holds in each algebra, the set is strictly independent.

3 The two-element independence theorem* Our main result is

THEOREM 3.1. Every set of primal algebras is a primal cluster

if:
( i ) every algebra in the set has exactly two elements,
(ii) no two algebras are isomorphic,
(iii) no primitive operation is constant,
(iv) all algebras in the set are in the same species, Sp = [nlf •• ,

nm].
The proof of Theorem 3.1 is preceded by three lemmas.

LEMMA 3.2. Let 33 = ({βu β2}, o, •) be a two-element primal
algebra with no constant primitive operations. Every expression φ{ξ19

•••>£«)> i n which no variable occurs twice may be changed, modulo
algebra 33, to any given function χ(ξ) by replacing some variable by a
properly chosen strict $β-function ψ(ξ), and all others by constant strict
33-functions.

Proof. If the expression φ(ξu •••,£„) has but one operation-symbol
o{, then, since no operation-symbol represents a constant, there are con-
stants Si and 7ί such that

( 8 1 ) oi(δ1,-- ,δnt) =

We alter δx to ylf δ2 to y2, etc. until the function changes value. Some
jth argument must give the change from χ(βx) to χ(β2). We choose the
expression ψ(ξ) so that

(3.2) f(ft) = Ύj

O..(%, , 7j-u ψ{βk), δy+i, , Sni) = χ{βk) , (k = 1, 2) .

Since there are but two elements in the algebra S3, χ is now completely
represented

(3.3) 0,(7,, , 7 ^ , ψ(ξ), Sj+1, , Snt) = χ(ξ) .

On the other hand, let φ(ξ19 , ξn) be composed of m operation-symbols.
Assume that the theorem holds for all expressions with fewer than πi
operation-symbols, φ is a set of expressions Φι, ,φnι composed by
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primitive operations o3: φ = Ojfa, , φni).
m operation-symbols, so by assumption,

φ19 , φn. have fewer than

(φk =

(3.4)

for fc =

, φ n ι —

where all variables but one have been replaced by constants. But,
obviously, in φk, k Φ j , the last variable may also be replaced by a con-
stant, since a constant result is desired and is given by either value of
the variable. This leaves only one variable in φy; but with these replace-
ments

(3.5) φ(φu •• ,φWi) = χ( |)

and the proof is complete.

LEMMA 3.3. If in two primal algebras 21 and 33, 31 satisfies the
φ-condition, then, for every β e B and every a{ξ), there is an expression
Π(ξ) such that

*«-(?£.
Proof. Modulo 33, there must exist expressions for constants in B.

Therefore, letting tcβ{ξ) — /S(93), replace each occurrence of ξ in K by a
variable from the set ξ19 •••,£:*, so that in κβ(ξl9 •• , Q , no variable
occurs more than once. Applying the φ-condition to κβ{ξl9 •••,!,) with
respect to A, there ψlf -- ,ψp such that

(3.7) κβ(ψ19 •• ,ψJ,) = α(f)(2ϊ).

By Theorem 2.10, there exists a set of expressions {φτ} with

(3.8) φ< - ^(21) and φλ = φ2 = . - φp(33) .

Then

(3.9) fcβ(φlf . . .

by (3.7), but

(3.10) fcβ(φly , φp) =

LEMMA 3.4. Let 21 = (A, ou , om) 6β α primal algebra of species
Sp in which every primitive operation Oi is a transformation onto A.
Let 33 be a two-element primal algebra of the some species Sp, with
no constant primitive operations. Then if 21 and 93 are not isomorphic,
they are strictly independent.
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Proof. The operations of S3 are transformations onto B, since they
are non-constant and B has only two elements. Moreover, S3 is primal.
Therefore Theorem 2.9 applies; the φ-condition holds in algebra S3. SI
is also primal with the same kind of primitive operations; hence, by
Theorem 2.9, the φ-condition holds for 21 too.

Since 21 is primal, there exists an expression, Σ{ξ, ξ), and an ele-
ment o e A such that

(3 11) m °) = ξ '
( 3 Π ) Σ(o, ξ) = ς.

Let p be the number of occurrences of ξ in Σ and q the number of
occurrences of ζ. Replace each occurrence of ξ or ζ by a different
variable from the set (ξlf ••,£*) or (ζlf * ,f f f) respectively. Let the
resulting expression be denoted Σ(ξu •••,£>, ζ19 •••,?«). By Lemma 3.2,
there exist a strict 33-function ψ3-(ξ) and constant S3-functions such t h a t

(3.12) Σ(y19 , 7j-lf ψ,(ζ), βs+1, , βp+g) - r(S3) .

Suppose j g p, then by Theorem 2.10, there are φi(ζ) such that

/0(2ί) (i = l, . . . , p )

(3.13) φ4 =
(») i -

and by Lemma 3.3, <&(£) such that

= ίέ(2ί) (i = p + 1, , V + q)
{ U ( » ) ( i = P + l, ••-,» + ? ) .

Thus,

(2X0, ξ) = |(2I)
<8.i5) H4,,. , φ , + f ) = | 2 ( y i f ^^>; ̂ _ i f t ί ( r ) ; βj^ m^>βp+q) = m

An exactly similar argument shows the construction if p < j . There-
fore, it is always possible to find an expression χ such that

and the two algebras are strictly independent by Definition 2.5.
We now return to the proof of Theorem 3.1.

Proof. Each algebra is primal, and every primitive operation is an
onto transformation because none is constant and each algebra has but
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two elements. Therefore, by Theorem 2.9, the φ-condition holds in each
algebra. Moreover, by Lemma 3.4, each pair of algebras is independent.
Therefore, by Theorem 2.11, every finite subset of {%u •••} is indepen-
dent, and {Six, , 2IW, •} is a primal cluster.
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APPLICATIONS OF THE TOPOLOGICAL METHOD OF

WAZEWSKI TO CERTAIN PROBLEMS OF

ASYMPTOTIC BEHAVIOR IN ORDINARY

DIFFERENTIAL EQUATIONS

NELSON ONUCHIC

Introduction. The main objective of this paper is to present some
results concerning the asymptotic behavior of the integrals of some
systems of ordinary differential equations.

As Wazewski's theorem, used in our work, is not very well known,
we state it here, giving first some definitions and notations.

HYPOTHESIS H. (a) The real-valued functions /*(*,#!,•••, xn),
ί = 1, , n, of the real variables t,x19 , xn, are continuous in an
open set Ω c Rn+1.

(b) Through every point of Ω passes only one integral of the
.system

and (ί, x) e Ω .

Let ω be an open set of Rn+1, ω c Ω and let us denote by B(ω, Ω)
the boundary of ω in Ω.

Let Po: (t0, x0) e Ω. We write I(t, Po) = (ί, x(t, Po)), where x(t, Po) is
the integral of the system x = f(t, x) passing through the point Po.

Let ((x(P0), β(P0)) be the maximal open interval in which the integral
passing through Po exists. We write

I(Δ, Po) = {(t, x(t, Po)) I t e Δ\

for every set A contained in (cc(P0)f /S(P0)).
We say that the point Po: (tQ, x0) e B(ω, Ω) is a point of egress from

ω (with respect to the system x — f(t, x) and the set Ω) if there exists
a positive number δ such that I([t0 — δ, t0), Po) c ω; Po is a point of
strict egress from ω if Po is a point of egress and if there exists a
positive number δ such that I((tQ, t0 + δ], Po) c Ω — ω. The set of all
points of egress (strict egress) is denoted by S(S*).

If A c B are any two sets of a topological space and K: B -> A is

Received November 28, 1960.
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a continuous mapping from B onto A such that K{P) = P for every
P e A, then K is said to be a retraction from B into A and A a
retract of J3.

THEOREM OF WAZEWSKI. Suppose that the system x = f(t, %) and
the open sets ω c Ω c Rn+ι satisfy the following hypotheses:

(1) Hypothesis H.
(2) S=S*.
(3) There exists a set Z c ω u S such that Z f] S is a retract of

S but is not a retract of Z.

Then there is at least one point Po: (t0, x0) e Z — S such that I(t, Po)
c ω for every t0 <L t < β(P0).

The theorem of Wazewski [6, Theoreme 1, p. 299] is actually more
general than the one stated above.

If fi(t, x19 , xn), i = 1, , n, are complex-valued functions of the
real variable t and of the complex variables x19 , xn, the ^-dimensional
complex system x = f(t, x) can be considered as a 2^-dimensional real
system, so that the theorem of Wazewski is also extensible, in a
natural way, to complex systems [5, p. 19. § 1 and p. 21, § 2].

The most difficult part in the applications of the method of Wazewski
is, in general, to verify that S = S*. To accomplish this Wazewski
introduced the concept of a regular polyfacial set [6, § 14 p. 307 and
§ 15, p. 309]. However the distinction established by Wazewski between
positive and negative faces has certain inconveniences. In some appli-
cations of the method of Wazewski there appear sets ω such that S = S *
but whose faces are only "almost positive'' and "almost negative"..
We thus have to work sometimes with sets ω that are similar, in some sense,
to the regular polyfacial sets and that satisfy the condition S = S*.

In the first part of our work we give a generalization of polyfacial
regular sets eliminating the distinction between positive and negative
faces and such that the main theorem concerning the polyfacial regular
sets [6, Theoreme 5, p. 310] remains valid. We observe that the sets
ω considered in Z. Szmydtόwna's paper [5, §4, Theoreme 1, p. 24]\
in our Theorem II—1 and in Barbalat's paper [1, Theoreme 1, p. 303;
Theoreme 2, p. 305] are generalized regular polyfacial sets, in our
sense, but are not regular polyfacial sets.

Szmydtόwna [5, Corollaire 1-Remarque 2, p. 30] proves a theorem

1 Szmydtόwna's Theorem 1 is false. We observed that the proof is wrong because
the statement: "La frontiere de ω touchant celle de Ω exclusivement sur le plan t — °°
•••" [5, p. 28] is false.

J. Lewowics [3], developing a counter-example suggested by J. L. Massera, has shown
that the theorem is actually false. Nevertheless, Theorems 2 and 3 deduced from Theorem
1 are correct because, in the particular case of linear systems x = A(t)x, with A(t) defined
for T ^ ί < oo, the solutions are defined for all T ^ t < °°.
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which generalizes a theorem of Perron. In part II of our work (Theo-
rem II-l) we obtain the same conclusion but starting from hypotheses
different from those of Szmydtόwna.

Note2. Our Theorem II-l improves a result of N. I. Gavrilov. I.
M. Rapoport in his book ' O n some asymptotic methods in the theory
of differential equations'\ Kiev (1954) has also studied problems of this
type. For some reference to their work to see "Forty years of Soviet
Mathematics'', Moscow (1959), Vol. i., pp. 520-521.

Our Theorem Π-2 follows the same line of ideas.
Theorem Π-3, due to Professor J. L. Massera, shows that in the

case n = 2 the asymptotic behavior can be described more completely.
Consider two systems

(1) V = A(t)y

(2) x = A(t)x + g(t, x)

where A(t) is a continuous matrix for t Ξ> T and g(t, x) a continuous
vector-function in Ω = [T, oo) x R2n.

Suppose that g(t, x) satisfies some condition ensuring the uniqueness
of the solution through each point Po e Ω and that all solutions are
defined for T ^ t < oo. We say that (1) and (2) are asymptotically
equivalent if there exists a homeomorphism φ from the plane t = T
onto itself such that if Qo = φ(P0) then lim [x(t, Po) - y(t, Qo)] = 0 [4,
Cap. IX, § 4, p. 634].

In part III of our work the main result is the establishment of a
condition that implies the asymptotic equivalence between two linear
systems (Theorem III-3).

The author is deeply indebted to Professor J. L. Massera for his
constant guidance and invaluable help during the preparatation of this
paper, the result of work done at the Instituto de Matematica y
Estadίstica, Montevideo, Uruguay

PART I

Let the real-valued functions

f%(t,xlf •••,&„), i = 1, •••,*& ,

of real variables t, xx , xn belong to Cp, p ^ 1, on an open set Ω c
Rn+1, i.e., all partial derivatives

| ί ί — (Po + A + + Pn = k £ p)

2 The information given in this Note is due to the referee. We have not had
access to the above works. We are indebted to him for this.
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exist and are continuous on Ω.
Consider the differential system

(I) *=f(t,x)

where

with (t, a?) e β.
Let g(t, x) be a real-valued function belonging to Cp+1 on Ω, let

-Po (ίo, Xo) e 42 and let α(£) be the integral of system (I) passing'through
the point Po. We set φ(t) = #(£, »(ί)); since /(£, α) e Cp and #(«, a?) e Cp+1

it follows ?>(t) 6 Cp+1 on (α(P0), /5(P0)).
The gth derivative, q ^ p + 1, of ^(ί, #) at the point Po: (tQ, x0) with

respect to the system (I), is by definition

and is denoted by [Dfag(P)]PQ .

Let Hi(P) — Hi{t, x), i — 1, , m, be functions 6 Cp+1 on the open
set Ω c Rn+1.

Let

ω = {P e β I JSi(P) < 0, i = 1, , m}

Λ = {Pe 12 I J3i(P) - 0, H,{P) ^ 0, i = 1, . , m}

The Γ^ are called faces of α).
Such a set o) will be called a generalized regular polyfacial set

relative to (I) if, for each i — 1, , m and each Po: (ί0, aj0) 6 Γf, the
following alternative holds:

(1) The smallest index q ^ p + 1 such that [Dq^Hx(P)]PQ Φ 0 is
odd and the corresponding derivative is positive;

(2) Po is not a point of egress.
Let Lif Mi be the corresponding sets of points. Useful criteria to verify
Po e Mi are:

(a) the smallest index q ^ p + 1 such that [-D?f)fl"ί(p)]P() ^ 0 is
either odd with a negative value of the derivative or even with a posi-
tive value of the derivative;

(b) There exists [α, b] c (a (Po), /3(P0)) such that a < tQ ^% and
J([α, 6], Po) c Γ i β
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LEMMA 1. If ω is a generalized regular poly facial set relative
to (I),

Proof. Since Γi = Lt U Mt , B(ω, Ω) c U"=i Γit

it is enough to show that any point Po belonging to this last set is a
point of strict egress. For such a Po, J = {j | Po e L3) Φ φ. If j e J,
Hj(P0) = 0 and there exists a δ > 0 such that H3{t, I(t, Po)) < 0 in [ί0 -
8, t0) and £?}(«, /(ί, Po)) > 0 in (ί0, ί0 + δ]. If j φJ,Pύφ Γά whence H^Po)
< 0 and there exists a δ > 0 such that Hά(t, I(t, Po)) < 0 in [t0 - δ, ί0).
There exists therefore a δ > 0 such that 22"i(ί, /(ί, Po)) < 0, i = 1, , m,
te[t0 — δ, ί0), and, for at least one j(εj), H3 (t, Po)) > 0, t e (t0, t0 + δ], so
that PoeS*.

PART II

Consider the linear differential system

Vi = fi(t)Vi + Σ 9i3{t)Vi , i = 1, , n

where the coefficients fif gi3', T ̂  t < oo, are continuous functions (in
general complex-valued) of the real variable t.

By using Wazewski's method Z. Szmydtόwna proved that if

R(fk - fk+i) > 0 , \~R(fk-fk+1)dt= co , k = l , . . . , n - l ,

and

lim ^ = 0 , i,j = 1, . . ,w , fc = 1, . . . , % - 1 ,

then there is a system of w linearly independent solutions (?/u, •• , ^ f c ) ,
A = 1, , n, with \\mt^yiklykk = 0 for ΐ ^ fe [5, Corollaire 1, Remarque
2, p. 30]. This theorem generalizes a theorem of Perron who obtains
the same result requiring the existence of a constant c > 0 such that
R(fk) > R(fk+1) + c, k = 1, , n - 1, and l i m ^ . ^ - 0.

We notice that Szmydtόwna allows the /{, i = 1, , n, to be lar^e
and the gi3 to be small in some sense. In the following theorem we
obtain the same result allowing also the f{ to be large and the g%j to
be small but in a sense completely different from Szmydtόwna's.
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THEOREM II-l. Suppose that the system

n

(II) xt = fi(t)Xi + Σ 9a(t)Xj , i = 1, , f& ,

satisfies the following hypotheses:
(1) 7%e coefficients fi9 gij9 T ^ t < oo, are continuous functions

(in general complex-valued) of the real variable t.
(2) There exists a real-valued continuous function h(t), T g t <

/or all i φ j we have

ι
and

<

S t

h(s)ds
T

Then there is a system of n linearly independent solutions

, Xln(t)

im ôoίCifc/ίCjfcfc = 0 / o r a i ί i φ k.

Proof.
For every fixed integer p, 0 < p S n, we set

ωp = {P: (t, a) I i ̂  i2 - I xP IV(ί) < 0, i ^ p, ί > ί0 ^

where ^?(ί) and t0 will be conveniently chosen so that, for every t g ίOf

9(ί) > 0, φ is diίferentiable, limf_»oo (̂ί) = 0 and ωp is a generalized
regular polyfacial set.

Let

HX(P) = I x, |2 - \xp \φ\t) , i Φ p r

HP(P) — t0 — t ,

it follows that ωp = {P | fl (P) < 0, i = 1, , n).
Set, for q Φ p,

rp= Γ p - {Q: ( ί , x)\x = 0}

- {PI I x J = I xp I 9>(ί), I xt\ ^ I xp I 9>(ί) for i =£ p, t ^ ί0, Xp φ 01 .

An easy computation shows that
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±[D{U)Hq(P)]PeΓq ^ I x, \2<p\t)[R(fq - f9 + gqq - gpp)]

- I xP \2ψ(t)Φ(t) - I χP I V( ί ) Σ 19Pj I -^r

-|^l2ΣI^ l4^4 τ^4^ α I a?β I I xp I

Since | ίcα | = | xp \ <p{t) ^ 1 ^ 1 for j φ p it follows that | xό \ /1 xp \ g
<p(t). As we want <p{t) > 0 and lin^co^Kί) = 0 we can take t0 such that
ψ(t) < 1 for t ^ ί0. Then

— [ D ( I I ) J S i ( P ) ] P e Γ ^\xp \2<p\t)R{fq —fp + gqq — gPP)2

XP \2ψ(P)ψ(t) - I Xp \2φ\t) Σ I gpj I - I ̂ p \2φ(t) Σ I ̂ αi I .

since

φ{t)R(fq — fp + gqq — gpp) — φ(t) — φ(t) Σ I ̂ py I ~ Σ

— φ(t) — p(t)h(t) — #(£) ,

where

β(t) = {Σ I Biΰu - fe) I + I Qu 1} + β"^(ί)-f

in order to have, for q Φ p, [D{ll)Hq(P) e Γq > 0, it is sufficient to choose
<p(t) such that
(A) φ(t) + φ(t)h(t) + flf(ί) - 0.

r oo

<̂ (̂ ) = e-sw \ g(β)eEis) ^§ j g jn ( j e e c j a solution of (A) satisfying the
Jί

conditions 9>(ί) > 0, ψ differentiable and X\mt^φ{t) = 0.
If (ϋp is defined in this way, taking into account that [D{ll)Hp(P)]PeΓ

= — 1 and that the set {Pe Γq\ xp = 0} c Λffl, for g =̂= p, it follows that
ω^ is a generalized regular polyfacial set.

For i Φ p we have

Li = Γi and Lp = Φ ,

Mt = M = {P: (ί, a?) 11 ̂  t0, a? = 0} and Mp = Γp .

By Lemma 1

We choose

^ p = {P: (ί, a?) I ί = τ > t0, xp = x°p φ 0, ] x{ \ g | x\ \ <p(τ), i Φ p} = Π B] ,

where B) is a solid sphere in i?2. We have
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For i Φ p

Zp n [ Γp-M] = {P: (ί, x) \t = τ, xp = < | α\. | = J

, i =£ p} - £ 2 x . . . x BU x Si x B2

ί+1 x x B\

(in the cartesian product above B% is exclued) where S\ is the boundary
of B\ in R\

Modulo homeomorphisms we have therefore Zp = B2n~2 (solid sphere
in R2n~2) and Zp n S = S2w"3 - Boundary of 5 2 ί ι " 2 in i22rι-2, so that Zp [} S
is not a retract of Zp%

There is however a retraction φ: S -+ Zp f] S given by </>(P) = P*,
with ί* = τ, £* = a?J, £* = <p(τ)l<p{t) \ x°p |/| ^ p | -xi9 i ψ p. The verification
is trivial.

By using the theorem of Wazewski we can conclude the existence
of at least one point Po: (r, x0) e Zp — S with /(ί, Po) c ωp for every
ί ^ τ. This means that the solution xp(t) = (xlp(t), * ,xnp(t)) of (II)
passing through Po satisfies

Xjv(t) I < £>(£) for ί ^ τ and i ψ p .

Letting p = l, , n w e find n solutions {x^t), « , «n(ί)) with the
required property. Let us show that these solutions can be taken
linearly independent.

By choosing Zp with sufficiently large τ and x%9 — 1 the absolute
values of the coordinates xip, iΦ p, of the points of Zp can be made
arbitrarily small. We then have

where ε« = 1 and the | ε^ | are smaller than any given positive number
for all i Φ j . This completes the proof

In the following theorem we will look for linearly independent
solutions of (II) with similar properties to those of Theorem II-I but
not necessarily requiring that they form a fundamental set of solutions
of (II).

THEOREM Π-2. Suppose that the system (II) satisfies the following
hypotheses:
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(1) The coefficients fi9 gij9 T ^ t < oo, are continuous functions
(in general complex-valued) for the real variable t.

(2) There exists a natural number r ^ n such that R(fr) = =

-R(Λ), R(fi) ^ R(fr) for all i < r, j J g{j(t) | dt < oo /or αM i =£ y αncZ

Π R(f« - g,Ί) I dt < oo.

Tfc έ/̂ erβ exists s + 1 (r + s = w) linearly independent solutions

Ixlr(t) α ln(

\xnr(t)... xnn(t)l

such that limt^ooXiJxM = 0 f o r a l l i Φ k f k = r, ,

Proof. Given an integer p, r ^ p ^ nf we prooceed exactly as in
Theorem II-l up to the point where we got the expression:

Σφ(t)R(fq -fp + gqq - gpp) - Φ(t) - φ(t) Σ I 9PJI - .^

which we denote by Bq.
As we have R(fq — fp) ^ 0 for all g, 0 < g ^ n, it follows (φ(ί) < 1)

Bq ^ — Φ(ί) — #(£) where i g(t)dt < oo.

Making φ(t) = \ [^(s) + e"s]cίs it follows that φ(t) > 0, φ is differ-

entiable, lim^oβ^ί) = 0 and J?g > 0.
Proceeding as in Theorem II-l we find a set of (s + 1) solutions

(xr(t), •••,#«(£)). Still by a similar reasoning we may show that these
solutions can be so chosen that for a sufficiently large τ we have

(xr(τ),

with ε^ = 1 and the \εiS\,iΦ j , smaller than any given positive number,
so that, they are linearly independent.

If n — 2 Theorem Π-2, with some supplementary hypotheses, leads
us to a deeper result. As already mentioned in the Introduction tlαe
following theorem is due to Professor J. L. Massera with whose per-
mission it is reproduced here.

THEOREM Π-3. Suppose that the system

x = f(t)χ + gn(t)x + gn(t)y
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y =

satisfies the following hypotheses:

(1) The coefficients fif gij9 T St< oo, are continuous real-valued
functions of the real variable t.

(2) f ( t ) ̂  / a ( ί ) , [ " ( / . ( ί ) - / a ( ί ) ) d ί = oo, Γ | Λ i ( ί ) \dt<™ for iΦj

I 0 π ( O — £22(0 I d ί < ° ° .

Then there exists a solution (x^t), yλ{t)) satisfying Xim^^x^ly^t)

= 0 and, for any other solution (x(t), y(t)) which is not proportional

to (α?!(ί), 2/i(0)> we have lim^ooi/ίOMO = 0.

Proof. The existence of a solution (ίcx(0, l/i(0) with the required
property follows from Theorem Π-2.

Without loss of generality we may assume g n = g22 = 0. Choose

t0 ^ T so large that Γ( | gu\ + \ g21 \)dt < ττ/4. Let (x2(t), y2(t)) be the
J ί O

solution which satisfies x2(tQ) = 1, ya(ί0) — 0. Setting Θ(t) = arg (a?a(0>
y2(t))f we claim, in the first place, that | θ(t) \ < 7r/4 for ί ^ ί0. Assume
that this were not the case. It then follows that there exists an interval
ft, t2), tλ ^ t0, such that θ{tλ) = 0, | Θ{Q \ - π/4, 0 < | θ(t) \ < π/4 for tλ <
ί < ί2, say, θ(t2) = π/4, 0 < θ{t) < ττ/4 for tλ < t < t2, whence a;2(0 ί/2(0
> 0 in (ίj, ί2). Since

2 - 0321/2

y\

We n e x t prove t h a t l im^oo^ίO/^ίO — 0, or equivalently
~ 0. There exsists a sequence ίw —> oo with ^(ίΛ) —• 0, otherwise θ(t) >
θ0 > 0, say, which leads to t h e contradiction

0(0 - θ(t0) g - Γ (/χ(0 - / 2 (0) sin 0(0 cos

(I 012 I + I 021I
ί oo

(I 012 I + I 021 \)dt <
tn

ε/2. An argument similar to the one used to prove | θ(t) \ < π/A then
shows that | θ{t) \ < ε for t ^ tn.

Assume to large enough so that | xλ(t) |/| yλ(t) \ < 1, | ya(ί) |/| a;2(t) | < 1
for ί ^ ί0 and, say, yλ(t) > 0, a?a(0 > 0; then

Ut) ^ (Λ(0 + 102i(O I), vat),
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Ut) ^ {fit) - I 9u(t) I). X2(t) ,

whence

Vi{t) S y1(Q. exp (T (/a(ί) + I gn(t) \)dt) ,

to

and

y^L g vΆm exp (Γ (/s(t) - f(t) + I g12(t) I + | flrai(t) \)dt) -• 0 .
α;2(ί) ^2(^0) ^ J ί 0 /

Finally, any solution (x(t), y(t)) which is not proportional to
Vι(t)) satisfies, for a certain constant value k,

y(t) __ Vi(t) + kyλ(t) _ (y2(t)lx2(t)) + k(yι(t)/x2(t)) Λ— — —^ y ^

a (ί) x2(ΐ) + %2(ί)

PART III

Consider the linear differential systems

(III) x = A(t)x + B(t)x

(ΠΓ) y = A(t)y

where A(t), B(t), T S t < °°, are continuous complex matrix functions.

Conti [2, Theorem I, p. 589] proved that: if Π B(t) \ dt < 00 wfeere

£(*) = (δj (*)) αwd I B(t) I - Σί.y I &J(*) I and i/ (///') ΐs uniformly stable,
then the system (III) and (IIΓ) are asymptotically equivalent3.

The theorem of Wintner [7, 7-i, p. 423] stating that:
If B(t) = (6j(Q), T St < co9i9j = if *--,n, is a matrix of n2 con-

tinuous functions satisfying I | B(t) \ dt < 00, then every solution of
x = B(t)x tends to a finite limit as £->oo, is a particular case of
Conti's result (A(t) = 0) .

Our Theorem III-3, is also a generalization of Wintner's theorem
but different from that of Conti.

Theorems IΠ-1 and IΠ-2, which are preliminary to Theorem IIΓ-3,
give us some information, though less than asymptotic equivalence,
concerning the behavior of two systems, one of which not necessarily
linear.

THEOREM ΠI-1. Suppose that the systems
3 The theorem of Conti is actually more general. We have considered the theorem

applied to linear systems only.



1522 NELSON ONUCHIC

(ΠI-1) x{ = fMXi + gt(tf x) ,

(IΠ-2) »«=/,(%,,
i = 1, , n , g(t, x) = (g{(tf x))

satisfy the following hypotheses:

(1) fi{t), T g t < oo, are continuous functions (in general complex-
valued) of the real variable t; g{(t, x) are functions (in general complex-
valued) continuous in

Ω = {(«, a?) I ί > Γ, I a? I = Σ I a?* | < oo}
ΐ = l

and satisfy some condition which implies the existence of only one
integral passing through each point of Ω.

(2) I g(t, x)\^\x\ F(t) on Ω.

(3) There exists a negative constant K such that

K <i

for all v ^ t > T and

for all i = 1, , n.
Then for every solution y(t) of 111-2 there is a solution x(t) of

111-1 such that limt_co[a;(ί) - y(t)] = 0.

Proof. We define ω = {Pe Ω \ \ x, - y,(t) \ < <p{(t), t>tQ^T} where
the ψi(t) and t0 will be adequately chosen so that for alH ̂  to,i = 1, , n,
we have: <Pi(t) > 0, φi differentiate, lim^oo^ίί) = 0 and ω a generalized
regular polyfacial set.

If we put

H,(P) = I x{ - Vί(t) I2 - Ψl(t) , i = 1, , n

Hn+1(P) = ίo —*

it follows that ω = {P | ^ ( P ) < 0 , i = 1, , n + 1}.
For all i, 1 g i g w,

Λ = {Pe β || ^ - y<(ί) I - ^( ί ) , I a?y - ys(t) \ ^ φs(t), j = 1, . ., n, ί ^

An easy computation shows that
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Γt ^ φmR[fS)] -

- 9>«(t)F(t)[|ί I xt - yk I + I y j ] .

As we want ^ ( ί ) > 0 and limί̂ «,^>i(ί) = 0, we can take ί0 such that
Ψi(t) < 1 for all t ^ ίβ. Then,

- ΨMΦM - ^

exp Γ R[fk(s)]ds ^ ^
Jί 0

I exp (' R[fk(s)]ds ^ rt

where we can assume I h(t)dt < co and, without loss of generality,

h(t) > 0 for all t ^ t0.
In order to have, for all i = 1, , n, [D ( IΠ_1)i? i(P)]P e Γt > 0 it is

sufficient to choose φ(t) such that

- φt(t) + R[Mt)]Φ*(t) - Λ(«) > 0 .

The problem is then to look for a solution z(t) of i <
satisfying «(ί) > 0 for all t ^ t0, lim^oo ^(ί) = 0, knowing that γ(ί) > 0

γ(ί)ώί < °° and I σ(s)ds ^ K for some constant iΓ and
all v^t^t0. If PF(ί) is a solution of T^ = σ(t) W - γ(ί) it follows
that «(ί) = 2W(t) is a solution of i < σ(ί)^ — y(ί). It is then sufficient
to find a solution W(t) satisfying W(t) > 0 for all t ^ t0 and lim^c W(t)

σ(s)ds). \ γ(τ;)exp(—\ σ(s)cίs dv ex-
ί0 / i t \ it0 I

ists and indeed ^ ( ί ) —> 0 as ί —• co because

γ('y) exp ( — I σ(s)ds )dv ^ β"^! y(v)dv .
t V Jί / Jί

Since [D(iΠ_1)fί
Γ

Λ+1(P)] = —1 it follows that ω is a generalized regular
polyfacial set and S = S* = U?=iΛ - ^»+i

If we choose

Z = {(ί, a?) 11 = τ > t0, I xd - ^ (τ) | ^ <^ (τ), i = 1, . . . , n}

it follows t h a t S f] Z = \JU Γ{ n Z - Γn+1

ΓtDZ^ {t, x)\t = τ,\xi- Vi(τ) \

= <Pi{τ), I x, - Vj(τ) I £ <Pj(τ), j = 1, , n) .

Then Z = HUB"
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Z ϊ\S=\JB\x .. x BU x S) x B}+1 x . . x B\
3 = 1

and, modulo homomorphisms, Z — B2n, Z Π S — S2*"1 so that ZΠ S is
not a retract of Z. However, it is easily seen that Φ : S-+ S f] Z given
by φ(P) = P*, with t* = τ, a? - ^(τ) + [x{ - ^ M τ ) / ^ ) , is a re-
traction.

Using the theorem of Wazewski we can conclude the existence of
at least one point P o : (τ, x0) e Z — S such that (£, x{t, PQ)) = J(ί, Po) c α>
for all t ^ t0.

Since x{t, Po) is defined in the future, i.e., /3(P0) = oo (because
/3(P0) < oo implies {/(£, Po) 110 g ί < /5(P0)} bounded, which is not possi-
ble), it follows that l i m ^ l X ί , Po) - y(t)] = 0.

COROLLARY 1. Suppose that the systems

(IΠ-Γ) *i

(ΠI-20

i = 1, - . . , w , flf(t) = (flTo ί*))

satisfy the following hypotheses:

(1) Γ/te coefficients fif gijt T ^ ί < oo, are continuous functions
(in general complex-valued) of the real variable t.

(2) Tfeere exists a constant K such that

K g [ΌR[fi(s)]ds for all v^t^T and

g(t) I exp {^Λl/iίβWdβJdt < oo , i = l, . . . , w .

/or ever?/ solution y(t) of (IΠ-2r) there exists a solution
x(t) of {IΠ-Ϊ) such that \imt^[x{t) - y(t)] = 0.

The theorem of Wintner mentioned before follows a once from
Corollary 1.

THEOREM IΠ-2. Suppose that the systems

(IΠ-A) i
4 il

3=1

(ΠI-B) Λ = g

£, i = 1, , w , flr(ί, a?) = (^-(ί, a?))

satisfy the following hypotheses:
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(1) fait), T t=kt < oo, are continuous functions {in general complex-
valued) of real variable t; g^t, x) are functions (in general complex-
valued) continuous in

Ω = {(tfx)\t< T, \x\< ™}

and satisfy some condition which implies the existence of only one
integral passing through each point of Ω.

(2) I g(tf x)\ ^\x\ F(t) in Ω.

(3) There exists a constant K such that

K ^ [VR[fu(s)]ds for all v^t^T and

exp {^R[fu(s)]ds}dt < oo , i = 1, . . . , n

j exp

Then for every solution y(t) of (III-B) there is a solution x(t)
of (III-A) such that limt^[x(t) - y(t)] = 0

Proof. Consider the systems

(III-A) x, = fiffiXi + S&, x) where ft(ί, x) = g.(t, x) + ΣMtfa

(III-C) z, = fdfyi .

These systems satisfy the condition of Theorem IΠ-1. Hence for
every solution z(t) of (III-C) there is a solution x(t) of

(III-A) such that l im^lXί) - x(t)] = 0

Consider now the systems

(ΠI-B) Λ Σ
3=1

(ΠI-C) 2, =/«(*)«,.

It is easy to see that they also satisfy the hypotheses of Theorem
IΠ-1. Hence for every solution z(t) of (III-C) there is a solution y{t)
of (III-B) such that l im^^OO — ^(0] = 0. But we can also prove that
for every solution y{t) of (III-B) there is a solution z(t) of (III-C) such
that y(t) — z(t) -> 0 as t -> oo. For that purpose it is enough to show
that there is a fundamental set z\t), , zn(t) of solutions of (III-C)
such that the solutions y\t), -,yn(t) satisfying y\t) — z\t) -> 0 as
t —> oo, for a lH — 1, •• ,n, are a fundamental set of solutions of (III B),
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fzψ\
Let us take z*(ί) = such that z)(t) = 0 for all j Φ i and z](t)

= exp ί I fu(s)dsj for all i = 1, , n.

The corresponding y{(t), i — 1, , n, satisfy lim^yfa) = 0 if j Φ i

and lim^oo | y[{t) — exp I fu(s)ds \ = 0. Hence, there exists t0 such that

t ^ ί0 implies

I a/ί(*) - e x p I

Whence

I yϋt) I > exp {j]β[/«(β)]dβ} - - | ^ s> hp .

Therefore, for any ε > 0 there is a ί(ε) such that t ^ ί(ε) implies
I y\(t) I > 1/2 β^, ΐ = 1, , n, and | y){t) | < ε f or all i Φ j . This implies
the existence of a r ^ T with det(^(r), •••, yn{τ)) Φ 0 and {y\t)t •••,
i/n(ί)) is a fundamental set of solutions of (III-B).

From the results concerning the systems (III-A), (III-C) and (III-B),
(III-C) we conclude that for every solution y(t) of (III-B) there is a
solution x(t) of (III-A) such that limf_»eo[αj(ί) — y(t)] = 0.

THEOREM IΠ-3. Suppose that the systems

n n

(III-/?) ^ = Σ /«(ί)»y i, j = 1, , n

satisfy the following hypotheses:

(1) The coefficients fijf giβ, T ^t < oo, are continuous functions

(in general complex-valued) of the real variable t.

R[fu(s)]ds for all

t

v Ξ> t ^ T, i = 1, , n, and

I I giό(t) I exp | l R[fkk(s)]ds\dt < oo , i,j,k = l, ,n

f j ( t ) I e x p ^ \ i ? [ / f c f c ( s ) ] c Z s > d £ < o o , ί , j , k = l, t n , i φ j .

Then the systems (IΠ-a) and (IΠ-β) are asymptotically equivalent.
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Proof. By Theorem IΠ-2 for every solution y(t) of (IΠ-β) there
is a solution x(t) of (Ill-a) such that limt^[x(t) — #(<)] = 0.

Let us show that given a fundamental set (y\t), •• ,yn{t)) of so-
lutions of (III-/3) the corresponding solutions (x\t), •• ,xn(t)) of (IΠ-α:)
satisfying lim^oolV^) — y\t)\ = 0, i = 1, , w, also form a fundamental
set of solutions.

Consider the auxiliary system

(HI-?) *i=Mt)Zi, i = l, . . . , * .

Applying the argument used in Theorem IΠ-2 to the systems (III-/3),
(IΠ-γ) we conclude that there exists a fundamental set (y1(t)f " ,yn(t))
of solutions of (IΠ-/3) and a £0 such that t ^ ί0 implies

I ̂ (ί) I ̂  JLe*" and y)(t) -> 0 as ί -* oo f or all i =£ j .
Lt

Let (x^t), •"fx
n(t)) be the solutions of (III-o:) such that limc_«>

[a?4(ί) — yι(t)] = 0 (the existence of which follows from Theorem IΠ-2).
Then limt_ooa?χί) = 0 for all i φ j and there exists τ ^ t0 such that ί ^ τ
implies | a?j(ί) I > l/4β*.

For sufficiently large ί we have therefore

and this means that (^(ί), « ,ίcn(ί)) is a fundamental set of solutions
of (IΠ-α).

The systems (IΠ-α:) and (III-/5) being linear this implies that they
are asymptotically equivalent.
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A THEOREM ON REGULAR MATRICES

PETER PERKINS

In this paper it will be proved that if any nonnegative, square
matrix P of order r is such that Pm > 0 for some positive integer m,
then P r 2- 2 r+ 2 > 0. This result has already appeared in the literature,
[2], but the following is a complete and elementary proof given in detail
except for one theorem of I. Schur in [1] which is stated without proof.
The term regular is taken from Markov chain theory1 in which a regular
chain is one whose transition matrix has the above property.

A graph GP associated with any nonnegative, square matrix P of
order r is a collection of r distinct points S = {slf s2, , sr}, some or all
of which are connected by directed lines. There is a directed line (indi-
cated pictorially by an arrow) from s* to sά in the graph GP if and only
if Pij > 0 in the matrix P = (pi3). A path sequence or path in G> is
any finite sequence of points of S (not necessarily distinct) such that
there is a directed line in GP from every point in the sequence to its
immediate successor. The length of a path is one less than the number
of occurrences of points in its sequence. A cycle is any path that begins
and ends with the same point and a simple cycle is a cycle in which no
point occurs twice except, of course, for the first (and last). Two cycles
are distinct if their sequences are not cyclic permutations of each other.
A nonnegative, square matrix P is regular if Pm > 0 for some positive
integer m. Likewise, a graph GP associated with a nonnegative. square
matrix P is regular if there exists a positive integer m such that an
infinite set of paths Ao, Al9 , An, can be found, the length of each
path being Ln — m + n, n = 0,1, 2, . The usual notation plf is used
to denote the ijth entry of the matrix Pm. In all that follows we shall
consider only regular matrices P and their associated graphs GP.

Some immediate consequences of these definitions and the definition
of matrix multiplication are the following:

(1) There is a path skl skm+l in GP if and only if p$n+ί > 0 in P w .
(2) P is regular if and only if GP is regular.
(3) There exists some path from any point in GP to any point in GP.
(4) For any given i and j there exists some m such that p f > 0.
(5) If Pm > 0 then Pm+n > 0, n = 0,1, 2, . . .

Let C = {Clf C2, , Ct} be all the distinct simple cycles of GP and
{Ci9c2, •• ,cί} be the corresponding lengths.

Received November 21, 1960. I wish to thank Professor R. Z. Norman for his sugges-
tions in the writing of this paper.

1 This is as treated by Kemeny and Snell in [3].
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LEMMA 1. The length of any cycle C* is always of the form c* —
Σt=iαA> where a{ is some nonnegative integer.

Proof. Let any cycle C* = ski, sk2, , skm be given {kλ = km). Let
C* = Cί and form C*+1 in the following manner from C*: Wherever
simple cycle C{ occurs in cycle C* delete it except for its last point,
thus forming the new cycle C*+1. It is clear that after the tth step
there will remain only a single point of the original C*, which has of
course zero length. If we let α̂  be the number of times simple cycle
Ci occurred in cycle C* then the lemma follows.

THEOREM 1. If GP is any regular graph then it must contain a
set of simple cycles whose lengths are relatively prime.

Proof. By the regularity assumption and (1) there exists a positive
integer m such that cycles of lengths Ln = m + n, n = 0,1,2, ••• can
be found in GP. Also, from Lemma 1, Ln = X - ^ α ^ for n = 0,1, 2, ,
and suitable a{. Let d be the common factor of the simple cycle lengths
c{. Then

which could never equal m + n, n — 0, 1, 2, unless d = 1.
We would like to find a Zβαsί integer M such that for arbitrary

points Si and s, there are paths beginning at s* and ending at s, and
whose lengths are Ln = ikf + w, w = 0,1, 2, . If we can do this, then,
by (1), we shall have also found a least integer M such that PM > 0
where P is the regular matrix associated with GP.

Let us say that a path touches a given set of points if there is
some point belonging to both the path and the set. Then we have

LEMMA 2. Let GP be a regular graph with r points, let S be a
subset containing rk distinct points of the graph, and let g be any point
of GP. Then there always exists a path from g which touches S whose
length is less than or equal to r — rk.

Proof. If g e S then the lemma is trivial. Suppose g $ S. By (3)
there is at least one path which starts at g and touches the set S. Let
V = 9o, 9i, , s be such a path of shortest length. Obviously no point of S
can precede the final point s in this path sequence p. Furthermore,
there can be no repeated points in p, for the deletion of any cycle
(except for its last point) would produce a path from g to S shorter
than path p, contrary to the choice of p. Therefore, p can have at
most r — rk points.
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We shall say that a minimal set of relatively prime integers is a
set of relatively prime integers such that if one of the integers is de-
leted the remaining integers are no longer relatively prime. A step
along a path in GP is a pair of consecutive points of the path sequence.

THEOREM 2. IfR = {Rl9 R2, , Rk} is a set of simple cycles of
graph GP whose lengths {rl9 r2, , rk} form a minimal set of relatively
prime integers and if s{ and Sj are arbitrary points of GP, then there
is always a path which starts at sif ends at sjf touches each cycle of
R and whose length L ^ (k + l)r — Σi=i ri ~~ l

Proof. Note that the set of distinct points belonging to a simple
cycle contains a number of points exactly equal to the length of the
cycle. Hence, by Lemma 2 there is a path from an arbitrary point st

which touches a particular cycle Rp and whose length is less than or

greatest number of steps needed

r - r2

r - rk

r - 1

u to r -

from

arb. pt.

cycle

cycle
rr

rp. ir

Si

Ri

Rjc-l

Rk

lus, we nave τ

to

cycle Rλ

R,

•
cycle Rk

arb. pt. Sj

TOTAL

We shall now state without proof I. Schur's theorem cited above
and use it in our final theorem.

THEOREM 3. (Schur) If {alf a2, •••, an} is a set of relatively prime
integers with aλ the least and an the greatest, then B = Σ?=i#iαi ^as

solutions in nonnegative integers x{ for any B ^ (a1 — l)(an — 1). This
is a best bound for n = 2.

THEOREM 4. If M is the least integer such that paths between any
two points of GP can be found whose lengths are Ln — M + n, n —
0,1, 2, , then M ̂  r2 - 2r + 2.

Proof. Given any two points Si and sd of GP we know by Theo-
rem 2 that there is a path from s< to sό touching each of the cycles
{Rlf R2, , Rk} and whose length is
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We can, then, interject into this path the simple cycles {Rlf R2,..., Jtk}
at the touching points, interjecting cycle R{ say x{ times. The length
L of the original path has now been increased to L + Σ ί U ^ ϊ = L + B,
the second part of which, by Schur's theorem, can be made to take on
any integral value B where B ̂  (r8 — l)(rg — 1), and rs = min (r19 r2, , rk),
rg — max (rlf r2, , rk). Therefore, we have:

(7) M ̂  L + B = (k + l)r - Σri - r8 - rg + rsrg
i = l

Case I. Suppose k = 2. Then M <̂  3r — (rs + rα) — r8 — rff + ̂ r , =
3r - 2r8 - 2rg + rsrg = 3r + (r, - 2)(r. - 2) - 4. The right side of this
inequality is obviously maximum when rs and rg are as large as possible.
Recall that rg ^ r and r s ^ r — 1. Therefore we have:

(8) M^ 3r + (r - 2)(r - 3) - 4 - r2 - 2r + 2 .

Case II. Suppose & ̂  3. The reader may wish to skip the following
formidable looking, though straightforward calculations. They result in
a proof that the integer M with the desired property is in fact smaller
when the arbitrary graph contains a larger set of these cycles.

Since the lengths of these cycles are a minimal set of relatively
prime integers, it is certainly true that

Σ r, ^ r. + [r. + 2] + [r. + 4] + + [r8 + 2(k - 2)] + rg
i = l

= (k - l)r. + (k - l)(fe - 2) + rg .

Thus, with (7) we have:

M^(k + l)r- [(k - l)r. + (fc - l)(fc - 2) + rα] - r8 - r, + r8r,

= (fc + l)r - krs - 2rg + r 8r, - (k - l)(fc - 2)

= (fc + l)r + (r. - 2)(r, - k) - 2k - (k - l)(fc - 2) .

Since rσ must be larger than fc, the right side again is maximum when
rg and r8 are as large as possible. But rg g and r8 ^ r — k + 2. So

ikf ^ (fc + l)r + (r - fc)(r - k) - k2 + k - 2

- r2 + (1 - k)r + k - 2 .

This is easily seen to be less than r2 — 2r + 2 of Case I, if r > 1. So
in any case M ̂  r2 — 2r + 2.

To see that r2 — 2r + 2 is the least value for an arbitrary graph
of r points and thus for an arbitrary matrix of order r, we need only
consider the following example in which r = 3 and M = 5,
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\

GP

As a matter of fact it can be shown for any regular matrix P of
order r whose graph GP contains only two cycles, one of length r and
one of length r — 1, that Pr2-2r+1 is not positive. We have, therefore,
established the claim of the paper as stated in the opening paragraph.
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CENTROID SURFACES

C. M. PETTY

1. Introduction. Let Mlt , Mn-λ denote (n — 1) bounded closed
sets in En. Busemann [1] has established the expression

(1.1) I ΛTX1 — I ΛΓ.-x I =

(n - 1)!
2

- ( (ί ί T(z, Pl, .., p^dF-1 . dV

where | M{ | is the ^-dimensional Lebesgue measure or volume of M{.
On the righthand side M^u) is the cross-section of Mi with the hyper-
plane through z normal to the unit vector u, the point p{ varies in M^u)
and the differential dVp'1 is the (n — l)-dimensional volume element of
Mi(u) at Pi. The final integration is extended over the surface Ωn of
the solid-unit sphere Un and dωl is the area element of Ωn at point u.
By T(z, plf , pr) we will denote the r-dimensional volume of the simplex
(possibly degenerate) with vertices z, plf

 β ,ί>r.
Let

77-772

(1.2) πr=
 π

Γ(r/2 + 1)

For n ^ 3, Busemann also shows by Steiner's symmetrization that

(1.3)

for nondegenerate convex bodies M^ where the equality sign holds only
when the Mi are homothetic solid ellipsoids with center z. Here | M{{u) |,
of course, denotes the (n — l)-dimensional volume of M^u). In this
regard we will also, as a matter of convenience, not index lower di-
mensional mixed discriminates and mixed volumes since the dimension
will be evident from the number of components.

The primary purpose of this note is to reinterpret (1.1) as an inte-
gration of the type (1.3) retaining the equality sign. This is given in
§ 3 by (3.20). In addition other integral expressions and inequalities are
derived which are geometrically of the same type as those considered
above.

2. FencheΓs momental ellipsoid. Let M be a bounded closed set
with positive volume. The centroid s of M is defined by its rectangular
coordinates
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(2.i) 8i = J L \x
I M\ JM

If Lv is a v-flat through the origin z, then the second moment of M
with respect to Lv(0 ^ v ^ n — 1) is defined by

(2.2) I(M, Lv) - ( r2 sin2<pdVx

n

where the distance zx is r and <p is the angle between the ray zx and
Lv (for v = 0, we define £> = π/2). By the same type of integration tech-
nique in [1, pp. 5-6], the reader may verify that

(2.3) lLJL
n + 2

where Un has center z; a calculation which will be used later.
The matrix AM given by

(2-4) ^ -

is positive definite since

y-AMy = -\--\ (ΣxiViγdVx

n ,

where y is a column vector and yτ is its transpose. The ellipsoid with
surface xτAMx = 1 will be called FencheΓs momental ellipsoid and its
polar reciprocal with respect to Ωn given by xτA^x = 1 will be called
simply FencheΓs ellipsoid. This name is chosen since W. Fenchel first
observed the affine character of this polar reciprocal (unpublished):

(2.5) Let M be transformed into M by a central affinity with matrix
B. If F and F are the Fenchel ellipsoids of M and M respectively,
then this central affinity also carries F into F.

To see this, it may be observed from (2.4) that AM = BAMBr or
AΫ — (B-ψA^B*1 which completes the proof.

If I FI is the volume of the Fenchel ellipsoid F of My then

(2.6)

The result (2.5) enables one to prove readily that

(2.7) π-21 F | 2 - det (AM) ^ (n + 2)-nπ;> \ M| 2

with equality only if, except for a set of measure zero, M is a solid
ellipsoid with center z. For if we transform M into M by a unimodular
central affinity so that F is a sphere, then
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n\M\ }M

Comparison of \jr*dV2 with that for a sphere with center z and volume
JM

\M\ proves (2.7).
We will adopt the same notation for mixed discriminates as in [2,

pp. 51-57] where the reader will find an exposition of their properties.
Consider the r quadratic forms q{ — xτAix, ί — 1, , r, where Ak —
[alf] is a real symmetric matrix. For any real \, , λr, set q = \q± +

r

• + \qr = xτAx where A — Σ KAk. The discriminant D(q) = det (-A)

can be written
D(q) = >

where D{qh, -—,qin) is independent of the order of the qije and is called
the mixed discriminant of qh, , qin. For n forms q{ we have

(2.8) D(q19

where (ix i«) is a permutation of (1 n).
Now consider n closed and bounded sets Af< with positive volume and

let (7i = aj2ΆΛfίa; be the quadratic form associated with the Fenchel momen-
ta! ellipsoid of M{. By (2.4) and (2.8) we have

(2.9)
w! \MΛ

2J \ I ίci'1' #ί>
(ij. .ljj) Jiff Jifj

1 ( . . . f
n ! I M , ••• IMnl Jin Jjfw

fl?! Xγ

Since

(2.10)

z, x{1), . . , x{n)) =: ± (llnl) det (xlj)) we then have

The fundamental inequality for mixed discriminants (see [2, p. 53]) is:
(2.11) If the forms q19 •••, <jn_i are positive definite and Q is any sym-
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metric form, then

D\qλ, , qn-lf Q) ^ D(qlf , qn-lf g ^ D f e , , qn-2, Q, Q)

where the equality sign holds only if Q — \qn-x.
If we set

(2.12) Dp(q, Q) - D(qlf , qΛ-p, 0^

V

then for n positive definite forms q{, (2.11) generalizes to

(2.13) Dr(q19 , qn) ^ Π Dr(q9 ?•-*), r = 2, 3, • , n

with equality only if qn_k = Xn-kqn for k = 0, , r — 1.
The proof of (2.13) and the condition for equality proceed by induc-

tion from the case r ~ 2. The proof is analogous to Alexandrov's gener-
alization [2, p. 50] of a corresponding inequality for mixed volumes and
consequently will be omitted here.

If we now set

(2.14) W ( M 1 , - - - , M n 9 z ) = \ . . . ( T*(z,Pl, - ,Vn)dVzr.n

a n d

(2.15) WP(M, MkJ z) = W(Mlf , Mn-P, M^JM,, z) ,

V

then by (2.13) and (2.10) we have

(2.16) W r ( M l f , M n , z) ^ Π Wr{M, M n . k 9 z ) , r = 2 , - - . , n

with the equality sign only if the Fenchel ellipsoids of Mn_k are hαmo-
thetic for k — 0, , r — 1. Applying (2.16) to the case r = n and using
(2.10) and (2.7), we have

(2.17) [ I M11 \Mn I γn+2)ln ^ nlπl(n + 2)TO T F ^ , . . , M%, z)

with equality only if (except for a set of measure zero) the M{ are
homothetic ellipsoids with center z.

The reader will find other inequalities of the above type in [3, pp.
70-71].

3 Centroid surfaces. As before, M is a bounded closed set with
positive volume. An oriented hyperplane L(u) through z normal to the
direction u (u Φ 0) bounds a closed half-space lying on its positive side.
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The intersection of this halfspace with M will be denoted by C{u).
Consider the function

(3.1) ff(w I M\

Since

(a)

(b) iϊ(/m) = μH(u) f or μ > 0 ,

(c) i?(^ + v)

iϊ(%) is the supporting function (s.f.) of a convex body if* (see [4, p.
26]), which is nondegenerate and has center z. Let Po be the supporting
plane (s.p.) to if* in the direction u{0), the supporting function of if* Π Po

is given by the directional derivative

(3.2) 2 W » ; «) = Mm

M\

Since H'(u{0);u) is a linear function of the ui9 Po touches if* in a single
point and thus every s.p. of if* is regular and K* is strictly convex.
(See [4, pp. 25-26].) The derivatives dH/dUi are continuous, homogeneous
of degree 0, and if y is the point of contact of the s.p. to if* in the
direction u, then

(3.3) „, = ?*?:= i f Xidv;--±-\ x
dUi \M\ Jew I M\ jm-u)

We will call if* the centroid body of M (with respect to z) and the
surface of if * will be called the centroid surface of M. One may observe
that if M happens to have center z, then the centroid surface of M is
precisely the set of all controids of C(u) for u e Ωn. In general, let s(1)

and s(2) be the centroids of C(u) and C(—u) respectively, the y is the
center of mass of the two points sω and —s{2) provided with mass

C(u) I /1 MI and | C(-u) \I\M\ respectively. If | C(u) | = 0, we will define
the centroid of C(u) to be the point z.

It is evident that if M is transformed into M by a central affinity,
then this transformation also carries the centroid surface of M into the
centroid surface of M.

We now wish to impose additional restrictions on M such that H(u)
has continuous second partial derivatives and the surface of if * has
positive Gauss curvature. The following two conditions are sufficient for
this purpose:
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(a) The set M(u) has positive (n — l)-dimensional measure for all
ue Ωn.

(b) For any u{0) e Ωn and any sequence uU) -• u{0), the limtt(i)_tt(0) M(n{i))
coincides with M(uw) except for a possible set of zero (n — l)-dimensional
measure.

To simplify the calculation of the second partial derivatives at a
point u{0\ we introduce what Busemann [2, p. 57] calls "standard coordi-
nates." With the same origin and orientation, the xn axis is chosen
such that u[Q) = = <°-i = 0 and < 0 ) > 0. It then follows from (3.3)
that

(3.4) dm{u^) = yg(^°>) = 0 β

θukdun dunduk

Although standard coordinates vary from point to point, the end result
(3.9) is expressed geometrically and therefore independent of the coordi-
nate system.

For j < n, let u = (0, , 0, ujΊ 0, , 0, u{

n

0)) and set

N, = C(u) n C(u{0)), JVί* = C(-u) n C(-u ( 0 ) ), iV2 - C(u(0)) - Nlf

jV2* - C(-u) - 2Vi*, iV3 = C(u) - Nlf ΛΓ3* - C(~u^) - N*.

Except for a set of zero w-dimensional measure, N2 — N* and Nz = JV3*.
By (3.3) we have for i, j < n

We will calculate the limit of (3.5) as either % - > 0 + or %->0 —. In
either case for x e N3, XjUj ^ 0 , xn ^ 0 and for a? e JV2, χsuj ^0,xn^ 0,
For — π/2 < vn < ττ/2, let the hyperplane #„ = (tan vn)x5 intersect M
in M+(vn) for α?Λ ^ 0 and in M'{vn) for a?w ^ 0. Also the volume element

1 of this hyperplane is

(3.6) dVΓ1 = da?x da?n_x sec ^w .

We introduce new coordinates v19 , vn by x{ — v{ for ΐ = 1, , w — 1
and a?n = T ytanv,, which uniquely define the ^ with — ττ/2 < vπ < 7r/2
for all a? for which #y ^ 0. The Jacobian J of this transformation is
J = Vj sec2 i;n. Also define a,0^a< π/2, by u^ tan α = | Uj |. Then
I / |/% = ±Vj sec2 ^n/ui0) tan a with the plus sign for xe N^ and the minus
sign for x e N2. The difference quotient (3.5) is, consequently, given by

O sec vΛ \ ViVjd F^" 1 )dv
0 \jM-(vn) J
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\ secvn(\ viVjdV*"1)dvn\
JO \jM+(vn) / J

and since the integrands are continuous functions of vn by assumption
(b) we have

(3.7)
M

Now let H{ί)(u) be the supporting function (3.1) for the set Mi9

i = 1, , n - 1. Set i ϊ = \ff(1) + + λ^ίF-1*, then D^H) is de-
fined as the sum of all principal (n — 1) rowed minors of the matrix Hi3

(with components evaluated for a unit vector) and is a homogeneous
polynomial of degree (n — 1) in the λ<. (See [4, p. 59] or [2, pp. 45-46].)
The quantity D(H{1), , H{n~1]) denotes the factor of \-"Xn.1 in
Dn^(H) divided by (n - 1)!. If we calculate (3.7) for each of the H{i)

using the same standard coordinates we have, because of (3.4),

(3.8)
1) ! (ίi-. »n-i)

In the same way as we derived (2.10), we find for any ueΩn,

(3.9) D(H{1\ . . . , fir(-1})

(n- 1)!2%"1

\MM'~\UnlW

Tt(z>

Ey comparison with (2.10) we observe that

(3.10) D{HW, . . . ,#<-») = ? !

where q{ is the quadratic from associated with the Fenchel momental
ellipsoid of Mi{u) in the (n — l)-dimensional space L(u).

From (3.9), we may give an integral interpretation of an elementary
symmetric function {R1 Rm) of the principal radii of curvature of the
centroid surface of M. With H given by (3.1) we have for m = 1, • ,
n - 1 (see [4, p. 63]),

(3.11) {R, Rm) = n ~ 1 u\,H,

n — m — 1 m

Set M - Mλ = - = Mm and Un = Mm+1 = . . . = i l ί^ . Since

(3.12) T ^ " L | ΐ t J a : | d K = : faΐϊί | M | >
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we obtain

- 1\ (n - 1)12-'
)

( t ( ( τ\z, ?„
JM(U)JM (u)J πn(u) J Un(u)

1 dv;-\.

By integrating successively over the UJu) and using (2.3) applied to
the appropriate dimensions we obtain

(3.13) {R1 RJ =

for m = 1, , n — 1.
We may also give an interpretation of each individual principal radius

of curvature. First we show:
(3.14) The Dupin indicatrix of the centroid surface of M{wrtz) at

the point of contact y of the tangent plane in the direction u is homo-
thetic to the Fenchel ellipsoid (wrt z) of M(u) in the space L(u).

A central affinity sends homothetic figures in parallel hyperplanes
into homothetic figures. Due to the affine nature of Fenchel ellipsoids
and centroid surfaces, we need only show that if the Fenchel ellipsoid
of M(u) is a sphere, then the Dupin indicatrix at y is a sphere. However,
this follows at once from (2.4) and the representation (3.7) in standard
coordinates since the principal radii of curvature R{ must satisfy

Hn~R Hλn

: :

•
Hnl Hnn — R

where H{j are evaluated for a unit vector. (See [4, p. 61].)
Now, let the line through z, parallel to the ith principal direction

of the centroid surface at y, be normal to the (n — 2) space Lw_2 through
z in L(u). Then Rt is given by

(3.14) Rt = Λ-I(M(u), Ln_2)
M\

where I(M(u), Ln-2) is the second moment, in L{u), of M(u) with respect
to Lw_2.

Returning to the (n — 1) bodies Mlf , Mn-λ for which we obtained
(3.9), let H{n)(u) be the supporting function (3.1) corresponding to any
bounded closed set Mn with positive volume. Then (see [2, p. 46]),

(3.15) V(K*, . . . , lΓ*) = rc-1( H{n)D(Hω, . • •, H^dωl, \ u \ = 1 ,
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V{K?, , K%) is the mixed volume of Kf, , K*. Using (3.9),
{3.15), (3.1) and the integration technique of Busemann in [1] where it
is shown that

;n_λ = ( n - 1)1 T(z, Pl, ., p ^ d V^1 - - d V

we obtain

(3.16) V(K*, ---,K:)

Since both sides of (3.16) vary continuously with the Mi9 we may extend
this result to any n bounded and closed sets Λfs with | M{ \ > 0. Briefly,
we may assume z e M{ and let ε5 > 0 be a sequence such that εy -> 0.
A covering of open spheres of radius εά with centers in M{ may be
reduced to a finite covering since Mi is compact. Conditions (a) and (b)
are then satisfied for the closure of such a finite covering and the ex-
tention of (3.16) follows.

There is an alternate proof of (3.16) which proceeds directly from
(3.1). We did not resort to this at the outset since the intervening
results are of interest in themselves. Briefly, the alternate proof is as
follows: We approximate the H{i)(u) of (3.1) by

such that E{i k) -* H{%) as k -* + oo. Now | u x \ is the supporting function
of the segment x with end-points x and —x. Also, by induction, one
shows that

V ( x i l ] , . - . , x ( Λ ) ) = 2 n T ( z , x { 1 \ - , x { n ) ) .

The function E{i'k) is the supporting function of the linear combination

Γor Xj > 0 the linear combination Ek = \E{1,k) + + λΛ E{ntk) may also
be expressed as a linear combination of the nk segments xUi). Expres-
sing the volume of Ek as a polynomial in the λ* in two ways we have
Iby comparing the coefficient of λ2 Xn

, E{ntk))
k k

v ... v

and (3.16) follows in the limit as k-*+ oo.
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The formula (3.16) may be substituted into inequalities of mixed
volumes to yield inequalities of the integrals. Since the number of times
a component appears on each side of a mixed volume inequality is always
the same, the coefficient on the righthand side of (3.16) cancels leaving,
as in (2.16), inequalities among the integrals only. However, in this
case when the uniqueness theorem (4.1) applies, the condition for equality
may be passed through the K* to the M{.

In [1, p. 11], Busemann shows that if M is a nondegenerate convex
body, then

(3 17) ί-- \j(z'p- '''p")dv^' -dV^ =
with equality only if M is an ellipsoid with center z. We define the
expanded centroid body K of M to be the dilation of K* about z by
the factor (n + l)πJ2πn^.1. By (3.12), we see that this is the factor
which dilates the centroid body of an ellipsoid with center z into coin-
cidence with the ellipsoid.

From (3.16) we obtain a reinterpretation of (3.17) by observing the
identity n\πnπn-λ = 2nπn~1:

(3.18) If K is the expanded centroid body of a nondegenerate convex
body M, then \K\ ^ \M\ with equality only if M is an ellipsoid with
center z.

The convexity of M is not an essential feature in (3.18) and the
Steiner symmetrization used to prove (3.17) may be extended to include
nonconvex sets.

Using the expanded centroid bodies K{ of Mi9 we may write (3.16)
as

(3.19) l i l ί i l ---\Mn\ V(Klf--,Kn)

and if we define K{ to be the point z if | M{ \ = 0 then (3.19) holds for
any bounded closed sets Mi9

Substituting (3.19) into (1.1) we have
(3.20) THEOREM. If K^u) is the expanded centroid body of M{{u)

in the (n — l)-dimensional space L{u), then

n

Λ Γ n _ x I

\ I Mx(u) I . I Mn^{n) I

The inequality V^iK^u), , Kn^(u)) ^ | K^u) \ .. | Kn^(u) \ (see
[2, p. 50]) and (3.18) reproduces (1.3).
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There are two special cases of (3.20) of particular geometric interest.
First, set M= M1 = = Mu-19 then

(3.21) I i lίh- 1 = — iE l l ( I M(u) I""11 K(u) \ dωn

u .

Next, for n ^ 3, set M = Mλ = = Mn-2f Mn-λ = Un, then

(3.22) I M r 2 = 1 * £ • [ I M(u) | -

where S(K(u)) is the surface area of K(u) in the space L(u).

4. Uniqueness theorems. In order for K* to determine M, additional
restrictions on M are necessary as may be seen by consideration of a
set M bounded by two concentric spheres.

(4.1) THEOREM. Suppose M{ (i = 1, 2) can be represented in polar
coordinates by 0 ^ r ^ ft(^), ue Ωn where Pi(u) is an even, i.e., ^(w) =
Pi{—u), continuous function on Ωn. If the centroid surface of Mλ(wrt z)
is identical to the centroid surface of M2(wrt z), then Mx and M2 are
identical.

(4.2) THEOREM. Suppose M{ (i = 1, 2) have the same representation
as in (4.1). If \ MΎ{u) \ = | M2(u) \ for all ue Ωn, then Mx and M2 are
identical.

The latter theorem is a result, for n — 3, of P. Funk [6].
We first prove (4.1). From (3.1) and the assumption on the represen-

tation of Mi we have

Consequently, (4.1) follows from the uniqueness of the solution of an
integral equation of the first kind. Namely:

(4.3) THEOREM. Let h(τ) be an even, continuous function on Ω .
If for unit vectors u and τ

\ \u τ\ h{τ)dωn

τ = 0

for all ue Ωn, then h{τ) vanishes identically.
The result (4.3) is well known for n = 2, 3 and the recent extension

of surface harmonics to ^-dimensions, in particular the Funk-Hecke
theorem, enables one to prove (4.3) for all n. There are two steps in
the following proof (which applies for n ^ 3). First, from the com-
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pleteness [5, p. 241] it suffices to show that

( SM(τ)Hτ)dω*v = 0

for all the linearly independent surface harmonics Sm(r) of degree m and
for m = 0, 1, 2, •••. Since h(τ) is an even function we need only to
consider, now, even m. Next, from the Funk-Hecke theorem [5, pp.
247-248] we have

ί \u τ\ Sm(u)dωl = XmSm(τ)

where

(4.4) Xm = (4πymlΓ(v) f' _ dχ

(m + 2v — 1)! J-i

and v = (n — 2)/2 i> 1/2. Thus, we need only to verify that Xmφ 0 for
m = 0, 2, 4, . For m = 0, Co

v(^) = 1 and λ0 φ 0. For m > 0,

where αm,v ^ 0. See [5, p. 236] for the explicit expression of the coef-
ficient α m v . Thus the integral in (4.4) is

and using integration by parts

im + v- l/2\
i».v = 2 α m > v ( - l ) — (m - 2)! m

I 1

for m = 2, 4, 6, which completes the proof.
The result (4.2) is clearly a consequence of the following spherical

integration theorem.
(4.5) Let f(τ) be a continuous even function defined on Ωn. If

On(u)

for all u e Ωn, then f(τ) vanishes identically.
A proof of (4.5) for n = 3 can be found in [4, pp. 136-138]. How-

ever, a proof for all n ^ 3 is easily obtained from (4.1). To see this,
set g(τ) = f{τ) - [min/(r)] + 1 > 0. Let p{τ) = [g(τ)Y'*+1) and let M b e
the set whose polar coordinates satisfy O ^ r ^ p(τ), τ e Ωn. Using (3.13)
for m = 1, the sum of the principal radii of curvature of the centroid
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surface of M wrt z may be expressed, in this case, by

B, + + Rn-λ = * , „ . ί oWdωr1

(n + 1) I M\ jon(u)

and, by hypothesis, this is a positive constant for u e Ωn. However,
this implies (see [4, pp. 117-118]) that the centroid surface is a sphere
and by (4.1), M is a solid sphere and g{τ) is a constant which completes
the proof.
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ASYMPTOTIC ESTIMATES FOR LIMIT

CIRCLE PROBLEMS

C. A. SWANSON

1. Preliminaries* Characteristic value problems will be considered
for the second order, ordinary, linear differential operator L defined by

on the open interval ω_ < s < ω+, where k, p, q are real-valued functions
on this interval with the properties that

(i) p is differentiate;
(ii) k and q are piecewise continuous; and
(iii) k and p are positive-valued. The points ω_ and ω+ are in gen-

eral singularities of L; the possibility that they are ± oo is not excluded.
It will be convenient to use the notations

ct _

(1.2) (x, yYs = I x{u)y{u)k{u)du, ω_ ^ s < t ^ ω+ ,
Js

(1.3) [xy](s) = p(s)[x(s)y'(s) - x'(s)y(s)] .

Then Green's symmetric formula for L has the form

(1.4) (Lx, y)l - {x, Ly)l = [xy](t) - [xy](s) .

The symbols [xy](±) will be used as abbreviations for the limits of [xy](s)
as s -> ω±, and (xf y) will be used for the left member of (1.2) when
s, t have been replaced by <*>_, ω+. Let ξ>, gα& denote the Hubert spaces
which are the Lebesgue spaces with respective inner products (x, y),
(x, y)l and norms ||α>|| = (x, x)ll\ \\x\\\ = [(a?, x)ha\ll\ ω.^a<b^ω+.

Let α0 and b0 be fixed numbers satisfying ω_ < α0 < 60 < ω+ and
let Ro be the rectangle in the a — δ-plane described by the inequalities
ω^ < a g α0, b0 ^b < ω+. Every closed, bounded subinterval [α, b] of
the basic interval (α>_, α>+) can be associated in a one-to-one manner with
a point in i?0. For every such [α, 6] we shall consider the regular Sturm-
Liouville problem

(1.5) Ly = μy, Uay = Uby = 0

on [α, 6], where Ua9 Ub are the linear boundary operators

(1-6) Uay = aQ{a)y{a) +

Uhy = βo(b)y(b) +

with aQ9 aλ real-valued functions not both 0 for any value of a on (ft>_, α0],
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and with β0, βλ real-valued and not both 0 on [b0, ω+]. Our problem is
to obtain estimates for each characteristic value μ — μah of (1.5) for α, b
near ω_, ω+ under hypotheses that will ensure that the limits of μab as
a,b-> ω_, ω+ will exist. Also, we shall obtain estimates for the corre-
sponding characteristic functions y = yab = yab(s) on a g s <^ 6. Results
like this for differential operators having a singularity at one endpoint
were obtained previously by an integral equations approach [8], [9]. The
present paper contains extensions of some of these results to operators
(1.1) which have singularities at both endpoints. Furthermore, the present
approach to the problem will be different; the estimates will now be
obtained by means of projection mappings on suitable Hubert spaces.
The method arises from an idea communicated by Professor H. F.
Bohnenblust, and affords an elegant and abstract approach to the type
of perturbation problem at hand [l]. Also, the present method is powerful
enough to handle a variety of domain-perturbed problems that arise in the
study of elliptic partial differential equations. Some of these have been
considered already [10] and the author has several others in preparation.

Here the method will be illustrated in the case that both of the
singularities ω± of the operator (1.1) are limit circle singularities in the
well-known classification of H. Weyl [2, p. 225]. In another paper we
shall consider the limit point cases (and mixed cases) in which some
additional hypotheses are needed on the growth of the coefficient func-
tions in (1.1) as s -> ω± to ensure the existence of isolated characteristic val-
ues λ of L on (ω_, ω+); however, very general boundary operators Ua, Ub

will then permit convergence of μab to λ. For additional details, see [8].
In the limit circle case herein under consideration, no special assumptions will
be imposed on the nature of L at ft)±, but the generality of the boundary
operators must be sacrificed in order to ensure the convergence of μab.
Our purpose here is to obtain asymptotic estimates rather than asymptotic
expansions for the characteristic values and functions as α, 6 -• ω_, ω+.
Asymptotic formulae and expansions will be published elsewhere.

2 Basic and perturbed problems* Rather than general spectral
theory, we are interested in cases that the limits of μah as α, b -> ω__, ω+

exist in the elementary sense. Thus, characteristic values of suitable
singular boundary value problems for L on (α>_, ω+) are supposed to
exist. These singular problems are described differently according as
the points ω± are in the limit point or limit circle categories. The
description is made as follows when both are limit circle singularities [2],
[6]: choose a complex number l0 with Im l0 Φ 0, and let Lo be the differ-
ential operator L — l0. A theorem of Weyl [6] states that there exist
linearly independent solutions ψ± e ξ> of L0<p = 0 such that

(2.1) [ψ-Ψ-](-) = l<P+Ψ+]( + ) = 0, l<P+Ψ-](s) = 1 .
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Let 3) denote the domain consisting of all x e ξ) which have the
following properties:

(a) x is differentiate on (ω_, ω+) and xf is absolutely continuous
on every closed subinterval of this interval:

(b) Lx e ξ>
(c) x satisfies the end conditions

(2.2) [x<P-](~) = [x<P+]( + ) = 0 .

Then L on 3) is real and essentially self-ad joint [6]. The basic charac-
teristic problem

(2.3) Lx = Xx, x e 3)

is known to have a denumerable set of characteristic values Xn and
corresponding characteristic functions xn which are orthonormal and
complete in ξ> (n = 1, 2, •).

Two classes of perturbation problems (1.5) will be considered. The
limiting behaviour of class 1 boundary operators Uaf Ub as α, b -> ω_, ω+
is rather arbitrary (see §5) while the limiting behaviour of class 2 oper-
ators (§§2, 3, 4) is restricted as follows:

Uay = [w>_](α)[l + o(l)] as α

ϋ / [ί/9>](6)[l + (l)] as b -

for every differentiate function ?/. A perturbed domain ®αδ is defined
for each [α, 6] e ί?0 to be the set of all y in the subspace gα& of ξ) which
satisfy the following conditions:

(a) y is differentiate and y' is absolutely continuous on [α, 6];
(b) Lye%ab

(c) ?/ satisfies the homogeneous boundary conditions (1.5) where the
boundary operators Ua, Ub have the limiting behaviour (2.4).
The perturbed characteristic value problem that corresponds to this
domain is the regular Sturm-Liouville problem

(2.5) Ly = μy, ye 2)αδ .

In addition, we define a domain ®α for each a on (ω_, α0] to be the
set of all z e %aω+ which satisfy the following:

(a) z is differentiate and z* is absolutely continuous on every closed
subinterval of [α, ω+);

(b) L * e g α ω +

(c) z satisfies the conditions

(2.6) Uaz = 0,

The characteristic value problem
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(2.7) Lz = vz, z e ®α

on the half-open interval [α, ω+) may be regarded as intermediate between
(2.3) and (2.5), and will be called a semi-perturbed problem.

In order to obtain estimates for the difference between the character-
istic values and functions of (2.5) and (2.3), we shall proceed in two
steps: (i) the comparison of (2.5) with (2.7), and (ii) the comparison of
(2.7) with (2.3). The details of (i) and (ii) are included in §§3 and 4
respectively. Each comparison has independent interest because it is
typical for a boundary variational problem when only one endpoint is
varied and the unchanged endpoint is (i) an ordinary point; (ii) a singular
point of the differential operator. Type (ii) variational problems arise
for example in the theory of enclosed quantum mechanical systemsf 4], [5].

3 Comparison of the y and z problems. The characteristic value
problems (2.5) and (2.7) will be compared, with (2.7) regarded as basic
and (2.5) regarded as a perturbation on (2.7). In this case, the singular
boundary condition [zφ+]( + ) — 0 is replaced by the regular condition
Ubz = 0 at the point b. λVe are going to estimate the variation of
characteristic values and functions under this perturbation, and show
that this variation has the limit 0 as b -> ω+. The ordinary endpoint
a remains fixed in this section.

Let Gab(s, t) be the Green's function for the operator kL0 associated
with the boundary conditions (1.5), and let Gab be the linear transfor-
mation on %ab defined by the equation

(3.1) Gaby = Γ Gab(s, t)y(t)k(t)dt, p g β δ .
Ja

Let v — va be a characteristic value for (2.7) and let za be the corresponding
characteristic function. Define a function / o n [a, b] by1

(3.2) f=za — ΎaGabza where γα = va — l0 .

It is easily verified because of the linearity of all the operators involved
that / is a solution of the boundary value problem

(3.3) LJ - 0, UJ = 0, ΌJ = Ubza .

The solution ψa of Loy = 0 that is given by

(3.4) ψa(s) = φ4*)Uaφ+

satisfies the boundary condition Uay = 0. Hence the unique solution of

(3.3) is
1 The function on [a, b] which coincides with za on this interval will also be denoted

by za.
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<3.5) f(s) = (Uύza

In fact, if g is any solution of (3.3), then the function h — g —/satisfies
Loh = 0, Uah = Ubh = 0. This implies that h is the zero function, or

It follows from (2.1) that [φ+φ+](b) -> 0 as b -> ω + and [<p_φ_](a) -> 0
as α -> α>_. The identity

[9>+<P+](t) - ί<P+<P+](s) = (h ~ ϊo)(\\ <P+ WIT

is a consequence of (1.4), and since φ+ e §, the limit [<P+<p+](—) exists.
Similarly [φ_φJ](+) exists. From (2.1) and the identity [6]

we deduce that | [φ+φJ\(a)\ ->1 as α-> α>_. Similarly | [9>+9>_](6)| -> 1 as
b -• ω+. It has then been established that

0, I ?7δ^_ I -> 1 as b ~> ω+

where (2.4) has been used. Since φ± e ξ>, it follows from (3.4) that
l is uniformly bounded for [α, b] e Ro. We obtain from (3.4) that

a = Ubφ-Uaφ+ - Ubφ+Uaφ-

and hence there are numbers α0, ί>0 (we may suppose that they coincide
with the original choices of α0, δ0) such that i/j'f β is bounded away from
zero on a g a09 b0 ^ b. These considerations enable us to deduce from
(3.2), (3.5) that there exists a constant2 C on i20 such that

<8.7) | | z a - 7aGabza\\b

a ^ C\ Ubza\ \\za\\l [a, b] e R o .

Let μi — μib denote the ίth characteristic value of the regular problem
{2.5), μ1 < μ2 < •••, and let yι denote the corresponding characteristic
function, chosen so that {y{} is an orthonormal basis in gα&. The following
fundamental lemma was obtained by H. F. Bohnenblust in [1] by applying
the Parseval completeness relation to the set {y1}. An outline of the
proof is reproduced below.

LEMMA. Let P(δ) be the projection mapping from the Hilbert space
gαδ onto its subspace $o&(δ) (δ > 0) spanned by all characteristic func-
tions y{ of (2.5) such that their corresponding μι satisfy \μι — va\ fg δ.
Then for any w e %ab,

\\w - P(S)w\\l ^ (1 + |7αl/8)||w -V»Gabw\\b

a.
2 The letter C will be used throughout as a generic notation for the image of a constant

function from Ro into the positive numbers.
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Proof. The subscripts a, b will be omitted in this proof. Let
<χ. = (Gw, yι). It is easily verified that (w — γGw, y{) = (μi — v)^, and
hence by the Parseval identity,

\\w -

where the * denotes summation over only those indices i such that
\μi — v\>8. Then

||Gw - P(S)Gw\\2 = Σ Ί ^ Γ ^ δ~21| w - yGw\\2,

and the conclusion of the lemma follows easily from the Minkowski
inequality.

The notation pb = C\yaUbza\ will be used. It follows from (2.4) and
(2.6) that pb-+Q as b -> ω+ for each fixed α. With the choice 8 — 2pb,
we apply the lemma to w = za (see footnote 1) and use (3.7) to obtain

\\za-P(2pb)za\\l^(C\Ubza\+i)\\za\\b

a.

We may suppose that 60 has been selected so that C \ Ubza | ^ 1/4 on
b0 ^ b < G>+. Hence P(2pb)za = 0 implies that 2α = 0 on [α, 6], and there-
fore %ab(%Pι>) has dimension ^ 1. Hence there exists at least one
characteristic value μ = μab of (2.5) which satisfies

(3.8) \μa*-K\ S2pb, [a,b] e RQ .

To prove that there is exactly one, we conclude from the maximum-
minimum principle for characteristic values [3], [7] that the absolute
value of the ί th characteristic value v\ of (2.7) cannot decrease when a
boundary condition at 6 is adjoined, and hence \v\\ <Ξ \μib\ (i = 1, 2, •)•
Since the numbers v\ do not accumulate and since pb->0 as b -> ω+,
there is a constant 60 such that 2pb is less than the minimum of all the
differences \v{ — v% (i, j = 1, 2, i f̂c i) whenever 6 ̂  &0. If 0 <
^ί < ^L it follows from (3.8) that exactly one characteristic value μab.
of (2.5) lies in the interval [vl, v\ + 2pb], A similar statement applies
to the case that one or both of v\, v\ are negative.

In order to prove by induction that there is exactly one μib which
satisfies \μ\b — v\\ ̂  2pb (ί = 1, 2, •)> assume that this is true for each
integer i^n. In the case that | vn

a

+1 \ < \ vl+2 \ there are at most n + 1
characteristic values μib which satisfy \μib\ ^ |vl+ 1 \ + 2pb since \μib\ ^
|vί | for each i. It then follows from the induction assumption that
there is at most one characteristic value μli1 satisfying | μlt1 — K+11 ^ 2ρb,
and hence exactly one by (3.8). In the other case vl+2 = — vn

a

+1, it follows
similarly that there are at most two μib satisfying | vn

a

+1 \ < \ μU \ ̂  | vn

a

+1 \ +
2ρb, and again by (3.8) there is exactly one μι

ab near each of vl+ι, v%+2»
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THEOREM 1. // the singularity ω+ of (1.1) is the limit circle type,
then for every characteristic value va of (2.7) there exists a rectangle
Ro and a constant C on Ro such that5 a unique characteristic value μab

of the perturbed problem (2.5) lies in the interval \μab — va\ ^ C\ Ubza

whenever [α, b] e RQ.

This shows in particular that for each fixed α, there is a unique μab

of (2.5) such that μab -» va as b -> OJΛ . In addition, the estimate of the
theorem is valid uniformly on α>_ < a 5Ξ α0. One also finds for the
characteristic functions yab and za associated with μab and va respectively
that the estimate

\\Va> - ZaWl ^ C \ U b Z a \ , \\yab\\b

a = \\Za\\a = 1

is valid on RQ.

4. Comparison of the z and x problems* The characteristic value
problems (2.7) and (2.3) will now be compared, with (2.7) regarded as a
perturbation of the basic problem (2.3). The perturbation arises from
the singular end condition [xφJ\(—) = 0 being replaced by a homogeneous
boundary condition at the point α. The novelty of this section is due to
the singular nature of the unchanged endpoint ω t .

Let λ be a characteristic value of (2.3) and let x be the corresponding
normalized characteristic function. Let Ga be the linear integral operator
on gαω+ whose kernel is the Green's function for kL0 associated with
the boundary conditions (2.6). This operator is defined similarly to the
operator Gab in (3.1) [6]. Let a function g on [α, ω+) be defined by4

(4.1) g = x — γGaX where γ = λ — lϋ .

The analogue of (3.5) is

(4.2) g(s) - (Uax/Uaφ+)

It follows from the postulated boundary conditions (2.2) at ω_ that
[xφj\(a) -> 0 as a -» &>_, and hence by (2.4) that Uax —• 0 as a -> <*>_. It
was proved above (3.6) that | Uaφ+\ -> 1 as a -> α>_, and since φ+ e φ,
we obtain the inequality

(4.3) \\x-7Gax\\a ^C\Uax\ \\x\\a

for some constant C. The analogue of the lemma in §3 with gαδ replaced

by Sαω+ leads to

\x - P(8)x\\a ^ (1 + |γ |/δ) ||a? ~ jGax\\a

^(l + \Ύ\lδ)C\Uax\\\x\\a,

3 See footnote 2.
4 The function on [a, ω+) which coincides with x on this interval will also be denoted by x.
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and the following theorem is obtained.

THEOREM 2. // the singularities ω± of (1.1) are both of the limit
circle type, then for every characteristic value X of the basic problem
(2.3) there exist constants a0 and C such that a unique characteristic
value va of (2.7) lies in the interval \va — λ| ^ C\ Uax\ whenever a
satisfies ω_ < a ^ a0. If x, za are characteristic functions corresponding
to λ, va respectively with norms \\x\\ = \\za\\a = 1, then

(4.4) \\za - x\\a g C I Uax\, ω_<a^a0,

and in particular \\za — x\\a -• 0 as a - > ω_.
We shall next prove the following consequence of (4.4):

(4.5) Ubza = Ubx + (I Uax\ + I Ubx\)o(l) ,

the order symbol being valid as b -» ω+ uniformly on o>_ < a ^ α0. We
use formula (1.4) to obtain

- [za<P+](b) = (vα - ίo)

- [xφ+](b) = (λ - Zo)(ί

Since [xφ+](+) = [za<P+](+) = 0 by (2.2), (2.6), we deduce from the
Schwarz inequality on g6 ω + that

\[zaφ+](b) - [xφ+](b)\ ^ \(va -T0)(za - X, φ+)b\ + | (va - X)(χ, φ+)b\

^\K-Ϊo\\\za-X\\b\\φ+\U

+ \va-X\\\x\\\\<P+\\b.

The desired conclusion (4.5) then follows from Theorem 2 and (2.4). The
following abbreviation will be used:

(4.6) pab = \Uax\ + \Ubx\ .

THEOREM 3. // both singularities ω± are of the limit circle type,
then for every characteristic value X of (2.3) there exists a rectangle
Ro and a constant C on Ro such that exactly one characteristic value
μab of the perturbed problem (2.5) lies in the interval \μab — X\ <; Cρab

for every [a, b] e Ro. For the characteristic functions x, yab associated
with λ, μab respectively, normalized by \\x\\ — \\yab\\ha — 1, the estimate
\\Vab — %\\ba ̂  Cρab is valid.

Proof. It follows from Theorems 1 and 2 that

Uax\).
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The first statement of the theorem is then a consequence of (4.5) and
(4.6). The proof of the second statement is similar and will be omitted.

Finally, we shall obtain uniform estimates for the difference yab(s) —
x(s) on a g s g b. We remark in passing that the asymptotic result
Vab(s) = x(s)[l + o(l)] as α, δ-> ω_, ω+ cannot be valid for s near the
boundaries α, b nor can it be valid near any zeros of x(s). Uniform
estimates will now be derived by the same technique that proves useful
in certain domain-perturbed problems concerning elliptic partial differential
equations [1], when φ±(s) are bounded on (α>_, ω+).

First it will be shown that (λ — lo)Gabx(s) gives a uniform estimate
for yab(s) on a g s ^ b. Let ψa(s) be the function (3.4) and let fb{s) be
defined by

ψb(s) = φ-(8)Ubφ+ - <P+(s)Ubφ- .

Then

Gab{s, t) = σ-ty α(ί) ψb(s) if a ^ t ^ s ^ b ,

= <7-ty«(s) π/rδ(ί) if α ^ s g t S 6 ,

where

a = Uaφ- Ubφ+ - Uaφ+ Ubφ- .

Then \σ\ —• 1 as α, b —• α>_, <jt>+, and the function defined by

(\\Gab\\b

aγ= [\Gab(8,t)\*k(t)dt
Ja

is a bounded function of s, α, and b. Hence the inequality

\Va*(s) - (λ - gGΩ 6x(s)| - \Gab[(μab - lo)yab(s) - (λ - lo)x(s))\

^ l |Gβ 6 | | ί (li".6 - h\ llVα* - »llί + li"α* ~ λ| | |a?||),

and Theorem 3 show that there exists a constant C such that

(4.6) I yab(s) - (λ - lo)Gabx(s) \ ̂  Cpaab a^s^

Let h be the uniquely determined solution of the boundary value
problem

Loh = 0, C/> = Uax, Ubh= Ubx on α g s ^ 6 .

Let the function / on [a, b] be defined by

f(s) = (λ - lo)Gabx(s) - x(s) + h(s) .

Since / satisfies L 0 / = 0 , Uaf = Ubf = 0, / is identically zero. The
following uniform estimate is then a direct consequence of (4.6):

(4.7) yab(8) = φ ) - Λ(«) + O(ί>oδ), α ^ s ^ b .
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It can be verified without much difficulty that h(s) = O(pab) on a fixed
closed subinterval Io of [a, b], valid for [α, b] e Ro. The following uniform
result on Jo is therefore a special case of (4.7):

VaM = x(s) + O(paύ) [α, i ] e J ί 0 .

5 Class 1 boundary operators. Instead of the restrictive limiting
behaviour (2.4) of the boundary operators Ua, Ub, the limiting behaviour
of class 1 boundary operators is essentially arbitrary. In regard to the
perturbation a -> α>_, a class 1 boundary operator Ua is defined as follows.
Let φ+ be the function defined in §2 and let x be a characteristic function
of the basic problem (2.3) corresponding to the characteristic value λ.
Class 1 perturbation problems are possible when the singularity ω_ is
not an accumulation point of the zeros of <p+ and

(5.1) x(s)l<p+(s) = o(l) as s -> ω_ .

In this event, Ua is said to be a class 1 boundary operator on (ω_, α0]
whenever the ratio φ+(a) Uaxlx(a) Uaφ+ is bounded on this interval. This
rather mild restriction on Ua implies that

(5.2) εα = I UaxlUaφ+\ = o(l) as a -> ω_ .

An example is given in [8, pages 838-840] when ω_ = 0 is a regular
singularity of L, with p(s) — 1. In this event, a sufficient condition
that the boundedness requirement above (5.2) be satisfied is that the
limit σ = limα^0 [aaoWla^a)] exists (finite or oo) and σ Φ — p, where p
denotes the smaller of two real, distinct exponents at the singularity 0.

Let g be defined by (4.1). Then (4.2) is valid but under the as-
sumptions of this section, (4.3) is replaced by

(5.3) \\x-7Gax\\a^Cεa\\x\\a

where εa is defined by (5.2). In the notation of §§2, 3,

Since εα = o(l) as a -> ω_, Theorems 2 and 3 are valid with the replacement
εα instead of | Uax \. A similar statement is appropriate in the event
that Ub is a class 1 boundary operator.

In the example of a regular singularity ω_ = 0 with real exponents
ft, ρ21 it turns out that εa = O(αPl~P2) if ρλ > ρ2 and εa = O(lβn a) if pt =
p2(0 <a ^ a0).
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ON ESSENTIAL ABSOLUTE CONTINUITY

ROBERT J. THOMPSON

Throughout this paper D will denote a bounded domain in Euclidean
w-space Rn, and T will be a bounded, continuous, single-valued transfor-
mation from D into Rn. For such transformations, concepts of essential
bounded variation and essential absolute continuity have been defined
and studied by Rado and Reichelderfer ([3], IV. 4). In this paper a
characterization of essential absolute continuity will be given. The
characterization suggests a definition of uniform essential absolute con-
tinuity and some of the consequences of this definition will be investigated.

1. For every point x in Rn a multiplicity function K(x, T, D) is
defined ([3], II. 3.2). T is said to be essentially of bounded variation
(briefly eBV) in D provided K{x, T, D) is Lebesgue summable in R71

([3], IV. 4.1, Definition 1). Let X , = X . (Γ, D) denote the set of
points x in Rn for which K{x, T, D) is infinite. Thus if Γis eBV in D,
then .SfX, — 0 (if A is a subset of Rn, then ^A denotes its exterior
Lebesgue measure). Since K(x, T, D) is a lower semicontinuous function
of x ([3], II. 3.2, Remark 10), X , is a Borel set and, by Theorem 1
of [31, IV. 1.1, the set T1 X , is also a Borel set.

2 If x is a point in Rn and C is a component of T~ιx which is
closed relative to Rn, then C is termed a maximal model continuum (x,
T,D) ([3], II. 3.1, Definition 1). Denote by <£ = <£(2\ D) the class com-
posed of all sets C for which TC is a point in Rn and C is a maximal
model continuum for {TC, T, D). Let © = <ϊ(Γ, D) be the subset of ®
consisting of those elements C each of which is an essential maximal
model continuum (briefly e.m.m.c.) for {TC, T, D) ([3], II. 3.3, Defini-
tion 1); the set E = E(T, D) = U C, C e © ([3], II. 3.6). Let (£f =
Gf̂ Γ, /?) be the subset of 6f consisting of those elements C each of which
is an essentially isolated e.m.m.c. (briefly e.i. e.m.m.c.) for {TC, T, D)
([3], II. 3.3, Definition 2); the set E, = E,{T, D) = U C, C e ^ ([3], II.
3.6.). Finally, let @f = @f(Γ, D) be the subset of ©4 consisting of those
elements of @{ which consist of single points; the set Ef = E^T, Z>) =
UC, Cee? ([3], II. 3.6). The sets E, E, and E? are Borel sets ([3],
II. 3.6, Theorem 1).

If T is eBV in Z>, then a necessary and sufficient condition that T
be essentially absolutely continuous (briefly eAC) in D ([3], IV. 4.2) is

Received December 15, 1960. The results reported here were included in a dissertation
presented in partial fulfillment of the requirements for the degree Doctor of Philosophy
at The Ohio State University. The author wishes to express his gratitude to Professor P.
V. Reichelderfer for his generous help and advice.
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that T satisfies the condition (N) on the set E{T, D) ([3], IV. 4.2,
Theorem 3) i.e., if S C E and ^fS = 0, then £fTS = 0.

DEFINITION 1. T will be said to satisfy the (ε, δ) condition on a
subset A of D if for every ε > 0 there exists a δ > 0 such that if
SEA and jSfS < δ, then ^fTS<ε. Clearly if Γ satisfies the (ε, δ)
condition on each of a finite number of subsets of />, then Γ satisfies
the (ε, δ) condition on any subset of their union. Also, if A is a Borel
subset of D, then T satisfies the (ε, δ) condition on A if and only if
for every ε > 0 there is a δ > 0 such that if S is a Borel subset of A
and ^fS < δ, then ^TS < ε.

THEOREM 1. Suppose T is eBV in D. Then a necessary and suf-
ficient condition that T be eAC in D is that T satisfies the (ε, δ)
condition on the set E(T, D).

Proof. Since T is assumed to be eBV in D it suffices to prove
that a necessary and sufficient condition that T satisfies the condition
(N) on the set E is that T satisfies the (ε, δ) condition on E. Since
the proof of the sufficiency is immediate, we proceed to a proof of the
necessity. If T satisfies the condition (N) on E, then, by Lemma 4 of
[31, IV. 4.2, £?T(E - Ef) = 0 and so T clearly satisfies the (ε, δ) con-
dition on E — Ef. Since T is eBV in D, ^X^ = 0 and so T satisfies
the (ε, δ) condition on T^X*. Since E is a subset of the union of the
sets E - EΊ

P, T-'Xoo and E? - Γ ' X , in view of the remarks following
Definition 1 it remains only to be shown that T satisfies the (ε, δ) con-
dition on E,p — T^Xoo whenever T satisfies the condition (N) on E.
Assume then that T does not satisfy the (ε, δ) condition on Ef — Γ~LX>o.
The proof will be completed by showing that T does not satisfy the
condition (N) on E. Since Ef and T^X^ are Borel sets, their difference
is a Borel set. Thus the assumption that T fails to satisfy the (ε, δ)
condition on Ef — T^X^ implies, in view of the remarks following
Definition 1, that there is an ε0 > 0 such that for every positive integer
k there is a Borel set Sk S Ef — Γ^X, such that ^Sk < 1/2* and
SSTSk ^ ε0. Let S* - lim sup Sk (= Γl"=i U**»S*)- S* is a subset of
Ef - TιX^ and so

(1) S*E£7.

For every positive integer n, S* 5 \Jk^n Sk and so J^fS* <ί 1/2*"1. Hence

(2)

Let A: be a positive integer and suppose x e TSk. Since Sk E Ei —
T^Xoo, K{x} T, D) < 00 and there is a point u in £7f such that Tu — xf
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Since K(x, T, D) < oo there are at most a finite number of e.m.m.c.s.
for (x, T, D) ([3], II. 3.3, Definition 1 and II. 3.4, Theorem 3). But
for every point u in E? such that Tu = x the set consisting of the point
u is an e.m.m.c. for (x, T, D). Thus there are at most a finite number
of points u in Ef — T~λXoo for which Tu = x. Thus it has been shown
that

(3) For every integer k, if x is in TSk then (Ef - T^XJ) f| T~ιx is
a finite set.
Since (J S* 5 Ef — ΓΛXΌ. it is easy to show that (3) implies that lim
sup TSk — Γ(lim sup S>Λ) and so

(4) .2*(Kmsup Γ&) = ^ Γ S * .

By Theorem 4 of [3], IV. 1. 1, the sets TSk are measurable. Since T
is a bounded transformation, £f(\jTSk) is finite. Thus ([5], p. 17)

(5) jS^ίlim sup TSk) ^ lim sup

But £?TSk ^ e0 > 0 for all & and so

(6) lim sup ^TSk > 0

By (4), (5) and (6),

(7) j ^ Γ S * > 0

Now (1), (2) and (7) imply that T does not satisfy condition (N) on E.

3. DEFINITION 2. For every positive integer j let D3 be a bounded
domain in Rn and let Γy be a bounded, continuous, single-valued trans-
formation from Dj into Rn. The transformations JΓ, will be termed
uniformly essentially absolutely continuous (briefly UEAC) provided:

(i) For each j , T3 eBV in D3 and
(ii) Given any ε > 0, there is a δ > 0, depending only on ε, such

that for all j the following is true: if S is a subset of E(Tjf Dj) and
SfS < δ, then ^TjS < ε.
Note that if the transformations To are UEAC, then, by Theorem 1,
for each j , T3 is eAC in D3.

Each point u in D is contained in a unique component of T~LTu
denoted by Cu. A subset U of D is termed a T set if u e U implies
CUEU ([4], 1).

THEOREM 2. Lei D be a bounded domain in Euclidean n-space Bn

and let T be a bounded, continuous, single-valued transformation from
D into Rn. For every positive integer j let D3 be a bounded domain
in Rn and let T{ be a bounded, continuous, single-valued transformation
from D3 into Rn,
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If
( i ) The mappings T3 are UEAC
(ii) The mappings T3 converge to T uniformly on compact subsets

of D ([3], II. 3. 2, Remark 9) and
(iii) A is a T set contained in E(T, D) and ^A — 0,

then ^TA = 0.

Proof Let ε > 0 be given and let δ be the corresponding positive
number in (ii) of Definition 2. Since A is a subset of the open set D
and £fA — 0, there is an open set O, containing A and contained in D,
such that £fθ < 8. Let x e TA. Since A C E(T, D), there is a set
C, e.m.m.c. for (x, T, D), such that C meets A. C C A since A is a
Γ set and so C g O . By Definition 1 in [3], II. 3.3 there is a set J9,
which contains C and whose closure J3ΓD is contained in 0, such that
D is an indicator domain for (x, T, D) ([3], II. 3.2). By definition
<βΓDED,x is not in T&D (where &Ώ denotes the boundary of D)
and the topological index μ(x, T, D) ([3], II. 2) is not zero. Since T&D
is compact, the ecart of x from T& D, e(x, T&D), is positive ([3],
1.1.4, Exercise 3). Since 3ΓD C D, by (ii) there is a positive integer
j x such that, for j > j x , JίTΏ C />; and ^(Γ, T, , JTZ)) the deviation of
Tj from T on J Γ J D ([3], I. 1.5, Definition 5) is less than φ , T^D).
Clearly jθ(Γ, Tj9 &D) g />(T, Γ,, 3ΓD). Thus, for i > j x , JTDEDf] B3

and ^(Γ, Tj9 &Ώ) < e(x, T^D). By Theorem 6 of [3], II. 2.3, μ(x, T3, D)
is defined and equals μ(x, T, D). Thus D is an indicator domain for
(x, Tj, Dj) and, by Lemma 4 of [3], II. 3.3, there is a set Cj9 e.m.m.c.
for (x9 Th Dj), such that C3- C D. Now C3 C 0 n ^ ( Γ y , Dy) and Γ.C,- = x.
Thus a; 6 ^ [ 0 Π E(Tjf D3)] for all j > 3* and hence x e Urn inf Γ^O Π
E(Tjy Dj)]. Since cc was any point in TA, it has been shown that TA
C Km inf ^ [ O Π E(T3, D3)] and so

(1) ^TA ^ j^Wm inf T3[O n ^ ( Γ , , Z>y)].

Since #(7^, J9y) is a Borel set, O n E(T3, D3) is also a Borel set and so
T3[O Π JS'ίT',., D3)] is Lebesgue measurable. Thus ([5], p. 17)

(2) jδf lim inf ϊ7,- [0 n ^(T7,, />,)] ^ lim inf ^fT3 [O n

Now

(3) ^f[O n ^(ϊ 7 ,, Dy)] ^ £f 0 < δ.

By the choice of 8, (3) implies that £fTd[0n E(Tjf D3)] < e and hence

(4) lim inf seT3 [0 n E{T3, D3)] g ε.

By (1), (2) and (4)
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(5)

Since (5) has been proved for an arbitrary ε > 0, it follows that £fTA = 0.

4. Theorem 2 suggests the question: under the hypotheses of
Theorem 2 does T satisfy the condition (N) on E(T, /))? Note that T
does satisfy the condition (N) on E?(T, D). In the remainder of the
paper some results pertinent to this question will be presented.

Reichelderfer introduced the concept of the T magnification ([4], 6).
It will be useful to have the definition repeated here.

Let ®* = ®*(T, D) be the class composed of all domains Dior each
of which j%ΓD is contained in D and there exists an open oriented %-cube
Q in Rn such that D is a component of T~ιQ. If C is a maximal model
continuum for (x, T, D) for some point x in Rn, for every positive number
ε define

d(C, £?T, ε) - l.u.b. ^ΎΌ\^Ό, C ^ D e <&*, δTD ^ ε

and

d(C, £fT, ε) = g.l.b. .Sf ΓD/jSf A C E D e ®*

(If A is a subset of Rn, δA denotes the diameter of A).

d(C, £?T) = lim d(C, jSf Γ, ε)

and

d(C, SfT) - lim d(C, &T, ε).

If d(C, ̂ ^Γ) and d(C, JZfT) are finite and equal, their common value
is denoted by M(C, T) and is termed the T magnification at C.

Lemma 1. Lei p be a positive number and let A be a T set with
the following properties:

(i) If u e A, then there is a set C e &i(T, D) such that u e C and
d{C, SfT) > p.

(ii) If C e &i{T, D) and C C A, then for every domain G in R%

which contains TC and has a sufficiently small diameter it is true
that T~ΎG possesses exactly one component D which meets A. Note that
D must contain C and (provided only that the diameter of G is suf-
ficiently small) be a m.i.d. T ([4], 4 and 5, Lemma 2).

Then seA ^ \\p

Proof, Let η be any positive number. The proof will be completed
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by showing that £?A ^ 1/p^fTA + η.
Let x e TA (the inequality is trivial if A is empty) and let u e A

such the Tu = x. By (i) there is a set C e (^(T, /)) such that w € C
and d(C, jδfT) > p. Thus there is an ε > 0 such that d(C, SfT, ε) > p
and so

(1) If C C 2) e ®* and δ Γ ΰ ^ ε, then ^fTD/^D > p

Since A is a T set, C g i and, by (ii), there exists a positive number
r such that for every domain G in Rn which contains TC{~ x) and for
which SG ^ r it is true that T~λG possesses exactly one component
which meets A and, moreover, this component is a m.i.d. T containing
C. For every positive integer i let Q{ be the open oriented w-cube
with center at x and diameter equal to the smaller of ε, r and 1/i.
Then T~lQi possesses exactly one component Ό{ which meets A and A
is a m.i.d. T containing C. By the Lemma in [4], 4, TD{ = Q̂  and

C -D. By definition, A e ®* and so, with the aid of (1),
< 1/p £?TDi. Thus

(2) For every point x in TΆ there is associated a sequence of open
oriented w-cubes Q{ with centers at x and a corresponding sequence of
domains A such that, for all ΐ, δζ^ ^ 1/i, ώ^A, < 1/p ^'Qi, A is a
component of T""1©,- and the only component of T~xQi which meets A,

Let D be the class of all w-cubes associated with points of TA in this
manner. £fTA is finite since T is bounded, and by a theorem of
Rademacher ([2], p. 190) there is a Q*, countable subclass of £}, such
that

(3) TA e U Q*,Q* G Q*

and

(4) i^Q* ^ ^fTA +Ύ]p.

(Rademacher's theorem is stated in terms of a covering made up of
open ^-spheres, but the corresponding theorem for a covering of open
w-cubes is readily obtained from it). Let Q* be an element of Q*. By
(2) there is a corresponding domain Z>*, D* a component T^Q* such
that £?D* < 1/p^fQ* and _D* is the only component of T~'Q* which
meets A. In this way exactly one domain D* is associated with each
Q* 6 £}*. The class of domains D* is countable and

(5) JJS^D* ^ llpΣ&Q*.

Let % e A. Then T^ e TA and by (3) there is a Q* e G* such that
Tu e Q*, Since the corresponding D* is the only component of T~XQ*
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which meets A it must contain u. Thus A g U D* and

(6)

By (4), (5) and (6), ^fA ^ 1/p £fTA + η. Since η is any positive
number, the conclusion of the lemma is established.

LEMMA 2. Let $Q be a subclass of @ΐ(Γ, D) such that i/Ceξ> then
d{C, £?T) > 0. Put H= U C, C e ξ>. If £fTH= 0, ίΛew _S^# = 0.

Proof. If i ϊ is not empty (the equality is trivial otherwise) then
@i(Γ, D) is not empty and hence, by the Lemma in [4], 14, the set E{

can be expressed as the union of a countably infinite sequence of T sets
Uk with the following property:

(1) If C e&i and Uk Ξ> C, then for every domain G in Rn which
contains TC and has a sufficiently small diameter it is true that T~ιG
possesses exactly one component D which meets Uk.

For every positive integer n let φΛ be the subclass of § consisting of
those elements C for which d(C, SfT) > 1/n. Put Hn = UC, C e φ n

and let ifΛft = iZ, Π t/*. Then H= \jHn and, for each w, fl"n = ufl,*.
The proof will be completed by showing that ^fHnk = 0 for arbitrary
n and fe. Since Hn and ί/̂  are T sets,

(2) iίπfc is a T set.

Clearly

(3) If ueHnk, then there is a set CeOr* such that ueC and

By (1) and the definition of Hnk,

(4) If Ce&i and C ϋϊ Hnk, then for every domain G in iϋ" which
contains TC and has a sufficiently small diameter it is true that T~ιG
possesses exactly one component D which meets Hnk.

(2), (3), (4) and Lemma 1 imply that £fHnk ^ n£?THnk. Since THnk E TH
and ^?TH=0, ^fTHnk = 0 and consequently £fHnk = 0. Since n and
fc are arbitrary, it follows that ^fH = 0.

5 THEOREM 3. Let D he a hounded domain in Euclidean n-space
Rn and let T be a hounded, continuous, single-valued transformation
from D into Rn. For every positive integer j let Dj be a bounded
domain in Rn and let Td be a bounded, countinuous, single-valued
transformation from Dd into Rn. Let 93 be the subclass of gt(Γ, D)
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consisting of those elements C for each of which C M(C, T) exists and
is positive and C contains more than a single point. Put B = U C,
C e S3. If

( i ) The mappings Tό are UEAC.
(ii) The mappings T3 converge to T uniformly on compact subsets

D and
(iii) T is eBV in D

then the following statements are equivalent:
(iv) T satisfies the condition (N) on B>
(iv)' ^fTB=0 and
(iv)" £fB = 0

and (i), (ii) and (iii) together with (iv) or (iv)' or (iv)" imply that T is
eAC in D.

Proof. First it will be shown that (i), (ii), (iii) and (iv) imply that
T is eAC in D. By the Theorem in [4], 16, there exist T sets V and
F" contained in D such that ^ F ' = 0, £?TV" = 0 and if Ce^T, D)
and C does not meet V U F", then M(C, T) exists and is positive. In
view of (iii), in order to conclude that T is eAC in D it is sufficient to
prove that T satisfies the condition (N) on E = E(T, D). Clearly it is
sufficient to show that T satisfies the condition (N) on each of the
following sets whose union is E: S2 = E — Eiy S2 = Eff S3 = (E{ —
Ef) n F\ S4 - (#, - #?) ΓΊ V" and S5 - (E{ - Ef) - (F ' U F"). Since
Γ is eBV in Z>, £fTS1 = 0 (this is proved in the first step in the proof
of the theorem in [4], 18) and so T satisfies the condition (N) on Sλ.
Any subset of S2 is a T set contained in E and it follows by Theorem
2 that Γ satisfies the condition (N) on S2. Again by Theorem 2,
Jδf TS3 = 0 and so Γ satisfies the condition (AT) on S3. ^ ^ TS4 g ^ Γ F ' ' = 0
and so ϊ7 satisfies the condition (N) on S4. S5 is a subset of B and so
(iv) implies that T satisfies condition (N) on S5.

If (i), (ii), (iii) and (iv) are satisfied, then it has just been shown
that T satisfies the condition (N) on E(T, D). Hence, by Lemma 4 of
[3], IV. 4.2, £?T{E- Et) = 0. Since B is a subset of E-Ef, (iv)'
must be satisfied. On the other hand, (iv)' clearly implies (iv). Thus
if (i), (ii) and (iii) are satisfied, (iv) and (iv)' are equivalent.

By Lemma 2, £?B = 0 if SfTB = 0. On the other hand, since £
is a Γ set contained in E{T, D), (i) and (ii) imply, by Theorem 2, that
&TB = 0 if j^JB = 0. Hence if (i) and (ii) are satisfied, then (iv)' and
(iv)" are equivalent.

6. It is reasonable to inquire whether (i), (ii) and (iii) in Theorem
3 are sufficient to conclude that T is eAC in D. After all, each of the
sets C in 33 is a non-point continuum for which the T magnification is
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positive and yet whose image under T is a single point in Rn. Might
not (i), (ii) and (iii) imply, say, (iv)' (or equivalently (iv) or (iv)")?
Since the class S3 is clearly countable when T is a transformation into
R\ TB is then a countable set. Thus (iv)' is always satisfied when T
is a transformation into R1. However, the author has constructed an
example in R2 for which (i), (ii) and (iii) are satisfied and for which the
limit transformation is not eAC ([6]). In the example the limit trans-
formation T is modeled on an example by Cesari ([1], IV. 13.1, Example
A). The transformation that Cesari defined provides an example of a
plane mapping that is eBV but not eAC. The example in [6] is some-
what more complicated by the need for (i) and (ii) to be satisfied.
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Correction to

"ON TERMINATING PROLONGATION PROCEDURES"

BY H. H. JOHNSON

This Journal, Vol. 10 (1960), 577-583

(Received June 8, 1961)

M. Kuranishi has kindly brought to our attention an error in
Theorem 1 on page 579. Condition (2) of that theorem should be
corrected to read:

"(2) dBφ.i5,kl.,Λt = 0 modulo (ω^θ") for all t."

The above equation does not follow from the original hypotheses as the
author indicated.

Since the interest in Theorem 1 is in its applicability as a criterion
for involutiveness, it may be helpful to mention the following conditions
under which (2) holds, assuming condition (1).

Condition 1. The θa and ωι span dx1, *- >dxn.
Condition 2. ωi — dy\ i — 1, , p and dBφ,iά = 0 modulo (ω1).
Under Condition 1, there are no πλ, hence no additional variables

are introduced by the prolongation process.
Under Condition 2, Bφ,i5 is a function of y1, -* ,yp alone. Conse-

quently dBψ,i5 = (dBφ;iJldyk)ωk;, hence Bφ;ij;k = (dB^/dy*) is also a function
of y1, ••• yp alone. In the same way every Bφ.ij.ki^,kt is a function of
y1, •••, Vp alone.

Condition 1 is satisfied in Theorem 2 on page 581. Condition 2 is
satisfied in the system (Sf) on page 220 studied in the paper, H. H.
Johnson: ' O n the pseudo-group structure of analytic functions on an
algebra/' Proc. Amer. Math. Soc. 12 (1961), 218-224. Princeton University.
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