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BASES OF TENSOR PRODUCTS OF BANACH SPACES

B. R. GELBAUM AND J. GIL DE LAMADRID

l Introduction* In this note we use the conventions and notations
of Schatten [4] with the exception that we use Br to indicate the dual
(conjugate) space of a Banach space B and ζx, xfy as the action of an
element x and a functional xτ on each other. Schatten defines the tensor
product Bi ® aB2 as the completion of the algebraic tensor product Bx ® B2

of two Banach spaces Bx and B2, on which the cross norm a has been
imposed. We discuss the proposition, "If Bx and B2 have Schauder
bases, then B1<^} aB2 has a Schauder basis/' We prove this for a = γ
(Bλ 0 yB2 is the trace class of transformations of B[ into B2). We also prove
it for a = λ {Bλ 0 λί?2 is the class of all completely continuous linear
transformations of B[ into B2) in the case in which the bases of Bx and
B2 satisfy an "isometry condition". This condition is not very restrictive.
We know of no instance in which it is not satisfied. Next we show
that unconditional bases of Bλ and B2 do not necessarily yield an uncon-
ditional basis for the tensor product, even in the nicest conceivable in-
finite dimensional case, that in which Bx = B2 = Hubert space, and the
bases are orthonormal and identical.

We recall certain facts about Schauder bases, and set some general
notation that we use throughout the paper. We usually work with a
biorthogonal set Ω — {xif #ί}{ associated with a Banach space B, so that
X — {#;}; is a basis for B with coefficients supplied by the corresponding
sequence of functionals χ' = {#!}». We will have to do with the closed
linear manifold BΩ of Bf generated by the elements of χ'. Since B and
BΩ are in duality it is possible to embed B in (BΩ)' by the same formula
that effects the embedding of B in B'\ We denote by n P m the projec-
tion of B defined by nPmx = Σ*T=n <#> <O&». The double sequence {nPm}%,m

is uniformly bounded. We denote by T' the transpose of any transfor-
mation T. The following lemma, given without proof, is but a trivial
strengthening of [2, p. 18, Theorem 1].

LEMMA 1. Let E be a dense vector subspace of B, Ω a biorthogonal
set of B such that χ c E, the vector space spanned by χ is dense in E
and the sequence {nPm}n,m is uniformly bounded on E. Then Ω defines
a basis for B.

2 The tensor product of two biorthogonal sets* Let Ωx = {xi9 x'^
be a biorthogonal set of Bλ and Ω2 = {yi9 yf^i a biorthogonal set of B2.
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The elements x\ 0 y) can be considered as belonging to (B1 0 aB2)' for
any cross norm a [4 p. 43], and {#; <g) ?/,•, x\ 0 ί/J}ί§i is clearly a biorthogonal
set. We enumerate it, not by the diagonal method, i.e., as in the usual
proof that the rationale are denumerable, but as follows: In the table

#2 0 2/i #2 0 2/2 #2 0 2/3

we simply order the elements by listing the entries on the two inner
sides of each successive upper left hand block to obtain xx 0 y19 xx 0 yi9

#2 0 2/2, #2 0 2/l, #1 0 2/3, #2 0 2/3, #3 0 2/3, #3 0 2/2, #3 0 2/l, * * * , #1 0 #*, #2 0

2/fc * #fc 0 2/fc, #fc 0 2/fc-i> ' , #& 0 2/2, #* 0 2/1, . This double sequence
with the given order is called the tensor product of χx — {#<},. and χ2 =
{y3)j and is denoted by χx 0 χ2. Similarly χ{ 0 χ2 denotes the set {#• 0 y'3)iι5

with the corresponding order. The biorthogonal set formed by χλ 0 χ2

and χί 0 χ2 is called the tensor product of Ωx and Ω2 and denoted by
Ωi 0 β2.

THEOREM 1. If Ω1 defines a basis for Bx and Ω2 defines a basis
for B2, then Ωx 0 Ω2 defines a basis for Bλ 0 yB2.

Proof. We show that the vector space spanned by χλ 0 χ2 is dense
in Bλ 0 J52. To see this let nPi be the nPm defined in § 1 for Ωif and
define

(1) Am = x 0 y — Σ <#> #I><2/> 2/;>#* 0 Vj = # 0 2/ — [ i ? ^ ] 0 [iP™2/]
fc.i=i

- # 0 [2/ - iPiif] + [# - xPia?] 0 1 P L y .

Then

(2) Ύ(Am) tϋ ||α?|| ||2/ — iPίy\\ + ll# ~ lPi^ll IliPi^ll .

The right hand side of (2) tends to zero with m~\ This argument extends
by linearity to sums of elements of the form # 0 2/.

Let now Tq be the λPq defined in § 1 corresponding to Ωx (g) Ω2. It
remains to show that {Tq}q is uniformly bounded. It is easy to show
that each Tq has one of the following three forms: xPl 0 J?l, J?l 0
iPn + n+iPn+i 0 iPi, i ^ 0 , + Λ i Hence, it suffices to show that
{nPi 0 / r k r n.m i s uniformly bounded. Let M be a common bound for all
P 1 o nA P 2 TTVvr ŷ y ^ ii a Ti (^ 7?

m d»nU ? Γ r . Γ UL sLuk \£J If t £>! ̂ jAy) X>2

( 3 ) j[nPi ® gP?(Σx <g> i/)] = γ [ ^ ( n P i x ) <8> {qP?y)]
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Since (3) holds for any representation Σxξ&y of a given tensor product
element, we may replace in it the sum 2Ί|ίc | | \\y\\ by Ύ(Σχ(g)y), there-
by proving our assertion. From Lemma 1, we can conclude that Ω10 Ω%
defines a basis for Bλ 0 yB2.

3 The space of completely continuous transformations• We recall that
there is a canonical imbedding of B, with a biorthogonal set Ω defining
a basis of B, into (B°)\ The norm of the image of an element x e B is
less than or equal to \\x\\. We say that Ω satisfies the condition of
isometry if the imbedding is actually an isometery. For such an i2,
(BΩ)Ω = B, isometrically. We state first the following corollary of The-
orem 1.

COROLLARY 1. If Ωk is a biorthogonal set defining a basis for
Bk, & = 1, 2, then Ωλ 0 Ω2 defines a basis for B?^ 0 λBξ*.

Proof. Each x\ (g) y) is an element of I??1 0 Bp which, as a subset
of B[®λB[, can be imbedded isometrically in (J5X (g) γJB2)' [4, p. 47, The-
orem 3.2], What is more, the vector space spanned by {Xi^y%ti is
dense, with respect to λ, in 2?fi 0 I??2, hence in BΩ^(&kB

Ω\ This is
true because

f <g>y - ( Σ <χi, %'>d ® ( Σ <Vi, y
i l i l

and the latter quantity tends to 0. Hence B?Hg γ

Our result is a consequence of this.
The next theorem follows easily from this corollary.

THEOREM 2. / / both Ωλ and Ω2 satisfy the condition of isometry
Ωx 0 Ω2 defines a basis for Bλ 0 kB2.

Proof. If in Corollary 1 we replace Bλ by B^ and B2 by BQ\ we
conclude that Ωx 0 Ω2 defines a basis for (B?ήΩι 0 λ(Bζ*)\ When the
condition of isometry is satisfied the last tensor product can be identified
with Bx 0 λB2, owing to the relations Bk = (2?£*)fl* for fc = 1, 2, and the
universal character of λ, [4, p. 35, Lemma 2.12].

Theorem 2 can be considered as a sharpening of the well known
fact that if Bx and B2 have bases, then every completely continuous
linear transformation of B[ into B2 can be uniformly approximated by
finite dimensional linear transformations. Our theorem goes further to
state that if Ωx and Ω2 satisfy the condition of isometry, the space of
all completely continuous linear transformations of B[ into 2?2 has a
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basis consisting of one-dimensional linear transformations.
The condition of isometry deserves some explanation. It is satisfied

by a large class of bases, which includes every base for which

(5) BΩ = Bf .(1)

The equation ( 5 ) holds always for reflexive spaces. It also holds for
certain bases of non-reflexive spaces.

A non-reflexive example of (5) is exhibited in [2, p. 188, Example
1], involving the usual basis of c0, α?< = {δ}}y, with x\ — {δ}}y e l\ An ex-
ample of the condition of isometry, in the absence (5), is obtained from
this first example, by setting [2, p. 188, Example 2] yx = χ19 and y{ =
Xt - Xi-X + + (- l)*- 1 ^, for i > 1, and yl = xl + x'i+1. For Ω = {yit »{},,
x[eB'\BΩ. Ω satisfies the condition of isometry for, if χec0, then

I I ^ IMI

The conclusion is now a consequence of the following theorem and its
corollary.

THEOREM 3. If for every x'eB', \\λPnXf\\ -* \\x'\\, then Ω satisfies

the condition of isometry.

Proof. Let xoe B and x'o e Bf such t h a t \\x[\\ = 1 and <x0, χ'o} = \\xQ\\.

Then

^ f y =llfl?0|l , Q.E.D.

COROLLARY 2. If IIJPJI ^ 1 for every n, then Ω satisfies the con-
dition of isometry.

Proof. We show the above hypothesis implies the hypothesis of
Theorem 3. To see this, let x'o e B', and ε > 0. There is xoe B so that
||&oll = 1 and <x0, O > ||a?0|| — ε/2 and an integer N> 0 so that

11 ail I ̂  iiiP sίii ^ <^,iP^;> - <*pnχ*, χs> > <χ0, <> - ψ

> l l ^ l l - ε , Q.E.D.

As we have seen, the two biorthogonal sets described above for c0

satisfy the hypothesis of Corollary 1.
An example of the isometry condition in which Br is not separable

is furnished by Schauder's basis for C([0,1]), given by the biorthogonal
system Ω = {xi9 x[)i described in [1, p. 69]. We consider [0,1] imbedded

1 This equation may be described by saying that {x[}i is a retrobasis for B\ [2, p. 188,
Definition 1].
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in B' and treat its points as functionals. The space BΩ of this example
contains the set D of all dyadic fractions. Consequently Ω satisfies the
condition of isometry, since, for feB, \\f\\ = supdeD\f(d)\.

We know of no biorthogonal set defining a basis which does not
satisfy the condition of isometry. Neither do we know if B1 0 aB2 has
a basis for an arbitrary cross norm a, even if Bλ and B2 have bases.
It is clear that for any element of i?i 0 B21 the formal expansion of
Theorem 1 converges to that element with respect to a, since it does
with respect to γ i> a. The difficulty lies in establishing that the set
{pP\ 0 rPl}p,q is uniformly bounded with respect to a.

r,s

4. Hubert spaces and unconditional bases* The problem of approxima-
tion of compact operators by finite dimensional operators in a Banach
space, can, after elaborate rearrangement, lead to the following question:
Can there exist a matrix C = (c { i )" i = 1 satisfying the following conditions:

CO

(a) For some a{ ^ 0, Σ α i < °°» lc.vl < aiah

(b) C2 = 0

(c) Σί« = l?
t = l

Of course, (b) and (c) are incompatible if C is in the trace class. Thus
there arises the question: Does (a) imply that C is in the trace class?
To this we can give a definite negative answer via the following theorems.

Therem 4. Let Ω = {xi9 x
fi\if x{ = {8)}jf x\ = {8)}3- be the canonical

orthonormal basis in l2. Then Ω 0 Ω defines an unconditional basis
in l2 0 yl2 if and only of condition (a) implies C is in the trace class.

Proof. Let fl®i3 define an unconditional basis for l2 0 yl2. Then
we note that (a) may be rephrased by stating: ci3- = ε ^ α ^ , |ε ί y | ̂  1.
Since l2 0 yl2 is precisely the trace class of operators [4] it follows that
Σu=i εΐ; didj(Xi ® Xj) exists in l2 0 yl2 and is therefore in the trace class.

On the other hand, if (a) implies that C is in the trace class, then
for a ® a in l2 (g) γl2 (a = (alf α2, •))» α 0 α = ΣΓi=iα<αy(»< 0 #,•). If
JS = (εjjaidj) is in the trace class, then B has an expansion ^T,j=ieijaiaj
(Xi 0 ojj ), which shows fl^fl defines an unconditional basis for l2 0 yl2.

THEOREM 5. Ω 0 £? does ?ιoί define an unconditional basis for

Proof. Let Ax = (α^) be a 2 x 2 matrix with α u = α12 = α22 == — α21 = 1,
and An the 2n x 2n matrix (A^) i,j = l,2, with An = A12 = A22 = — An

= An_x. Let B be the direct sum of the matrices {l/2n/2An}n. Then a
direct computation reveals that B is unitary. Let I? = (δfi), and let
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C = (\bij\). If β ® f l were an unconditional basis for Z2 (g) yίa, then for
i?, regarded as a member of (l2 ® γZ2)' [4, p. 47, Theorem 3.2] and
arbitrary uζ&v in i2 0 yϊ2> ΣΠ ^ i ^ X ^ #%> would converge uncondi-
tionally, i.e. ΣΓi=i^Λl^iil would converge. In particular, let u — v,
where u is given by the vector: ΣΓ=i(l/w)a?n, (τ/2*)a?n = (0,0, ••• 0,.

1,1, , 1, 0, 0, •)• A simple verification shows that u exists in ίa

On the other hand, more calculation shows ΣΓi=i|ί>iil^i% = °°. The
contradiction implies the theorem.

Theorem 5 remains valid when y is replaced by λ, since l2 ® yl2 =
(ί2 Θ xkYf and unconditionality of ί2 (g) £? in Z2 (g) λϊ2 implies the same in

NOTE. We owe to the referee the remark that a space B with a
biorthogonal set £? which defines a basis for B can always be renormed,
preserving the topology of B [1, Theorem 1, p. 67], in such a way that
£ satisfies the condition of isometry (section 3) with respect to the
resulting norm of B and the corresponding norm of B'. This makes-
possible the following completely general form of Theorem 2.

THEOREM 2'. If Ω{ defines a basis for Bif for i = 1,2, then Ωλ ® Ω2.
defines a basis for Bλ (g) KB2.

Proof. Renorm B± and B2 as indicated above. Then, if V denotes
the operator norm with respect to the new norms of Bλ and J?2, B1 ® λ'JS2

has a basis defined by £ x ® β 2 (Theorem 2). But A (g) λ-£2 = j ^ <g) λJB^
both point-set-wise and topologically. Hence our conclusion.
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