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l In [2] the notion of p-dot means of two convex bodies in
Euclidean w-space was introduced and certain properties of these means
investigated. For p = 1, the mean is more appropriately called the
harmonic mean; here we restrict the discussion to this case. The har-
monic mean of two convex bodies KQ and Ku which will always be
assumed to share a common interior point Q, is defined as follows. Let
K denote the polar reciprocal of K with respect to the unit sphere E
centred at Q; let (1 - ΰ)K0 + #K19 with 0 ^ & £ 1, be the usual arith-
metic or Minkowski mean of Ko and Klm The harmonic mean of Ko, Kx

is the convex body [(1 — ϋ)KQ + &Ki]A. In more analytic terms, if Fi(x)
are the distance functions with respect to Q of Ki9 for i = 0,1, then
the body whose distance function with respect to Q is (1 — &)F0(x) + ϋFx(x)
is the harmonic mean of Ko and JKi.

In the paper mentioned, a dual Brunn-Minkowski theorem was es-
tablished, namely

where V(K) means the volume of K. There is equality if and only if
Ko and Kx are homothetic with the centre of magnification at Q.

Here we develop a more inclusive theorem regarding the behaviour
of each mean cross-section measure, ("Quermassintegral") WV(K), v =
0,1, , n - 1, cf. [1]. The result is

The cases of equality are just those of the dual Brunn-Minkowski theorem,
{v = 0).

2 We first list some preliminary items used in the proof of (2).
We shall use Minkowski's inequality in the form

£ [(1 -

Here the functions f{ are assumed to be positive and continuous over
the closed and bounded domain of integration common to all the integrals,
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and, for our puposes, p satisfies — 1 ^ p < 0. There is equality if and
only if fo(x) = λ/^cc) for some constant λ. See [3], Theorem 201, coupled
with the remark preceding Theorem 200.

Our second tool, which we shall refer to as the projection lemma,
was established in [2]. Let K* denote the projection of K onto a fixed,
m-dimensional, linear subspace Em through Q for 1 ^ m < n. We have

Since Em contains Q and the polar reciprocation is with respect to sphere
E centred at Q, in forming K* the order of operations is immaterial.
This result is proved by a polar reciprocation argument from

n Em) + ϋ{κx n Em) g; [(i - &)κ0 + # £ j n Em.

There is equality in either inclusion if Ko and Kλ are homothetic with
centre of magnification at Q.

The dual Brunn-Minkowski theorem (1) will be used.
Finally we shall make use of Kubota's formula and some of its

consequences. This material is covered in [1]. An (n — v) dimensional
cross-section measure ("Quermass") of K is the (n — v) dimensional
volume of that convex body which is the vertical projection of K onto
an j&n_v The mean cross-section measures are usually defined as the
coefficients in Steiner's polynomial which describes V(K + XE), that is

(5) V(K + XE) = Σ (I) WV(K)K .
V = 0 \ " /

If we denote the (v — l) t h mean cross-section measure of the projec-
tion of K onto that En-X through Q which is orthogonal to the vector
v*! by Wl-^K, u^, then Kubota's formula is

Here the integration with respect to the direction uλ is extended over
the surface Ωn of E, dωn is the element of surface area on Ωn and κn^
is the volume of the n — 1 dimensional unit sphere.

Kubota's formula can be applied to the mean cross-section measure
Wi-^K, ux) for fixed ux\

fCn-2
, ulf

where W"-2 is the (v — 2)th mean cross-section measure of the projection
of K onto the £7W_2 through Q orthogonal to uλ and u2 with u2 orthogonal
to ult After v such steps we have as the extended form of Kubota's
formula:
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Each vector up is orthogonal to uq for q <p and W^\K, ulf u2, •• ,^ v)
is the Oth mean cross-section measure of the projection of K onto that
En-V through Q which is the orthogonal complement of the subspace
spanned by ulf u2J , uv.

Steiner's formula (5) with λ = 0 shows that W0(K) is the volume
of K and so W0

M is an (n — v) dimensional cross-section measure of K.
Thus, to within a numerical factor depending on n and v, W^(K) is the
arithmetic mean of the (n — v) dimensional cross-section measures.

In § 3 we shall use the following abbreviations: for dωΛ_v dωn-1dω%

we write dώ with sign of integration and omit reference to the domains
of integration; for one l//rn_1yrri_2- Λ;n_v we write k; finally for W^(Kt u19

U2> ">Uv) we write σ(K*). In this notation the extended Kubota
formula reads

W{K) - k\σ(K*)dω .

3 We now prove (2). By the extended form of Kubota's formula

( 6 ) L J J

in virtue of the projection lemma and the set monotonicity of σ i.e.,
σ(K*) ^ σ(K*) if K* g X* with equality in the latter relation implying
that in the former. We now apply (1), in £r

ί l_v, to the integrand to
obtain

Here we take advantage of the fact that

(Kr = (κ*y.

This gives

( 7 )

There is equality if and only if all the projections Ko* and K* are
liomothetic with the centre of magnification at Q. This condition is
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sufficient for equality in (6); it is necessary and sufficient for (7).
We now use Minkowski's inequality (3) with p = —1/n—v. This

yields

The necessary and sufficient conditions for equality in (7) are sufficient
for equality in (3) since Ko = \K± implies σ(K?) = Xn-"σ(K?). This
establishes (2).
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