Pacific Journal of

Mathematics

SOME CONGRUENCES FOR THE BELL POLYNOMIALS

L. CARLITZ




SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. CARLITZ

1. Let a, a,, @, - -+ denote indeterminates. The Bell polynomial
¢o.(a, &y, a;, «-+) may be defined by ¢, = 1 and

— cee) = n! Eiopke .
(11) ¢n - ¢n(a1! &, U3, ) - E kll(ll)klkzl(Z!)kz . (2432 SR

where the summation is over all nonnegative integers k; such that
k1+2k2+3k3+ see =M.,

For references see Bell [2] and Riordan [5, p. 86]. The general coefficient

!
1.2 Ay, koo, gy + 0 ) = L
(1.2) ( ) PAGD R AR

is integral; this is evident from the representation

L n! (k) (k)
Anlless Toz losy =+ 2) = k() (B! -+ BIED® BB

and the fact that the quotient

(rk)!
kl(rh)®

is integral [1, p. 57].
The coefficient A,(k,, k,, ks, -+ +) resembles the multinomial coefficient

by + oy + oy + o)
Fo Ty I -0y = Lo AR :
M, Fy o =2 2) Tey e, -« -

If p is a fixed prime it is known [3] that M(k, k,, k;, -++) is prime to
p if and only if

ki= > a;p’ 0 <a;<p),
by +ky+ kg + o0 =S ap’ 0=a,<p)

and
Za/,”':a/j (j:0,1,2,“').

It does not seem easy to find an analogous result for A,(k,k, &k, --+).
For some special results see § 3 below.
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1216 L. CARLITZ

Bell [2] showed that
(1.3) ¢ =0t +a, (mod p)

and also determined the residues (mod p) of ¢, Pprs b,1s. He also
obtained an expression for the residue of ¢,., as a determinant of order
r 4+ 1. Generalizing (1.3) we shall show first that

(1.4) Pr=al + a7 4 e oy (mod p)
and that
(1-5) ¢1m(a1’ O,y Ugy * » ') = ¢n(¢p! Qypy gy ** ') (mOd p)

for all n = 1. Note that on the right the first argument in ¢, is ¢, and
not a,.

2. From (1.1) we get the generating function

(2.1) gqu *exp(alt+a22 o >

3!

Indeed this may be taken as the definition of ¢,. Differentiating with
respect to ¢ we get

oo n oo tr
ﬂZ: ¢7L+1 t Z:‘O n' = rH1T o 9
so that
(2°2) ¢n+1 - é <:)r?/>¢n—ra{r+1 .
Since the binomial coefficient
<p,,.n> =0 (mod p)
unless p|r and
on\ _ [(n
(or) = (%) (mod )
it follows from (2.2) that
(2'3) ¢pn+1 = TZ::) <Z.L>¢p(n—r)apr+l (mod p) .

If for brevity we put

A(t) = ?:31 atfrl,
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so that
S, g0 L = exp AW®) ,
ni

n=0
it is easily seen by repeated differentiation and by (1.3) that

2.9) 3 burri = {(A0) + A (D)4 (mod 7) .

(By the statement

ﬂ

(mod m) ,

Sal-=5B
where A,, B, are polynomials with integral coefficients, is meant the
system of congruences

A, =B, (mod m) (n=0,1,2,...)).

Hurwitz [4, p.345] has proved the lemma that if a,,a,a, -+ are
arbitrary integers then

The proof holds without change when the a, are indeterminates. Since

n k
fﬂ) =0 (mod k!) .

’ - "
A'() = ”Z;o an+17“— ’

it follows easily from Hurwitz’s lemma that

(A'(t)r = (a + i‘, @ f—)p = af (mod
- 1 = 1 7l = m p) .
Thus (2.4) becomes
2 ¢n+ﬁ— = (ap + Z a'r+P ) 2 &
which yields
— (P o (N
(2.5) burs = @ + @)y + 5 (7)trrstas (mod 7).

In particular, for » =0, (2.5) reduces to Bell’s congruence (1.3).
Similarly

P = (A + @) + Ay = G, + @y,
¢p+2 = ¢p¢2 + 20.'p+10f1 + ap+2 ’
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and so on.

We remark that (2.5) is equivalent to Bell’s congruence involving a
determinant [2, p. 267, formula (6.5)]. Also for s=a, =a, = ..., (2.5)
reduces to
(2.5) @, ,(8) = (s? + s)a,(s) + s ; <f)arr(3)

= 0y14(8) + 8%a,(s) (mod p) ,
where {5, p. 76]
an(s) = ¢n($, S, ** ') = Z S(n7 k)sk
k
and S(n, k) denotes the Stirling number of the second kind. The con-

gruence (2.5)" is due to Touchard [6].
If in (2.5) we replace n by pn we get

(2.6) Pointn = Ppbunp + i_‘ll </,:,.,L>ap(r+l)¢p(n47) (mod p)

for all » =0,1,2,---. Thus ¢,, is congruent to a polynomial in ¢,
Oy, sy, +++ alone. Moreover, comparing (2.6) with (2.2), it is clear that

2.7 Pon = PulPyy Aoy Ay =+ +) (mod p) ,

so that we have proved (1.5).
Replacing % by pn in (2.7) we get

Dozn = PpulDpy Aoy Aapy <+ 2) = DuPh + Ay, gy, Az, <2 0)
In particular for n =1
b=+ ap=0af +a) +ay.
Again replacing n by pn we get
Poin = PulPh2 + s, Qapsy W3, =2 7)
so that in particular
Pps = Pl + Pps = ' + A + A + A

Continuing in this way we see that

(28) ¢p7'n = ¢n(¢p"‘7 azp"’ aspT’ b ') (mOd p)
and
(2.9) b =Pt oy =al +al e Ay (mod p) .

We have therefore proved (1.4) as well as the more general congruence
(2.8).
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Since

(}5220.'3-{-052,
¢3=a§+3a1a'2+a3,
¢, = aj + 6aia, + daa; 4 303 + «

it follows from (2.8) that

¢2pT = ¢);T + a2p" )
(2.10) ¢3pr = (]527' -+ 3¢pra2pr + aapr ,
bipr = ¢§ﬂ' + 64’?)"“21;"' + 4¢)p7’a3pr + 3“31,7‘ + Oy

and so on.
We note also that (2.3) implies

¢p"‘+1 = ¢'p7'a1 + ap"'-(-l ’
(211) ¢2p7‘+1 = ¢2p7'a1 + 2¢p7‘a’p7+1 + a’zp7‘+1 ’
Papris = Poprty + Sapryriy + BPyrQlpris + Aapryy .

3. By means of (1.5) we can obtain certain congruences for the
coefficient A(k., k,, ks, +++). Indeed by (1.1) and (1.3)

(3-1) ¢n(¢)py Ropy gy ** ')
= Z An(kly k29 ks; °e ')(a{’ + a’p)klaggalefg tee (mOd p) s

where the summation is over nonnegative k; such that
k,+ 2k, + 8k + «+- =m.
The right member of (3.1) is equal to

(3.2) S Ayl T, T, - ) 3 (B ) regadiady -
(k3) 7r=0

On the other hand
(3.3) Pon = 3, Al by, By <+ )0 < -

summed over

(3.4) hy +2h, +8hy + ++- = p, .
It follows from (1.5) that
Apn(hlv hZ! h3! ° ') = 0 (mOd p)

except possibly when

(3.5) ki =0 (G>1,p+7).
When this condition is satisfied (3.4) becomes
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h1+p(h’p+2h2p+ "’) = pn ;
consequently k, = pk, and (3.3) becomes
¢1m = Zl Azm(pkly 09 * 0, hp! M ‘)“fkla'zpag,?” oo

We have therefore proved the following result:

THEOREM 1. The coefficient A,,(h,, Ry, hs, =+ ) occurring in (3.8) s
certainly divisible by p unless (8.5) is satisfied and h, = pk,. If these
conditions are satisfied then

Ayl oy iy <=+ = (32) Aulles = gy iy P, ) (mod p) .
D
If we make use of (1.4) we obtain the following simpler

THEOREM 2. Let
hy +2h, + 8hy; + «++ ="
Then the coeffictent A,(hy, by, hsy +<+) ts divisible by D except when
hi=0 (@+35, hi=p,
for some j, in which case
Apr(hyy oy by +o0) =1 (mod p) .

Using (2.10) and (2.11) we can obtain additional results. For example
take

By + 2Ry + 8hy + -o0 = 2p" .

Then A, r(hy, hyy hsy -« +) is divisible by p unless (i) all 2, =0 (s # J),
h;=1o0r2; (i) all b, =0 (s #1,5), hy =h; =1. In case (i) A=1, in
case (ii) A =2 (mod p).

For n = 3p" the corresponding results are more complicated.

4, We turn now to the polynomial C,(a;, a,, o, -++), the cycle in-
dicator of the symmetric group [5, p. 68]:

4.1) C, =Cua, a, as, -++) = ¢, (a, &y, 2y, +++)

where the summation is over all nonnegative k; such that
ki + 2k, +8k,+ +--=mn.

It is convenient to define C, = 1.
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Put

!
_ Ko gy e ee) = L. )
4.2) Culley, Koy Foay <+ 2) el - < 15125235 -

the general coefficient of C,. Clearly c¢,(k, k., k,, --+) is integral and
indeed a multiple of A, (k, k,, ksy +++) .
From (4.1) we get the generating function

43 GO =3 Gl = exp(at + Lot + Taf ).
=0 ml 2 3

For brevity put

) = 3 -t

n=1

Differentiating (4.8) with respect to ¢ we get
G'(t) = C'(1)G() ,
that is

This implies

(4°4) CrH—l - %Faﬂ r+lc'r 12
so that
(4.5) Con = a,C, (mod n) .

By repeated differentiation of (4.3) we get (compare (2.4))

(4.6)

L6 = (Cty + CPOI0) (mod ) .

Now since

C'tH) =S awt’, CV(t)=3 (n+p— 1)!a,m% ,

it is clear that
C'eN =at, CPF) =—a, (mod p) ;

at the last step we have used Wilson’s theorem. Thus (4.6) becomes
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3 Gt = @ —a) 5, 0
so that
4.7 Crip = (@ — a,)C, (mod p) .
In particular we have
(4.8) C,=a} —«a, (mod p)
and
(4.9) Crirp = () — a,)C, (mod p)

We remark that for p = 3,5,7, (4.8) is in agreement with the explicit
values of C, given in [5, p. 69].
By (4.9) with n = 0 we find that the coefficient

crp(kly kz; ka; °* ') =0 (mOd p)

unless all k; except k, and k, vanish and %, is a multiple of p; in this
case we have

(4.10) @8, 0, +++, 0, Iy, +2) = (=1)2(]) (mod p) .
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