Pacific Journal of Mathematics

ON THE FIELD OF RATIONAL FUNCTIONS OF ALGEBRAIC GROUPS

A. BIAŁYNICKI-BIRULA

Vol. 11, No. 4 1961

ON THE FIELD OF RATIONAL FUNCTIONS OF ALGEBRAIC GROUPS

A. BIALYNICKI-BIRULA

0. Introduction. Let K be an algebraically closed field of characteristic 0, let k be a subfield of K and suppose that G is a (k, K) algebraic group, i.e., an algebraic group defined over k and composed of K-rational points. Let k(G) denote the fields of k-rational functions on G. G_k denotes the subgroup of G composed of all k-rational points of G. If $g \in G_k$ then the regular mapping $L_g(R_g)$ of G onto G defined by $L_g x = gx$ ($R_g x = xg$) induces an automorphism of k(G) denoted by $g_i(g_r)$. Let D_k denote the Lie algebra of all k-derivations of k(G) (i.e., of all derivations of k(G) that are trivial on k) which commute with g_r , for every $g \in G_k$.

For any subset A of k(G) let G(A) denote the subgroup of G composed of all elements g such that $g_r(f) = f$, for every $f \in A$. In the sequel we shall always assume that G_k is dense in G.

The main result of this paper is the following theorem:

THEOREM 1. Let F be a subfield of k(G) containing k. Then the following three conditions are equivalent:

- (1) F is $(G_k)_i stable$
- (2) F is D_k stable
- (3) F = k(G/G(F)) and so F coincides with the field of all elements of k(G) that are fixed under $G(F)_r$.

By means of the theorem, we establish a Galois correspondence between a family of subgroups of G and the family of $(G_k)_i$ -stable subalgebras of the algebra of representative functions of G.

The author wishes to express his thanks to Professor G.P. Hochschild and Professor M. Rosenlicht for a number of instructive conversations on the subject of this note.

1. Let K be an algebraically closed field of characteristic 0, let k be a subfield of K and suppose that V, W are (k, K) — algebraic varieties. Let k(V), k(W) denote the fields of k-rational functions on V and W, respectively. If A is a subset of k(V) then k(A) denotes the fields generated by k and A.

The following result is known¹:

(1) Let F be a rational mapping of V onto a dense subset of W and let φ be the cohomomorphism corresponding to F. Then there exists

Received September 28, 1960, in revised form November 14, 1960.

¹ See e.g. [2],

an open subset $W_1 \subset W$ such that $F^{-1}(x)$ contains exactly $[k(V): \varphi(k(W))]$ elements, for every $x \in W_1$.

LEMMA 1. Let A be a subset of k(V) and suppose that there exists a dense set $V_1 \subset V$ and an open subset $V_2 \subset V$ such that for any two distinct points x_1, x_2 , where $x_1 \in V_1, x_2 \in V_2$, there exists a function $f \in A$ which is defined at x_1, x_2 and $f(x_1) \neq f(x_2)$. Then k(A) = k(V).

Proof. Let B be a finite subset of A, say $B = \{f_1, \dots, f_n\}$. Then F_B denotes the rational mapping $F_B \colon V \to K^n$ defined by $F_B(x) = (f_1(x), \dots, f_n(x))$ and $W_B = (F_B(V)^- \subset K^n$. Let $\Delta(W_B)$ be the diagonal of $W_B \times W_B$ and $V_B = ((F_B \times F_B)^{-1}\Delta(W_B))^- \subset V \times V$. Then there exists a finite subset $B_0 \subset A$ such that $V_{B_0} \subset V_B$, for every finite subset $B \subset A$ (since $V \times V$ satisfies the minimal condition for closed sets). Let V_0 be an open subset of V such that F_{B_0} is regular on V_0 . We may assume that $V_0 = V_2 = V$, since we may replace V by $V_0 \cap V_2$. If $X_1 \in V_1$, $X_2 \in V_1$ and $X_1 \neq X_2$ then there exists $X_1 \in A$ such that $X_2 \in A$ such that $X_3 \in A$ such that $X_4 \in A$ such that $X_5 \in A$ such that

Let G be a (k, K) - algebraic group. Suppose that G_k is dense in G. Let D be the Lie algebra of all derivations of K(G) commuting with g_r , for every $g \in G$, and let D_k denote the Lie algebra consisting of all derivations from D that map k(G) into k(G). Let k[D] (K[D]) denote the k-algebra (K - algebra) of transformations generated by the identity map and $D_k(D)$.

If $d \in D_k$ then d restricted to k(G) is a k-derivation commuting with g_r , for every $g \in G_k$. On the other hand if d_1 is a k-derivation of k(G) commuting with g_r , for every $g \in G_k$, then there exists a unique extension d of d_1 to a K-derivation of K(G), and the extension belongs to D_k . Hence we may identify D_k and the Lie algebra of all k-derivations of k(G) that commute with g_r , for every $g \in G_k$.

(ii)² If $f \in K(G)$ and f is defined at a point $g \in G$ then df is defined at g, for any $d \in K[D]$.

LEMMA 2. Let $f \in K(G)$ and suppose that f is defined at $g \in G_k$. If $f \neq 0$ then there exists $d \in k[D]$ such that $(df)(g) \neq 0$.

Proof. Suppose that $f \neq 0$. If $f(g) \neq 0$ then the identity element of k[D] satisfies the desired condition. Hence we may assume that f(g) = 0, Let $\mathcal{O}_k(\mathcal{O}_K)$ denote the local ring of g in k(G) (K(G)) and let $m_k(m_K)$ be the maximal ideal of $\mathcal{O}_k(\mathcal{O}_K)$. Then $f \in m_K$. Let

² See [4] p.51,

 x_1,\cdots,x_m be elements of m_k such that $x_1+m_k^2,\cdots,x_m+m_k^2$ is a k-basis of m_k/m_k^2 . The $x_1+m_K^2,\cdots,x_m+m_K^2$ is a K-basis of m_K/m_K^2 . Hence every mapping $(x_1,\cdots,x_m)\to k$ can be extended to a derivation $\partial\colon \mathscr{O}_K\to K$. On the other hand $f\neq 0$ and so there exists an integer t such the $f\in m_K^t-m_K^{t+1}$. Hence $f=\sum_{i_1+\cdots+i_m=t}a_{i_1,\cdots,i_m}x_1^{i_1},\cdots,x_m^{i_m}+f_1$, where $f_1\in m_K^{t+1}$, $a_{i_1,\cdots,i_m}\in K$ and at least one a_{i_1,\cdots,i_m} is different from zero. Let ∂_i be the derivation of \mathscr{O}_K into K such than ∂_i $x_j=\delta_{ij}$, where $\delta_{ij}=\begin{cases} 0 \text{ if } i\neq j\\ 1 \text{ if } i=j \end{cases}$. It is known³, that there exist $d_i\in D_k$ such that $(d_if)(g)=\partial_i f$ for every $f\in \mathscr{O}_K$. Then $(d_1^{i_1}\cdots d_m^{i_m})f(g)=i_1!\cdots i_m!a_{i_1,\cdots,i_m}\neq 0$ if $a_{i_1,\cdots,i_m}\neq 0$. Hence the lemma is proved.

If A is a subset of k(G) then G(A) denotes the subgroup of G composed of all elements g such that g_r leaves the elements of A fixed. For any $A \subset k(G)$, G(A) is a k-closed subgroup of G.

(iii)⁴ Let G_1 be a k-closed subgroup of G. Then G/G_1 is defined over k. Let φ be the cohomomorphism of $k(G/G_1)$ into k(G) corresponding to the canonical mapping $G \to G/G_1$. Then $\varphi(k(G/G_1))$ coincides with the subfield of all elements of k(G) which are fixed under g_r , for every $g \in G_1$. In the sequel we shall identify $k(G/G_1)$ and $\varphi(k(G/G_1))$.

Proof of the theorem.

Implications (3) \Rightarrow (1) and (3) \Rightarrow (2) are obvious.

 $(1)\Rightarrow (3)^5$. Let $g_1\in G_k$, $g_2\in G$ and $G(F)g_1\neq G(F)g_2$. Then $g_2g_1^{-1}\notin G(F)$. Hence there exists $f_0\in F$ such that $(g_2g_1^{-1})_rf_0\neq f_0$. Therefore there exists an element $g\in G_k$ such that $(g_2g_1^{-1})_rf_0$ and f_0 are defined at g and $(g_2g_1^{-1})_rf_0(g)\neq f_0(g)$, i.e., $f_0(g_2g_1^{-1}g)\neq f_0(g)$, $(g_1^{-1}g)_tf_0(g_2)\neq (g_1^{-1}g)_tf_0(g_1)$. Let $f=(g_1^{-1}g)_tf_0$. Then $f\in F$ since $g_1^{-1}g\in G_k$; f is defined at g_1 and g_2 , and $f(g_1)\neq f(g_2)$. Thus it follows from Lemma 1 that F=k(G/G(F)), because $G(F)\cdot G_k/G(F)$ is dense in G/G(F).

 $(2) \Rightarrow (3)$. Let f_1, \dots, f_n be a set of generators of F over k, and let V_1 be an open subset of G such that f_1, \dots, f_n are regular on V_1 . We may assume that $V_1 = G(F)V_1$. Let $g_1 \in V_1 \cap G_k$, $g_2 \in V_1$, $G(F)g_1 \neq G(F)g_2$. Then $g_2g_1^{-1} \notin G(F)$ and so there exists f_i such that $(g_2g_1^{-1})_rf_i \neq f_i$. We know that $(g_2g_1^{-1})_rf_i$ and f_i are defined at g_1 . Hence it follows from Lemma 2 that there exists an element $d \in k[D]$ such that

$$d((g_2g_1^{-1})_rf_i)(g) \neq (df_i)(g)$$
, i.e., $(df_i)(g_1) \neq (df_i)(g_2)$.

Therefore, for any pair of distinct elements $G(F)g_1$, $G(F)g_2$ such that

$$G(F)g_1 \in G(F) \cdot G_k \cap V_1/G(F)$$
 and $G(F)g_2 \in V_1/G(F)$,

³ See [4] p. 51,

⁴ See Proposition 2, p. 495 in [5].

⁵ This part of the proof is modeled after the proof of Lemma 5.3 p. 515 in [3].

there exists an element $f \in F$ which is defined at $G(F)g_1$, $G(F)g_2$ and such that $f(G(F)g_1) \neq f(G(F)g_2)$. But $V_1/G(F)$ is an open subset of G/G(F), and $G(F)G_k \cap V_1/G(F)$ is dense in G/G(F). Hence it follows from Lemma 1 that F = k(G/G(F)).

This completes the proof of the theorem.

2. Applications. As a consequence of Lemma 2 one can get the following corollary:

COROLLARY. If α is an automorphism of k(G) commuting with D_k and leaving the elements of k fixed then there exists $h \in G_k$ such that $\alpha = h_r$.

Proof. α induces a rational map $F_{\alpha} \colon G \to G$. Let $g \in G_k$ be a point such that F_{α} is defined at g and let $F_{\alpha}(g) = h^{-1}g$. Then $h \in G_k$ and $f(g) = (\alpha f)(h^{-1}g)$, for every $f \in k(G)$ that is defined at g. Hence $(df)g = (\alpha(df))(h^{-1}g)$, for every $d \in k[D]$. But $(\alpha(df))(h^{-1}g) = (h_r^{-1}(\alpha(df)))(g)$ and d commutes with α and h_r^{-1} . Therefore $(df)(g) = (d(h_r^{-1}(\alpha f)(g)))$. Hence it follows from Lemma 2 that $f = h_r^{-1}(\alpha f)$. Thus $h_r f = \alpha f$, for every f that is defined at g. Therefore $h_r f = \alpha f$, for every $f \in k(G)$.

It follows from the corollary that if F is a D_k — stable subfield of k(G) containing k then every D_k — automorphism of k(G) leaving the elements of F fixed belongs to $G(F)_r$, i.e., the D_k — Galois group of k(G) over F coincides with $G(F)_r$. Combining this result and the above theorem we obtain that there exists the usual one to one Galois correspondence between D_k — stable subfields of k(G) containing k and k-closed subgroups of G.

Let k[G] denote the ring of regular (i.e., representative) functions on G. Let \mathscr{R} be the family of all $(G_k)_l$ — stable (or, equivalently, D_k — stable) subrings R of k[G] containing k and satisfying the following condition if $f \in R$, $g \in R$ and $f/g \in k[G]$ then $f/g \in R$. Let \mathscr{G} denote the family of all k-closed subgroups H of G such that G/H is isomorphic to an open subset of an affine variety.

THEOREM 2. The mappings $H \to k[G] \cap k(G/H)$ and $R \to G(R)$ establish a Golois correspondence between $\mathscr G$ and $\mathscr B^{\mathfrak s}$.

Proof. $H \in \mathscr{G}$ then $k[G] \cap k(G/H) \in \mathscr{R}$ and $G(k[G] \cap k(G/H)) = H$, since k(G/H) is generated by $k[G] \cap k(G/H)$.

Now, if $R \in \mathcal{R}$ then $G(R) \in \mathcal{G}$. In fact, if $R \in \mathcal{R}$, then k(R) is $(G_k)_i$ — stable and so k(R) = k(G/G(R)). For every $f \in R$, $(G_k)_i f$ generates a finite dimensional k-vector space, Hence there exists a finitely generated over $k(G_k)_i$ — stable subring R_0 of R such that $k(R_0) = k(R)$. Let R denote

⁶ C.f. [1] p. 324.

the affine variety that has R_0 as its coordinate ring. One can define a structure of a G-homogeneous space on W, since $K[R_0]$ is G_i — stable. Let η be the canonical mapping of G/G(R) into W. Then η commutes with the action of G and is birational. Hence η is an isomorphism of G/G(R) onto an open subset $\eta(G/G(R))$ of W.

Moreover, $R = k[G] \cap k(G/G(R))$, since $R \in \mathcal{R}$ and k(R) = k(G/G(R)). This completes the proof of the theorem.

Added in Proof. The equivalence $(1) \iff (2)$ of Theorem 1 in the case where k is algebraically closed has been proved by E. Abe and T. Kanno (Tohoku Math. Jour. 2nd series 11 (1959), 376-384).

REFERENCES

- 1. P. Cartier, Dualité de Tannaka des graoups et des algèbres de Lie, Comptes Rendus de l'Académie des Sciences, Paris, 242 (1956), 322-325
- 2. C. Chevalley, Fondements de la Géometrie Algebrique, Paris, L'Ecole Normale Superieure, 1958.
- 3. G. Hochschild and G. D. Mostow, Representations and representative functions of Lie groups, Annals of Math., 66 (1957), 495-542.
- 4. M. Rosenlicht, A note on derivations and differentials on algebraic varieties, Portugaliae Mathematica, 16 (1957), 43-55.
- 5. A. Weil, On algebraic groups and homogeneous spaces, Amer. J. Math., 77 (1955), 493-512.

University of California and Polish Academy of Sciences

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

F. H. Brownell University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH

D. DERRY

H. L. ROYDEN

E. G. STRAUS

T. M. CHERRY

M. OHTSUKA

E. SPANIER

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 11, No. 4 , 1961

A. V. Balakrishnan, Prediction theory for Markoff processes	1171
Dallas O. Banks, Upper bounds for the eigenvalues of some vibrating systems	1183
A. Białynicki-Birula, On the field of rational functions of algebraic groups	1205
Thomas Andrew Brown, Simple paths on convex polyhedra	1211
L. Carlitz, Some congruences for the Bell polynomials	1215
Paul Civin, Extensions of homomorphisms	1223
Paul Joseph Cohen and Milton Lees, Asymptotic decay of solutions of differential	
inequalities	1235
István Fáry, Self-intersection of a sphere on a complex quadric	1251
Walter Feit and John Griggs Thompson, Groups which have a faithful representation	
of degree less than $(p-1/2)$	1257
William James Firey, Mean cross-section measures of harmonic means of convex	
	1263
1 0 00	1267
Bernard Russel Gelbaum and Jesus Gil De Lamadrid, Bases of tensor products of	
1	1281
	1287
, 1 0 1 1	1309
	1315
e e v	1359
John McCormick Irwin and Elbert A. Walker, On N-high subgroups of Abelian	1262
	1363
, 0 0 1 3	1375
	1385
David G. Kendall and John Leonard Mott, The asymptotic distribution of the	1202
	1393
	1401
Lionello Lombardi, The semicontinuity of the most general integral of the calculus	1407
of variations in non-parametric form	1407
	1421
	1431
	1443
	1447
	1459
· · · · · · · · · · · · · · · · · · ·	1467
	1479
Paul Adrian Nickel, On extremal properties for annular radial and circular slit	1477
	1487
Edward Scott O'Keefe, Primal clusters of two-element algebras	
Nelson Onuchic, Applications of the topological method of Ważewski to certain	1505
	1511
Peter Perkins, A theorem on regular matrices	
Clinton M. Petty, Centroid surfaces	
Charles Andrew Swanson, Asymptotic estimates for limit circle problems	
Robert James Thompson, On essential absolute continuity	
Harold H. Johnson, Correction to "Terminating prolongation procedures"	