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ON THE FIELD OF RATIONAL FUNCTIONS

OF ALGEBRAIC GROUPS

A. BlALYNICKI-BlRULA

0. Introduction. Let K be an algebraically closed field of char-
acteristic 0, let k be a subfield of K and suppose that G is a {k, K)
algebraic group, i.e., an algebraic group defined over k and composed of
iΓ-rational points. Let k{G) denote the fields of /c-rational functions on
G. Gk denotes the subgroup of G composed of all fc-rational points of
G. If g e Gk then the regular mapping Lg(Rg) of G onto G defined by
Lgx — gx (Rgx = xg) induces an automorphism of k(G) denoted by g^r).
Let Dk denote the Lie algebra of all /^-derivations of k{G) (i.e., of all
derivations of k{G) that are trivial on k) which commute with grJ for
every g eGk.

For any subset A of k(G) let G(A) denote the subgroup of G com-
posed of all elements g such that gr(f) = / , for every f e A. In the
sequel we shall always assume that Gk is dense in G.

The main result of this paper is the following theorem:

THEOREM 1. Let F be a subfield of k(G) containing k. Then the
following three conditions are equivalent:

(1) F is (Gfc)ι - stable
( 2 ) F is Dk — stable
( 3 ) F= k(GIG(F)) and so F coincides with the field of all ele-

ments of k(G) that are fixed under G(F)r.
By means of the theorem, we establish a Galois correspondence be-

tween a family of subgroups of G and the family of (GA)Γstable subal-
gebras of the algebra of representative functions of G.

The author wishes to express his thanks to Professor G.P. Hochschild
and Professor M. Rosenlicht for a number of instructive conversations on
the subject of this note.

1# Let K be an algebraically closed field of characteristic 0, let &
be a subfield of K and suppose that V, W are (k, K) — algebraic varieties.
Let fc( V), k( W) denote the fields of Λ-rational functions on V and W,
respectively. If A is a subset of k(V) then k(A) denotes the fields
generated by k and A.

The following result is known1:
(1) Let F be a rational mapping of V onto a dense subset of W

and let φ be the cohomomorphism corresponding to F. Then there exists

Received September 28, 1960, in revised form November 14, 1960.
i See e.g. [2],
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an open subset W1a W such that F~\x) contains exactly [k(V): φ(k(W))]
elements, for every x e Wt.

LEMMA 1. Let A be a subset of k(V) and suppose that there exists
a dense set Vx c V and an open subset V2 c V such that for any two
distinct points xlf x2, where x1 e V19 x2 e F2, there exists a function fe A
which is defined at xlf x2 and f(Xi) Φ f(x2). Then k(A) = k(V).

Proof. Let B be a finite subset of A, say B = {f19 •-,/„}. Then
FB denotes the rational mapping FB: V—*Kn defined by FB(x) — (fx{x),
•••,/«(&)) and WB = (FB(V)- c K\ Let Δ{WB) be the diagonal of
WB x WB and VB = ((FB x FB)-χΔ{ WB))~ c V x F. Then there exists a
finite subset BQa A such that F Λ o C VB, for every finite subset B a A
(since V x V satisfies the minimal condition for closed sets). Let Fo be
an open subset of V such that FBQ is regular on Fo. We may assume
that Vo = V2 = F, since we may replace V by Vo Π F2. If α?! e Vi, α?a e F
and a?! 9̂  α?2 then there exists /e^4 such that / is defined at xlf x2 and
/(»i) ^ / ( ^ ) . Hence (^, αj2) 0 F { / } and so (x19 x2) 0 F £ o . Thus FBQ{xλ) ψ FBQ(X2).

Therefore, for every x e FBQ{Vλ), FB\(x) contains exactly one element.
But FBQ( FJ) is dense in WBQ. Hence it follows from ( i ) that [k( V): k(B0)] = 1,
i.e., k(V) = k{BQ). Thus k(V) = k(A).

Let G be a (&, ίΓ) — algebraic group. Suppose that Gk is dense in
G. Let D be the Lie algebra of all derivations of K(G) commuting with
gr, for every g eG, and let Dk denote the Lie algebra consisting of all
derivations from D that map k(G) into k{G). Let k[D] (K[D]) denote
the fc-algebra (K — algebra) of transformations generated by the identity
map and Dk(D).

If d e Dk then d restricted to k(G) is a fc-derivation commuting with
gri for every g eGk. On the other hand if dx is a A -derivation of k(G)
commuting with gr, for every g eGk, then there exists a unique exten-
sion d of dx to a i£-derivation of K{G), and the extension belongs to Dk.
Hence we may identify Dk and the Lie algebra of all ^-derivations of
k(G) that commute with grj for every g eGk.

(ii)2 If feK(G) and / is defined at a point geG then df is defined
at g, for any cί e K[D],

LEMMA 2. Let f e K(G) and suppose that f is defined at g e Gk. If
f Φ 0 then there exists d 6 k[D] such that (df)(g) Φ 0.

Proof. Suppose that f Φ 0. If f(g) φ 0 then the identity element
of k[D] satisfies the desired condition. Hence we may assume that
f(g) = 0, Let (9k{^κ) denote the local ring of g in k(G) (K(G))
and let mk(mκ) be the maximal ideal of ^k(^κ). Then femκ. Let

2 See [4] p.51,
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#i>•'••> #m be elements of mk such that xx + m\, , xm + ml is a fc-
basis of mklm\. The xλ + m\, > #™ + w^ is a if-basis of mκ\m\. Hence
every mapping (xl9 , xm) —» fc can be extended to a derivation
9: ^^r —> if. On the other hand / Φ 0 and so there exists an integer t

such the / e m i r - m*/1. Hence / = Σ^+ .+i^ί α^ ;m «ίS ••• ,»i? + / i ,
where/i em^"1, aiv...timeK and at least one αί]L i w is different from
zero. Let dt be the derivation of &κ into K such than ^ a?,- = δ t i , where

Si3- = | J ϊ* ί f; 4 It is known3, that there exist d, e Dk such that (dj){g) =

9*/ for every / e ^ . Then (dji d%>)f(g) = i j ^lα^,. . . ,^ ^ 0 if
α iχ ί m ^ 0. Hence the lemma is proved.

If A is a subset of k(G) then G(A) denotes the subgroup of G com-
posed of all elements g such that gr leaves the elements of A fixed.
For any A c k(G)y G(A) is a fc-closed subgroup of G.

(iii)4 Let Gλ be a fc-closed subgroup of G. Then G/Gi is defined
over k. Let φ be the cohomomorphism of k(GIGλ) into &(G) correspon-
ding to the canonical mapping G —> GjGx. Then φ{k{GjGJ) coincides with
the subfield of all elements of k(G) which are fixed under gr, for every
g e G±. In the sequel we shall identify k{GjG^) and φ{k{GlG^).

Proof of the theorem.
Implications (3) =φ (1) and (3) =φ> (2) are obvious.

( l )=φ(3) 5 . Let g, eGk,g2eG and G(F)giΦG(F)g2. Then g2g^φG(F).

Hence there exists foe F such that (g2gΓ1)rfo Φ /0. Therefore there exists
an element g e Gk such that (g2gΓ1)rfo and fQ are defined at g and
(Q29Γ1)rfo(9) Φfo(g), i.e., Mg^g) Φ fig), {gτxg\flg2) Φ {g^g\flg^). Let
/ = (gΐ^ifo- Then feF since flff1^ e Gk; f is defined at g1 and r̂2, and
f(9l) ψ f(g2). Thus it follows from Lemma 1 that F = k(GIG(F)), because
G(F)-GkIG(F) is dense in G/G(F).

(2)==>(3). Let /i, , / n be a set of generators of F over fc, and
let Vx be an open subset of G such that /i, ,/ Λ are regular on V1#

We may assume that Vx = G{F)V1. Let ^ e Vτ Π Gfc, βr2 e Vlf G(F)g1 Φ
G(Fl)g2- Then g2g^ $ G(F) and so there exists ft such that (g2gτι)rfi Φ A-
We know that {g2gΐι)rfi and /< are defined at glm Hence it follows from
Lemma 2 that there exists an element d e k[D] such that

Φ (dMg), i.e., (<*/<)(&) Φ

Therefore, for any pair of distinct elements G(F)gl9 G(F)g2 such that

G(F)9leG(F) Gk n W ( F ) and G(F)g%eVJG{F) ,
3 See [4] p. 51,
4 See Proposition 2, p. 495 in [5].
5 This part of the proof is modeled after the proof of Lemma 5.3 p. 515 in [3].
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there exists an element fe F which is defined at G(F)gu G(F)g2 and such
that f(G(F)g1) Φ f(G(F)g2). But VJG(F) is an open subset of G\G{F),
and G(F)Gk Π VJG(F) is dense in G\G{F). Hence it follows from Lemma
1 that F=k(GIG(F)).

This completes the proof of the theorem.

2. Applications. As a consequence of Lemma 2 one can get the
following corollary:

COROLLARY. If a is an automorphism of k(G) commuting with Dk

and leaving the elements of k fixed then there exists heGk such that
a = hr.

Proof, a induces a rational map JFV G —* G. Let g e Gk be a point
such that Fa is defined at g and let F0(g) = h~xg Then h e Gk and
f(g) = (af){hr1g), for every fek(G) that is defined at g. Hence (df)g =
(a(df))(h-1g), for every d e k[D]. But (aid/Wh^g) = {h-\a{df))){g) and
d commutes with a and h'1. Therefore (df)(g) — {d{h~\af){g))). Hence
it follows from Lemma 2 that / = h~\af). Thus hrf = α:/, for every /
that is defined at g. Therefore hrf = af, for every fek(G).

It follows from the corollary that if F is a Dk — stable subfield of
k(G) containing k then every Dk — automorphism of k{G) leaving the
elements of Ffixed belongs to G(F)r, i.e., the Dk — Galois group of k(G)
over F coincides with G(F)r. Combining this result and the above theorem
we obtain that there exists the usual one to one Galois correspondence
between Dk — stable subfields of k(G) containing k and fc-closed subgroups
of G.

Let k[G] denote the ring of regular (i.e., representative) functions
on G. Let & be the family of all (Gk)t — stable (or, equivalently, Dk —
stable) subrings R of k[G] containing k and satisfying the following con-
dition if feR,geR and f/g e k[G] then f/g e R. Let 5^ denote the
family of all fc-closed subgroups H of G such that G/H is isomorphic to
an open subset of an affine variety.

THEOREM 2. The mappings H-+k[G] Π k{G\H) and R-^G(R) es-
tablish a Golois correspondence between & and &*.

Proof. H e gr then k[G] n k(GIH) e £P and G(k[G] Π k(G/H)) = H,
since k(G/H) is generated by k[G] Π fc(G/ff).

Now, if Re^ then G(R)e&. In fact, if Re&, then &(i?) is
(GΛ — stable and so k(R) = k(G/G(R)). For every fe R, (Gk)tf generates
a finite dimensional fc-vector space, Hence there exists a finitely generated
over k (G*), — stable subring # 0 of i? such that fc(i?0) = k(R). Let IF denote

β Ci. [1] p, 324,
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the affine variety that has Ro as its coordinate ring. One can define a
structure of a G-homogeneaus space on W, since K[R0] is Gt — stable.
Let η be the canonical mapping of G/G(R) into W. Then η commutes
with the action of G and is birational. Hence Ύ] is an isomorphism of
G/G(R) onto an open subset rj(GIG(R)) of W.

Moreover, R = k[G] Π k(G/G(R)), since Re & and k(R) = fc(G/G(Λ)).
This completes the proof of the theorem.

Added in Proof. The equivalence (1) <#=Φ> (2) of Theorem 1 in the
case where k is algebraically closed has been proved by E. Abe and T.
Kanno (Tohoku Math. Jour. 2nd series 11 (1959), 376-384).
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