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RELATIVE SELF-ADJOINT OPERATORS

IN HILBERT SPACE

MAGNUS R. HESTENES

1. Introduction, Let A be a closed operator from a Hubert space
6 to a Hubert space £>''. The main purpose of this present paper
is to develop a spectral theory for an operator A of this type. This
theory is analogous to the given in the self-adjoint case and reduces to
the standard theory when A is self-adjoint. The spectral theory here
given is based on generalization of the concept of self-adjointness. Let
A* denote the adjoint of A. An operator T o n ξ) to ξ>' will be said
to be an elementary operator if TT* T = T. If T is elementary, the
operator 7A* T can be considered to be an adjoint of A relative to T.
If A = TA* T, then A will be said to be self-adjoint relative to T. The
polar decomposition theorem for A implies the existence of a unique
elementary operator R relative to which A is self-adjoint and having
the further property that R has the same null space as A and that
A*R is a nonnegative self-adjoint operator in the usual sense. Every
elementary operator T relative to which A is self-adjoint is of the form
T = To + Rx - R2, where R = Rx + R2 and TQ, Rlf R2 are ^-orthogonal.
Two operators B and C are said to be ^-orthogonal if JB*C —0 and
BC* = 0 on dense sets in § and ξ>' respectively.

An operator B will be called a section of an operator A if there is
an operator C ^-orthogonal to B such that A = B + C. If R is the
elementary operator associated with A, there exists a one parameter
family Aλ, Rλ (0 < λ < oo) of sections of A, R respectively such that Rλ

is the elementary operator belonging to Aλ, || Aλ || ^ λ, Aμ (μ < λ) is a

section of Aλ and A = I XdRλ. From this result it is seen that A pos-
Jo

sesses a spectral decomposition relative to any elementary operator T
relative to which A is self-ad joint. These results can be extended to
the case in which A is normal relative to T. When φ' = φ and T
is the identity, these results give the usual spectral theory for self-
adjoint operators. Examples are given in §§ 4 and 10 below. In par-
ticular spectral resolutions are given for the gradient of a function and
its adjoint, the divergence of a vector. The finite dimensional case has
been treated in a recent paper by the author1.

The results given below are elementary in nature and are based

Received October 11, 1960. The preparation of this paper was sponsored in part by
the Office of Naval Research and the U. S. Army Research Office. Reproduction in whole
or in part is permitted for any purpose of the U. S. Government.
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upon the fundamental ideas concerning Hubert spaces. These ideas can
be found in the standard treatises on Hubert space. The concept of
*-commutativity is introduced. This concept is used in the development
of the spectral theory. It is shown that a reciprocally compact oper-
ator has a discrete principal spectrum. The concept of reciprocal com-
pactness is connected with the concept of ellipticity of differential oper-
ators, as is indicated in the last section below.

2. Preliminaries* Let ξ> and ξ>' be two Hubert Spaces over a scalar
field ©. The field © will be taken to be either the field of real numbers
or the field of complex numbers. The two case can be treated simul-
taneously by defining the conjugate b of b to be b itself in the field of
reals. The spaces ξ> and § ' may coincide. The same notations will be
used for the inner product in each of the two spaces. Thus, the symbol
(xly x2) denotes the inner product of x1 and x2, whether xι and x2 are
in ξ> or in ξ)\ The norm of x will be denoted by | |α?| |. Strong con-
vergence of a sequence {xn} to x0 will be denoted by xn =φ χQ and weak
convergence by xn —• x0.

The closure of a subclass & of φ will be denoted by ^ and
its orthogonal complement in <Q by &L. Clearly &L is ' a subspace
of ξ>. By the sum 2ί + & of two linear subclasses 21 and & will be
meant the class of all elements of the form x + y with x in 21 and y
in ^ . It will be called a direct sum if 21 and & have no nonnull
elements in common.

A linear tranformation A will be said to be from .£> to £>' if its
domain ^)A is in ξ> and its range &A is in ξ>\ If 3$ A — $ the phrase
"on ξ) to £>'" will be used to emphasize this fact. The phrase "A in § "
will be used occassionally in case £ ' = .£. A linear transformation B
from ξ> to £>' will be called an extension of A, written A g B or B ^ A,
in case ^ B 3 ^ ^ and B = 4 on ^ 4 . If HF"^ = ξ>, then A will be
said to be dense in £>. The transformation A will be said to be bounded
if it maps bounded subsets of & A into bounded sets of ξ>\ If A is
bounded, its norm \\A\\ is defined to be the least upper bound of \\Ax\\
for all x in &A having || x \\ — 1. If whenever xn e DAy xn =$x0, Axn =Φ
y0 we also have x0 e 2$A and Ax0 = y0, then A will be said to be closed.
If whenever x0, xn e &A and a; =Φ OJO, AxΛ =̂> 2/0 we have Ax0 = ?/0 then
A is said to be preclosed. A closed dense linear transformation is
bounded if and only if &rA — ξ>. The minimal closed extension of A,
if it exists, will be called the closure of A and will be denoted by A.
If A is preclosed, its closure exists. By the null class 3lΛ of A will be
meant all x in 3ί A such that Ax = 0. There is a unique extension of
A whose domain is &A + %lA and whose null space is %ΪA. If A is
closed then 9^ is closed.

Consider now a dense linear transformation A from § to £>' and let



RELATIVE SELF-ADJOINT OPERATORS IN HILBERT SPACE 1317

£2f A* be the class of all vectors y in fgr for which there exists a vector
A*y in § such that the relation.

(Ax, y) = (x, A*y)

holds for all x in <%rΛ. The transformation A* from ξ>' to ξ> so defined
is a closed linear transformation whose domain is &A*

:, whose null class
9^* is ^ i and whose range , ^ V is a subclass of 5Ri.

A linear transformation A from ξ) to § will be said to be self-
ad joint if it is dense and if A* = A. A self-ad joint linear transforma-
tion A will be said to be nonnegative, written A ^ 0, if the inequality
(Ax, x) ̂  0 holds for all x in ^ 4 . By a projection E in φ will be
meant a self-adjoint operator such that E2 = # .

It will be convenient to use the term "operator" to denote a closed
dense linear transformation. We shall have occassion to use the follow-
ing well known result.

THEOREM 2.1. Let A be an operator from ξ> to § ' . Then its adjoint
A* is an operator from «£>' to £>. Moreover, 4** = A, sJi4* = &L

A, 3ί4

= ^ i * . For each vector x0 in § and y0 in £)' there is a unique vec-
tor x in ϋ ^ and y in £fA* such that

(2.1) xo = x + A*y , y0 = Ax - y .

The transformation A*A is a nonnegative self-adjoint operator in §
whose null space is 3lA. Similarly AA* is a nonnegative self-adjoint
operator in § ' whose null space is 9^A*. The operator A is bounded
if and only if A* is bounded. In this event || A || = || A* ||.

3. The reciprocal and ^reciprocal of a closed operator. Consider
a linear transformation A from ξ> to ξ>' whose domain S)4 is expressible
as a direct sum £ ^ = (&P

A + 9^, where 9ί4 is the null space of A and
C^A is orthogonal to !QA. The class r ^ will be called the carrier of A.
If 9^ is closed, then £2)A has such a representation. Consequently, the
carrier of a closed linear transformation is well defined.

The transformation A establishes a one-to-one correspondence between
its carrier and its range. The inverse transformation on &A onto ^ 4 ,
when extended linearly so as to have &\ as its null space and &A +
^ i as its domain, defines a linear transformation A'1 which will be
called the reciprocal2 of A. The carrier of A'1 is the range of A and
the range of A~λ is the carrier of A. It is clear that A'1 is dense in
£>' and that 9^-i is closed.

The reciprocal of A'1 for an arbitrary linear transformation A will

2 See E. H. Moore General analysis I, Memoirs, American Philosophical Society (1935).
See also, J. von Neumann, On regular rings, Proc. Nat. Acad. Sci, 22, (1936), 707-715.
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be defined to be the reciprocal of the extension Ao of A whose domain
is SfA + sJlA and whose null space is ΪQA. The carrier of Ao will be
defined to be the carrier of A. The reciprocal of A"1 is accordingly the
extension of A whose domain is & A + ^lA + QίL

A and whose null space
is sίlA + &A. Hence A is the reciprocal of A~x if and only if A is
dense in ξ> and its null space is closed. If ^lA is closed, then A is closed
if and only if A'1 is closed. If A possesses an inverse, then A"1 is the
inverse of A.

THEOREM 3.1. The adjoint of the reciprocal of an operator A is
the reciprocal of its adjoint, that is, (A~λ)* = (A*)"1. The operators
A and A"1* have the same null spaces.

Clearly 9^-i* = &A-ι = 9lA. Let a; be a vector in c^A-u. Then
(A^yo, x) = (y0, A~λ*x) for every y0 in ^ - i = & A. Hence (x0, x) = {Ax0,
A~λ*x) if x0 e <ĝ  and hence if x0 e &A. It follows that A~x*x is in &A

and that x = A*A~1x. Consequently %fA-u a &A* = r^A*=ι. Conversely
if x e cέ?A*-\, then (x0, x) — (Ax0, A*"1^) holds for all x0 in ^fA or equiva-
lently (A"1^, %) = (2/0> A*-1^) holds for all y0 in ^ - i * . It follows that
x is in ί^-i* and that A~J*x = A*-Jx. It follows that A"1*, A*"1 coincide
on their carriers, as well as their null spaces and hence are identical.

The element A*"1 plays an important role in the results given below
and will be called the ^-reciprocal of A.

As an immediate consequence of the last theorem we have

THEOREM 3.2. Let A be an operator from <£> to £>'. Then A~\ A*,
A*"1 = A"1* are operators. The products A*A, A^A*'1 are nonnegative
self-adjoint operators, are reciprocals of each other and have the same
null space as A. Similarly, the products AA*, A*'1 A'1 are non-
negative self-adjoint operators, are reciprocals of each other and have
the same null space as A*.

A linear transformation A will be said to be reciprocally bounded
if its reciprocal is bounded, or, equivalently if there is a positive number
m > 0 such that || Ax \\ ̂  m \\ x \\ on the carrier of A. The following
theorem is self-evident.

THEOREM 3.3. Let A be an operator from § to £>'. Then A is
reciprocally bounded if and only if its range is closed. Hence A is
reciprocally bounded if and only if the equation Ax = y has a solution
x in &Λ whenever y is orthogonal to every solution z of A*z — 0.
The operator A is reciprocally bounded if and only if A* is recipro-
cally bounded. Finally, A is reciprocally bounded if and only if
A* A (or A A*) is reciprocally bounded.
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The concept of reciprocal boundedness is the basis for a large class
of existence theorems for ordinary and partial differential equations. In
view of the last conclusion in the theorem existence theorems for non-
self-adjoint problems follows from those for self-adjoint problems.

THEOREM 3.4. Let A be an operator from ξ> to ξ>\ If a and β
are positive numbers, then

a A + /3A*-1 , a A* + βA~*

are reciprocally bounded operators and are adjoints of each other.

In order to prove the theorem it is sufficient to consider a transforma-
tion of the form B = XA + (l/λ)A*-\ where λ is a positive number.
Let y0 be a vector in &Λ. By Theorem 2:1, with A replaced by XA,
there is a unique vector x in &A and y in 3JA* such that

0 = x + \A*y , y0 = XAx — y .

The vector y is therefore in &A = 5fti* and in the carrier of A*. Conse-
quently, y = (l/λ)^*-1^ and

y0 = (xA + — A*~τ)x = Bx .

The range of B is therefore closed. It follows that B is reciprocally
bounded and closed. Similarly C = XA* + (1/λ)^."1 is reciprocally bounded
and closed. Clearly C = B*. This proves the theorem.

COROLLARY 1. If A is self-adjoint operator, and a, β are positive
numbers, then aA + βA~λ is a reciprocally bounded self-adjoint oper-
ator. Moreover the reciprocal of A2 is A~2 = (yl"1)2.

THEOREM 3.5. Let C = BA, D = A^B1, where A is an operator
from IQ to ξ>' and B is an operator from £>' to a Hilbert space ©".
Suppose that %lA* = 3lB. Then yiσ = WΛ, <SlD = 9^*. / / D is dense, then
D = C"1. // either A or B~τ is bounded then C and D are closed.

Suppose that xne&rϋ, xn^ x0, Cxn =Φ z0. Set yn = Axn, zn = Byn =
Cxn. If A is bounded, then yn => Ax0. Since Byn = C^w =Φ ̂  it follows
that z0 = J?A^0 = Cx0. Consequently C is closed. Observe that this
conclusion is valid even if yiA* Φ %lB. Since yn e ^ B we have yn — Axn

= B~ιzn. If B1 is bounded, then yn = Axn=^ B^ZQ. Hence B~% =
AίCo, that is 20 = EA^o = Cx0. Consequently C is closed in this event
also. The remaining statements in the theorem are readily verified.



1320 MAGNUS R. HESTENES

COROLLARY. If A is bounded and reciprocally bounded and %lA* D

%lB, then the products C and D described in Theorem 3.5 are operators
and are reciprocals of each other.

This follows readily from Theorem 3.5 because we can replace A
by FΆ where Fr is the projection in § ' whose null class is $lB. We
then have %lA* = WB.

4. Examples* The results here given were motivated in part by
certain applications to differential equations. It will be convenient to
explain in part two of these applications at this time.

EXAMPLE 1. Let ξ> be the class of all real valued Lebesgue square
integrable functions x in the interval 0 ^ t g π. This class with

(x, v) = [πχ(t)y(t)dt

as its inner product and the real numbers as scalars from a Hubert
space. Let 21 be the class of all absolutely continuous functions x(t)
(0 g t = π) whose derivatives x are in ξ). Let A be the differential
operator djdt having as its domain the class &A of all functions in 21
having x(0) = x(π) = 0. The carrier oΐ A is &A itself. Then range
&A consists of all functions y in ξ> satisfying the condition

(4:1) [*y(t)dt = 0 .
Jo

Since &A is closed it follows that A is reciprocally bounded. The
reciprocal of A is

S t 4. Cπ

y(s)ds — —I y(s)ds .
o TZ Jo

The adjoint A* of A is the operator —djdt with &A* = 21 as its domain
and SI Π &A as its carrier. Since A is reciprocally bounded so also A*.
Moreover &A* — § . The reciprocal of A* is

-1^ = -\tχ(s)ds + —\*\rχ(s)dsdr
Jo TC Jo Jo

by virtue of the relation (4.1). Let & be all functions in 21 whose
derivatives are also in 21. The operator A*A is the operator —d2ldt2

having as its domain all functions in & such that x(0) = x(π) =0. The
range of A*A is £>. The operator AA^ is the operator —d2jdt2 having
as its domain all functions x in & whose derivative x satisfies the con-
ditions x(0) — χ(π) = 0, The range of AA* coincides with that of A,
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The operator AA* is also reciprocally bounded.
A preview of the theory to be presented below can be given for

this example by recalling certain known facts. Let

xn(t) = JΆ- sin nt , yo(t) = Jλ , yn{t) = JΆ. cosnt (n = 1, 2, 3, ) .

The function xn form a complete orthonormal system in §. A function
x in φ is accordingly given by the fourier sine series.

oo

x = Σ α A , αn = (a?, αn)

where convergence is taken to be convergence in the mean of order 2.
Similarly a function y in § is expressible in the form

y = hVo + Σ 6 n i / n , bj = (y, 1/,.) (i = l, 2, •).
n = l

If x and 7/ are in the appropriate domains we have

00 TO 1

Ax = Σ wα»2/» , ^-"^ = Σ — 6«#» »Σ
(4.2)

as one readily verifies. These formulas can be put in another form by
defining the operators R and R{ (i = 1, 2, 3, •) by the formulas

RX = Σ <*>nVn , Ri% = GWi (ί = 1, 2, 3, •) -

Observe that
oo

*The operator i? maps ξ) isometrically onto ^ ^ . Its adjoint Jί
maps &A isometrically onto ξ) and annihilates ^ i . We have the
relations

(4.3)
B?fly - 0 , RiRf = 0 (i Φ j) .

Moreover, by (4.2) we have

A = Σ ^ ^ > A"1 = Σ -
71 = 1 Λ = l

(4-4) „
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These formulas constitute a spectral resolution of A, A~*, A*~\ A*. It
is our purpose to show that every operator A can be resolved in terms
of elementary operators having the properties similar to those given in
(4.3).

The example just given can be modified so as to include all complex
valued functions in § and so that A = i(dldt). Then A is a symmetric
operator but is not self-ad joint. The theory for this case is not signifi-
cantly different from that just described.

EXAMPLE 2. Let £> be the class of all real valued Lebesgue square
integrable functions x(s, t) on the square O ^ Ξ S ^ T Γ , 0 ^ S ^ 7 Γ . Then

S πΓπ
I x(s, t)y(s, t)dsdt defines a

o Jo

Hubert space with the real numbers as its scalar field. Let 31 be the
class of all functions x in § such that

( i ) x(s, t) is absolutely continuous in s on 0 :£ s ^ π for almost
all t on 0 ^ t ^ π and is absolutely continuous in t on 0 :g t ^ π for
almost all s on 0 ^ s ίg π;

(ii) The partial derivatives xs,xt, (which exist almost everywhere)
are in £>. Let φ' be the Hubert space defined by the cartesian product
Φ x •£. Observe that the gradient of x, written grad x, is defined on
SI and maps Sί into § ' .

We shall be concerned with the operator Ax = grad x whose domain
3ί A consists of all functions x in SI which vanish on the boundary, in
the sense that x(0, t) — x{π, t) — 0 for almost all t on 0 ^ ί g TΓ and
x(s, 0) = (x π) = 0 for almost all s on 0 f§ s S π. It can be shown that
the mapping A so defined is a closed dense operator A from § to ξ)\
In fact it is the closure of the transformation grad x restricted to
functions of class C" that vanish on the boundary of the given square.
Its adjoint A* is defined by A*y = —div y, where div y is the closure
of the usual divergence operator defined on the class of all vectors y in
§ ' of class C". The ranges of A and A* are closed. Consequently A
and A* are reciprocally bounded. The operators A"1 and A*"1 are
bounded and can be given an integral representation but we shall not
pause to do so here.

The functions

2
^m n(s, t) = —sin ms sin nt (m, n = 1, 2, 3, •)

form a complete orthonormal system in ξ>. Consequently every vector
x in φ can be expressible in the form
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where convergence is taken in the mean of order 2. The vectory ymn

in £>' whose components are

- cos ms sin nt , , r- sin ms cos nt
πvm2 + w2 πΊ/m2 + n2

form an orthonormal system in ξ>' that is incomplete. However, it is
complete in &A. Consequently every vector y in £>' is expressible in
the form

oo

V = Vθ+ Σ KnVmn
m,n~l

where yQ e &\, that is, A*y0 — 0. If ^ and y are in the appropriate
domains we have.

mn

y — 2-Λ

where Xmn = (m2 + n2)112 and m, n summed over the positive integers.
Defining R and Rmn by the formulas.

Rx = Σ amnymn , β m n x = amnymn

it is found that R and 2?^ satisfies relation analogous to (4.3) and that
R maps ξ> isometrically onto &A. Moreover,

^ Ί = = 2-x λ'mn-Kmn i A = ^ J ^mn-^mn

A = Σ ^mnRmn j A = 2 j XmnKmn .

These formulas are analogous to (4:4) and with minor modifications
illustrate the spectral theory given below for an arbitrary closed operator
whose reciprocal is compact.

5 Some properties of nonnegative self*adjoint operators. It is the
purpose of this section to establish certain properties of nonnegative
self-ad joint operators. The first of these is given in the following

THEOREM 5.1. Let A be a nonnegative self-ad joint operator from
ξ> to § and let E be the projection

(5.1) E = A'1 A - AA-1 .

There exists a unique pair of nonnegative self-adjoint operators C and
D such that

(5.2) C + D = E , A = CD1 = DιC , A~ι = C~γΌ - DC'1 .
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The operators C and D are bounded and are given by the formulas

(5.3) C-1 = A-1 + E , D-1 = A + E .

TΛei/ focwe £fee same mtii space as A. Moreover

(5.4) CD= DC , C-'D-1 = J D ^ C " 1 - C"1 + Z)- 1 .

In order to prove this result let C and D be defined by the formula
(5.3). Then C and D are bounded. In fact \\C\\S 1, || 2?|| ^ 1. The
set £^ = & A Π ^ ^ - i is the domain of each of the transformations
C~ιD-\ D-ιC-\ C-1 + D-\ In view of (5:1) we have

C-'D'1 = A~τA + A + A-1 + E = C-1 + D'1 = D^C" 1 .

These operators are accordingly reciprocally bounded operators and are
the reciprocals of CD and DC, by Theorem 3.5. Hence (5.4) holds. In
addition

C-τC = D-'D = E= D-'C-'CD = (C"1 + D'^CD = D + C ,

C-1 - C~\C + D) = E+ C'λD = (C + Z))C-1 = £? + DC"1 ,

JD-1 = D-^C + D) = D^C + £; = (C +

Comparing this result with (5.3) it is seen that (5.2) holds. On the
other hand equations (5.2) imply that A, C, D have the same null space
and it follows from the computation just made that (5.3) holds. This
proves the theorem.

THEOREM 5.2. Let A be a nonnegative self-adjoint operator from
ξ> to ξ>. There is a unique nonnegative self-adjoint operator P from
ξ> to ξ> such that P2 = A. The operator P will be called the square
root of A and will be denoted alternatively by A112. The square root
of A'1 is P-1.

If A is bounded, this result can be established by elementary
means3. In this event every bounded self-adjoint operator that com-
mutes with A also commutes with A1'2. The truth of the theorem for
the unbounded case can be obtained from the spectral theorem. As-
suming the truth of the theorem for the bounded case one can establish
its truth for the unbounded case without the direct use of the spectral
theorem. As a first step in the proof we shall prove the following

LEMMA 5.1. Let P and A be two self-adjoint operators from ξ> to
Q such that P2 — A. Then A is nonnegative and (P" 1) 2 = A"1.

Clearly A is nonnegative. In order to show that C = (P"1)2 is the

See, for example, F. Reisz and B. Nagy, Lecons d'Analyse Fonctionelle, p. 262.
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reciprocal of A observe that on ^r A we have CA = (P^P)2 g E, where
E = A'1 A. It follows that C 3 4 Λ Since C and A'1 are self-adjoint
we have A'1 = (A"1)* 3 C* = C Hence A"1 = C, as was to be proved.

COROLLARY. A reciprocally bounded nonnegative self-adjoint oper-
ator possesses a unique square root.

We are now in position to complete the proof of Theorem 5.2. To
this end let C and D be related to A as described in Theorem 5.1.
Since C and D are bounded and commute, their square roots M and N
satisfy the relations

M2 + N2 = E , MN = NM , M^N'1 = N^M'1 .

Moreover E = M~ιM = N~1N and

ΛΓ-1 = JV-W2 + ΛP) - Λ ^ M 2 + N = (M2 + JVIΛΓ-1 = I W " 1 + N.

Hence ΛΓ"W2 = M2N~λ and

Similarly ikf'W = JVM"1. In addition

(ΛΓ-W)2 - N~ιMN~ιM = ΛMM2 = D~ιC = A , {M~ιN)2 = A-1 .

Setting 2/ = Afe with x in the carrier of N and using the fact that
MN = NM ^ 0 we find that

(MN~ιy, y) = (Ma?, JVa?) - (MJSfc, x) ^ 0

for all 7/ in the carrier of MN'1. Hence ΛίiV"1 is a nonnegative self-
ad joint operator whose square is A. It remains to show that if P is a
nonnegative self-adjoint operator whose square is A, then P — MN"1.
To do so observe that

(P + P-y = P2 + P-2 + 2E = A + A-1 + 2E= C~ιDι = {M'ιN~1)2 .

Since reciprocally bounded operators have unique square roots it follows
that

Moreover

PM~2 - P C 1 = PA'1 + P C P + P-1 = M-W-1 - AΓ^W1

P = PM'2M2 c N~ιM~ιM2 = JSΓ-W .

Since P and N~ιM are self-adjoint, they are equal. This completes the
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proof of Theorem 5.2.

6. Elementary operators and the polar fornu By an elementary
operator R from φ to § ' will be meant one that is its own ̂ -reciprocal,
or equivalently one whose adjoint is its reciprocal. It is characterized
by the relation

(6.1) RR*R=R.

An elementary operator maps its carrier isometrically onto its range.
If R Φ 0 then | |22| | = 1. It is easily seen that an operator R is
elementary if and only if E — R*R is a projection in ξ). Similarly R
is elementary if and only if E' — RR* is a projection in ξ>'. If § =
£>', then an elementary operator R is normal if and only if E = £",
that is, if and only if R and R* have the same null spaces. A projec-
tion is a nonnegative self-ad joint elementary operator. An elementary
operator R is self-adjoint if and only if it is expressible as the difference
R — E+ — E- of two projections E+ and E- that are orthogonal. For
if R is self-adjoint, then

E+ = i(E + R) , E- = i(E - R)

satisfy the relations

El = E+ = E$ , El = E- = E* , E+E- = E_E+ = 0

and hence are projections. Moreover

R = E+ - E- , E= E+ = E- = R2 .

Conversely, if R is expressible in this form it is a self-adjoint ele-
mentary operator, as one readily verifies.

It should be observed in passing that if R is an elementary operator
from § to ξ>' and F is a projection in § that commutes with the pro-
jection E = R*R, then S — RF is also elementary. This follows
because S*S = FR*RF= FEF = FE is projection. Similarly if Fr is
a projection in £>' that commutes with RR*, then F'R is elementary.

Let R be an elementary operator from ξ> to ξ>\ An operator A
from φ to £>' will be said to be self-adjoint relative to R in case

(6.2) A = iL4*JΪ .

If φ = φ' and R is the identity, this concept reduces to the usual
definition of self-ad join tness. We have the following

THEOREM 6.1. Let A be an operator from § to § ' that is self-
adjoint relative to an elementary operator R. Then A*'1 is self-
adjoint relative to R, Similarly A*, A'1 are self-adjoint relative to
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R*. Moreover %lR c 9^ and %lR* c 9Ϊ4*. The operators A and R satisfy
the further relations

(6.3a) A = RR*A = AR*R , RA*A = AA*R

(6.3b) A*R == i2*A ,

(6.3c) (A*i2)2 = A M

It is clear from (6.2) that 3ls c WA, $lR* c <XlA. and i2*A#* = A*.
Moreover

A = RR*RA*R = i2A*i2 = A =

i?A*A = i?A*i2A*i2 = AA*R .

Hence (6.3a) holds. The relation (6.3b) and (6.3c) follow from the com-
putations

A*E - R*AR*R = R*A , RA* = RR*AR* = AR*

(A*R)2 = A*RR*A = A*A , (AR*)* = AR*AR* = AA* .

In view of the corollary to Theorem 3.5 it is seen that RA~ιR is
the reciprocal of A* = i2*AJ?*, that is, A*"1 = RA~ιR, This proves the
theorem.

It is easily seen from the formula (6.2) that %lR = ΉIA if and only
if %lR* = ̂ A*. In addition we have the following

COROLLARY. An operator A is self-adjoint relative to an ele-
mentary operator and only if

(6.4) A = RR*A = AR*R , R*A = A*R, RA* = AR* .

The existence of elementary operator R relative to which A is self-
adjoint is established in the following

THEOREM 6.2. Given an operator A from § to £>' there is a unique
elementary operator R such that A is self-adjoint relative to R, 9^ =
3lΛ and A*R is nonnegative. The operators A~ιR, AR* and A*~ιR*
are also nonnegative and 9ΐ4* = 9^*.

In order to prove this result P be the square root of A*A. Then
P is nonnegative and 9^P = 31A. We shall show that the operator R =
(P~ιA*)* has the properties described theorem. Observe first that

(6.5) R a AP-1 , R* a P~ιA*

and hence that

E - R*R a P-^AP-1 = p-ιp*p-i = (p

This is possible only in case E is a projection. Hence R is elementary
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and 5RΛ = 5RP = yiAy SSlA* = 9^*. By Theorem 3.5, the operators R*A
and A*R are closed. Moreover by (6.4).

E = R*R 3 JBMP-1 , £7 = i?*i2 2 P ^

It follows that P*R = i?*A ^ 0. Consequently

! - A ,

the last inequality holding since 9^* = $RΛ and RR* is a projection on
£'. Since A-IR = P 1 , AR* = ΛPΛ*, A*-ΛR* = RA'RR* = RP-'R*,
these products are nonnegative. The uniqueness of i? follows from
(6.3c) and the uniqueness of the square root of A*A.

The elementary operator R described in Theorem 6.2 will be called
the elementry operator belonging to or associated with A. The pro-
jections E=R*R, E' = RR* are such that EΆ = AE = A and will be called
the projection associated with A. It should be observed that if we
set P = A*R, Q = AR*, then, A = RA*R = RP = QR. This formula
is commonly called the polar decomposition of A. It was first established
for an unbounded operator in Hubert space by J. von Neumann.4

COROLLARY. If R is the elementary operator associated with A,
then R is the elementary operator associated with A*-1 and J?* is the
elementary operator associated with A* and A~ι.

THEOREM 6.3. Let A be an operator from § to ξ? and let R be the
associated elementary operator. Then A is normal if and only if R*
commutes with A. If A is normal so also is R. The operator A is
self-adjoint if and only if R is self-adjoint and commutes with A.
Finally A is self-adjoint and nonnegative if and only if R is a
projection.

Since A*A and AA* are equal if and only if their square roots R*A
and AR* are equal, it follows that A is normal if and only if A com-
mutes with R*. If A = A* then R*A = AR* - RA, by (6.3b). Hence
R = R* and R commutes with A. Conversely if R commutes with A
and R= R*, then A is normal and A*R = RA = AR. Hence A* = A.
If 12 is a projection, AR = RA*R2 = RA*R = A = RA. Hence A is
self-ad joint and nonnegative. The converse is immediate and the theorem
is established.

COROLLARY 1. If A is a self-adjoint operator from § to ξ>, it is
expressible as the difference A = A+ — A- of orthogonal nonnegative

4 Neumann, J. v. ϋber Adjungierte Funktionaloperatoren Annals of Math., 3 3 (1932),
294-310.
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self-adjoint operators.

This follows because its associated elementary operator R is self-
adjoint and hence is the difference R — E+ — £7_ of two orthogonal
projections. Since R and E = E+ + E- commute with A so also does
E+ and i?_. Using this fact it is seen that A+ = AE+, A_ = AE- have
properties described in the corollary.

COROLLARY 2. If A is self-adjoint relative to an elementary
operator T so also is its associated elementary operator R, that is R
= TR*T.

7. ^-orthogonality and sections. Two operators A and B will be
said to be ^-orthogonal if their carriers are orthogonal and their ranges
are orthogonal. This is equivalent to the statemnt that A*B = 0 (or
J3*A = 0) on a dense set in § and A5* = 0 (or BA* = 0) on a dense
set in £)'. It is clear that A is ^-orthogonal to B if and only if A*"1

is ^-orthogonal to B. If one of the pairs A, B; A*, £*; A"1, B'1;
A*"1, B*'1 form a ^-orthogonal pair, then the remaining pairs form
^-orthogonal pairs. Finally two operators A and B are ^-orthogonal if
and only if their associated elementary operators R and S are *-orthogo-
nal. The following result is readily verified.

THEOREM 7.1. Let B and C be ^-orthogonal operators from ξ> to
£>'. Then A = B + C is an operator and A'1 = B'1 + C'1, A* = B* +
C*, A*"1 = B*"1 + C*"1. Moreover A is elementary if and only if B
and C are elementary. If S and T are respectively the elementary
operators associated with B and C, then R = S + T is the elementary
operator associated with A — B + C.

An operator B will be called a section of an operator A, if there
is an operator C ^-orthogonal to B such that A = B + C. If B is a
section of A, its associated elementary operator S is a section of the
associated elementary operator R of A. As a first result characterizing
sections of A we have the following.

THEOREM 7.2. Lei E = A~xAy E' = AA"1 6e £/^ projections as-
sociated with A. Le£ JP Ff be projections in ξ> and $Q' respectively.
Suppose that AF a F Ά . T / ^ ΉF = FE and F'Ff = F Έ f . Moreover
Ai*1 is α section of A and its adjoint is A*F'.

Since the domain of FΆ is & A it follows from the relation A F 3
PΆ that B = AF is dense. Since 5 is closed, it is an operator. Since
AE = A it follows that AFJ57 3 F'A. Hence AίΉ - AF = A(EFE —
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EF) = 0 on Sf A. This possible only in case EFE = EF and hence only
in case EF = FE. Similarly, since A*Ff 2 FA*, it follows that FΈ'
= £"F'. Moreover JB* = A*F'. The projections associated with B are
accordingly G = EF and G' = E'F'. The operator C = A(E - G) has
E — G and £" — G' as its associated projections. It follows that C and
B are ^-orthogonal. Moreover A = B + C and the theorem is established.

THEOREM 7.3. An operator B is a section of A if and only if A*B
= B*B and AB* = BB*.

If A = B + C, where B is "-orthogonal to C, then A*B = (5* + C*)B
= £*J3 and A£* = B*B. Conversely suppose that A*B = £ * £ and AJB* =

BB*. Let F = S^B, F' - M 3 1 : Then

β* = A*BB~λ £ A*F' , J5 = AB*B*~λ s

It follows that JFΆ £ β E AF and hence that B = AF. In view of
Theorem 7.2 the operator B is a section of A, as was to be proved.

THEOREM 7.4. Let R be an elementary operator and let E — R*R.
Let F be a projection in ξ>. Then S = RF is a section of R if and
only if EF — FE. Similarly if F' is projection to ξ>', then F'R is a
section of R if and only if E'Fr = FΈ', where Er = RR*.

If S = RF is a section of i£, then

S*S = R*S = #*J?F = # F ,

is a projection in ξ>. Hence ϋLF = FE. Conversely if EF = FE then

R*S - #*i?F =EF= FEF = Fi2*i2F - S*S ,

SS* - i2Fi2* = RS* .

Consequently, S is a section of R, by Theorem 7.3. The last statement
in the theorem follows similarly.

8* **commutativity. A bounded operator B from § to £>' will be
said to ^-commute with an operator A from φ to £>' if

(8.1) A*B 2 B*A , AB* 2 #A* .

It should be observed that products A*B and AB* appearing in (8.1)
are closed and dense and hence are operators. In the present section
we shall derive some elementary properties of ^-commutative operators
of this type. Throughout this section the operator B is restricted to
be bounded, while A is arbitary. The associated projections will be
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denoted by

(8.2) E = A-1 A , Ef = AA-1 , F = B^B , F' =

as a first result we have

LEMMA 8.1. Suppose that B ^-commutes with A. The product
A*B is self-adjoint and is the closure of B*A. Similarly, the product
AB* is self-ad joint and is the closure of BA*.

Suppose that B *-commutes with A and that A*B is not the closure
of B*A. Then there is vector x0 Φ 0 in the domain of A*B such that

(x0, x) + (A*Bx0, B*Ax) = 0

for all x in &rΛ. Since (B*AY = A*B it follows that

(8.3) (x0, x) + (A*BA*Bx0, x) = 0

for all x in £ ^ , and hence for all x in φ. Choosing # — B*Bx0 and
making use of (8.1) we find that

(x0, B*BxQ) + {A*AB*BxQy B*BxQ) - 0.

Since B*Bx0 is in 3$ A we have

and hence Bx0 — 0. Using (8.3) we find that x0 — 0, contrary to our
choice of x0. The closure of B*A is accordingly A*JS. The last state-
ment in the lemma follows by symmetry.

LEMMA 8.2. Suppose that %lA = yiB and %lA* = SSlB*. If the first of

the relations

(8.4a) A*B ^BA, AB* a

(8.4b) A-^B a S*A*-2 , A*

(8.4c) .B-1^!*-1 a A-1^*-1 , .B*- 1^- 1 a A*-χB~λ ,

(8.4d) 5-χA a A*B*~X , S*-χA* a ^ l^" 1 ,

holds, so the others hold also. If (8.4) holds, the products appearing
on the right are operators.

The last statement in the theorem follows from Theorem 3.5. Sup-
pose now that (8.4a) holds. Then A*B — B*A on &A. Consequently,
on £&A-λ we have

A*'1A*BA"1 = A*-1B*AA~1 = A*~'B* .
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Hence the second relation in (8.4b) holds. The first relation follows
similarly. The right and left members of (8.4c) are the reciprocals of
the corresponding right and left numbers of (8.4a). Hence (8.4c) holds.
Similarly (8.4d) holds.

LEMMA 8.3. Suppose that B ^-commutes A. Then A and B are
expressible uniquely as sums of sections

(8.5) A = A0 + Alt B = B0 + B1

such that (a)A0 is ^-orthogonal to B and Bo is ^-orthogonal to A: (β)
B1 ^-commutes with Ax and %lAl = SRBl, 9^* = 9^*. Moreover

(8.6) A = B*"1A*B , At = B-'AB* .

Conversely, if A and B are expressible in the form (8.5) such that
(a) and (β) hold, then B ^-commutes with A.

Suppose first that B ^-commutes with A. Using (8.1) and (8.2) it
is seen that

EB*A = B*A , E'BA* = BA* , FA*B = A*B , FΆB* = AB* .

Hence

EB*E' = B*E' : ErBE = BE , FA*F' = A*F' FrAF = AF.

Consequently BE = E'B, AF a FΆ. In view of Theorem 7.2 it follows
that Ax = AF, Bx = BE are respectively sections of A and B, each
having EF and E'F' as their associated projections. We have according-
ly 3lΛi - 5βΛl, SR̂  - %lBl = Λ % Choose Λ and Bo so that (8.5) holds.
The operator Ao has E — EF and E' — E'F' as its associated projections
and is accordingly *-orthogonal to B, Bo, Bx and Ax. Similarly Bo is
*-orthogonal to A, Ao, Ax and Blm Using (8.1) again we see that

BtAx = EB*AF e EA*BF = (Ao* + A f ) ^ + Bx) - Af^ .

Likewise BxAΐ S AxBt. This proves the first conclusion of the lemma.
The last statement is immediate.

It remains to obtain the formulas (8.6). To this end observe that

B*-*A*B = Bt'1AtB1 3 BΪ~1BΪA1 = A .

In view of the result we may suppose that A = Aχm Assume that A Φ
B*-1^*^. s i n c e β*~1AB* and A are closed, there is a vector xQ φ 0
such that

(8.7) (a?0, a?) + (B*'1A*BxQf Ax) = 0

for all a? in ^ ^ . Consequently, by (8.4d),
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(x0, x) = -{AΈ^AΈx.x) = -(B-1AA*Bx0, x)

for all x m & A and hence for x in ξ>. Choosing $ = B*Bx0 we find
that

|| Bx01|2 = -

This relation together with (8.7) can hold only in case x0 — 0. It follows
that the first formula in (8.6) holds. The second is obtained by sym-
metry and the lemma is established.

COROLLARY 1. Suppose that B ^-commutes with A. The associated
projections (8.2) satisfy the relation EF — FE, E'F' = FΈ'm Moreover
WΛ = WB if and only if SRJ = 9fc£.

As a further result we have

COROLLARY 2. If an elementary operator T ^-commutes with A,
then TA* T is a section of A.

In view of Lemma 8.2 and 8.3 we have

COROLLARY 3. Suppose that B ^commutes with A. Then B
^-commutes with A*"1 and with a A + βA*~λ, where a and β are posi-
tive numbers.

The restriction that a, β are positive is made only to insure that
a A + βA*-1 be closed.

LEMMA 8.4. Let T be an elementary operator such that TA*T —
A and suppose that B ^-commutes with T. Then B ^-commutes with
A if and only if AT*B Ώ BT*A.

If B ^-commutes with A then

AT*B = ΓA*ΓΓ*B = TA*B 2 TB*A = BT*A .

Conversely, if AT*B^ BT*A, then

A*B = Γ*AΓ*5 2 Γ*BΓ*A - £*ΓT*A = B*A

AB* = TA*TB* 2 TB*TA* = BT*TA* = BA*

as was to be proved.

9 Decomposition of an operator. As a first result we have

THEOREM 9.1. Let R be the elementary operator associated with
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an operator A from Jρ to φ\ Let T be second elementary operator
that ^-commutes with A. Then T ^-commutes with R and the operators
Ay R} T are expressible uniquely as sums and difference

(9.1) A = Ao + A+ + A- , R = Ro + R++ i?_ , T = To + R+ - R_

of mutually ^-orthogonal operators such that RQJ R+, R_ are the ele-
mentary operators associated respectively with Ao, A+, A_ and To is
^-orthogonal to A. Moreover T is ^-orthogonal to Ao and RQ and ^-com-
mutes with A+, A_, R+ and R-. Conversely if A, R, T are expressible
in the form (9.1) then T ^-commutes with A and R.

Suppose that T ^-commutes with A. Then, by Lemma 8:3, they
are expressible in the forms A = Ao + A19 T = To + Tu where Ao is
^-orthogonal to T and Au To is ^-orthogonal to A and T, 3lτ = %lAl,
9ZΓΪ — ̂ ί a n ( * ^i ^-commutes with Ax Moreover, by Theorem 7.1 R =
Ro + R19 where RQ is the elementary operator belonging to Ao and Rx

is the elementary operator belonging to AΎ. In view of this result we
can restrict ourselves to the case in with Ao = 0, To = 0, Ro = 0. Then
%lΛ - Wτ = ^ Λ and 91^ - 3^* - ^ . Since A*T is self-adjoint, its as-
sociated elementary operator S is self-adjoint and hence is expressible
as the difference S = E+ — E- of two orthogonal projections E+, £'_
whose sum is E—R*R. The operator A*TS is nonnegative and self-
ad joint. It follows from Theorem 6.1 that R = TS and T = i?S. Set-
ting R+ = Λ£7+, i2_ = # # _ we see that

R = RE = x?+ + xv— , T = RS — R+ — R_ .

Since Ai2* - Ai?ΐ + AR1 and AT* - AR% - Ai?_ are self-adjoint,
so also are AR% and AR1. Moreover AR% ^ 0 and AR* ^ 0 since
they are orthogonal and AR* ^ 0. The elementary operators R+ and
12- are therefore the elementary operators associated respectively with
A+ = AE+ and A~ — AE^. Since J?+ and R- are ^-orthogonal it follows
that A+ and A_ are ^-orthogonal. Consequently A, 12, T are expressible
in the form (9.1). The remaining statements in the theorem are easily
established.

COROLLARY. TWO elementary operators R and T on $ to ξ>' ̂ -com-
mute if and only if there exist mutually ^-orthogonal elementary
operators RQ, R+, R-, To such that R = Ro + R+ + R-, T = To + E+ -
R-. Moreover, this representation is unique.

THEOREM 9.2. Let R be the elementary operator associated with
an operator A from ξ> to ξ>\ Given a positive number λ there are
unique decompositions.
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(9.2) A = Aλ+ + Aλ0 + Aλ_ , R = Rλ+ + Rλ0 + i2λ_

0/ 4̂ ami i? into sections such that Rλ+, Rλ0, i2λ_, Rλ+ — i?λ_ are re-
spectively the elementary operators associated with Aλ +, Aλ0, Aλ_, A —
XR. Moreover,

(9.3a) Aλ + - Rλ+A*Rλ+ , Aλ0 = XRλ0 , Aλ_ - #λ_A*i?λ_ .

The relations

(9.3b) II Ak+x II > λ II i? λ + z II , (A λ + £, i2λ+α;) > λ || Rκ+x | |2 ,

hold for all x in & A such that Rλ+x Φ 0 and the relations

(9.3c) II Aλ.x II < λ II Rx^x \\ , (Aλ__z, Rλ.x) < λ || i? λ_^ ||2

/or αiϊ x in § such that Rλ-X Φ 0. If X < μ, then Aλ_ + Aλ0 is
α section of Aμ_, and Aμ0 + ^.μ+ is a section of Aλ+. Similarly iϋλ__ +
Rλ0 is a section of iϋμ_ and Rμ0 + i?μ + is a section of Rλ+.

In order to prove this result let C = A — XR, where λ is a fixed
positive number. Let T be the elementary operator associated with C.
Since R ^-commutes with A and R, it follows that R ^-commutes with
C. By virtue of Theorem 9:1 R also ^-commutes with T. Similarly T
^-commutes R and C and hence also with A = C + λ/ϋ. Applying Theorem
9.1 to A, R, T and to C, Γ, iϋ it is seen that they aree xpressible
uniquely as sums

A = Ao + A+ + A- , R= Ro + R+ + R-

C - Co + C+ - C- , T= To + R, -R-

of mutually ^-orthogonal operators such that iϋ+ is the elementary
operator associated with A+ and C+; J?_ is the elementary operator
associated with A_ and C_; Ro is the elementary operator associated
with Ao. Since 9^ z> 9^ it follows that Co = To = 0. From the relation
C = A ~ XR we obtain the relations

Ao = λi20 , A+ = C+ + ,

Moreover, if we set E+ = ^ΐi2+, £7- = R*R-

Rt A+ - i?ΐC + + XE+ , i?ΐA_ =

It follows that the second relations in (9.3b) and (9.3c) hold. If x is
in <grA, then

II A+x ||2 - λ2 II R+x ||2 = || C+x ||2 + 2X(RX C+x, x) ^ 0 .

Hence the first relation in (9.3c) holds. Since P = R*A_ ^ 0 and Q =
i?ΐC_ ^ 0 satisfy the relation P + Q = XϋL, they are bounded and
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commute. Hence PQ — A1C- — CtA- ^ 0. Using the relations

|| A.x ||2 + 2(A*_C-x, x) + || C-x ||2 = λ21| R.x ||2

it is seen that the first relation in (9.3c) holds.
In order to prove the last statement with μ > λ apply the results

described in the first part with Aλ+, Rλ+, μ playing role of A, R, λ.
One then obtains the partitions

Rλ+ - Rμ+ + i2μ0 + Rλfλ .(9.4a)

Setting

(9.4b)

We have

= Λχ+ -

= Aλβ-\

i_ A A- A

— A -4- A R
λQ

A = Aμ + + Aμ0 + Λ - , ^ = ^μ+ + ^μθ + R»-

with i2μ+ — i?μ_ as the elementary operator A — μR. The last statement
of theorem follows from the relations (9.4). This completes the proof
of Theorem 9.2.

COROLLARY 1. Suppose that A is bounded and set M = || A| | . Let
m be the largest number such that \\ Ax || Ξ> m\\ Rx | |. / / λ ^ M, then
JRλ+ = 0 . If m> 0 and 0 < λ ^ m , £ / ^ n i? λ _ = 0. If m <X< M,

then || A — λ J ? || ^ m a x [ikf — λ, λ — m ] .

COROLLARY 2. 7%β operator Rλ = i?λ0 + J?λ_ (0 < λ < <») is the
elementary operator belonging to Aλ = Aλ0 + Aλ_ = RλA*Rκ. Moreover

(1) lim Rλ = R , lim Rκ = 0 , lim Aλ = A , lim Aλ = 0 .
λ = oo λ = 0 λ = oo λ = 0

(2) If X < μ, then Rλ is a section of Rμ, Aλ is a section of Aμ,
and

λ || Rλx || ^ || Aμx - Axx \\ ̂  μ \\ R»x || .

(3) lim i?μ = Rλ , lim Aμ = Aλ .
μ=λ+0 μ=λ+0

Let Aλ(0 < λ < oo) be the one parameter family of sections of A
described in the last corollary. By the principal spectrum A of A will
be meant the set of all numbers λ0 on 0 ^ λ < oo such that Aλ is con-
stant on no neighborhood of λ0. The principal spectrum of A* is also
A. The spectrum of A"1 and A*"1 is the closure of the reciprocals 1/λ
of the points λ Φ 0 in A.

If iϋλ is the elementary operator of Aλ described in the last corol-
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lary, we have the representations

A = [\dRκ , A* = [\dRΪ ,
Jo Jo

A*-1 — \ Λ-i/7 7? A-1 —
Jo

where the integrals are defined in the usual manner. It should be
observed that Eλ = R*J?λ and E'λ — RxRt are resolutions of E = R*R
and E' = RR*, respectively. Since Rκ = REk = J5"λi2 we have, from
the polar form of A,

A =

It follows that the results given above can be derived from the self-
adjoint case, if one so desires.

An extension of the results given above is found in the following

THEOREM 9.3. Let A be an operator and T be an elementary
operator such that A — TA* T. Given a real number X there exist a
unique decomposition

(9.6) A = Aλ+ + Aλ0 + Aλ_ , T = Tλ+ + Γλ0 + Γλ_ (-00 < λ < « )

of A and T into sections such that

(a Πrχ\ λ T A* T A \ T A T A* T

(9.7b) (Aκ+x, Tλx) > λ II Tκ+x \\2 for all x in 3rA having Tλ+x Φ 0 ,

(9.7c) (Aλ_x, Tλx) < λ II Tk-x ||2 for all x in &A having Tλ_x Φ 0 .

If μ> X, then AλQ + Av_ is a section of A^f Tλ0 + Γλ_ is a section
of Tμ_, Aμ+ + Aμ0 is a section of Aκ+ and Tμ + Tμ0 is a section of Tλ+.

In order to prove this result observe first that by Theorem 9.1 the
operators A, R, T have unique decompositions

A A 1̂  A Ty 7"> _ι ~D rn rp ι_ 7~> 7">
J± — J±ι -f J±2 , JX — JΛ/χ "T* Λ g , -L — -L 0 "ΐ" J vi J-*2

where Rx, R2 are the elementary operators associated with Au A2 respec-
tively and Γo is ^-orthogonal to A. The terms Ao and Ro described in
Theorem 9.1 are zero since A = TA*T. If λ is positive let

A ___ A 1 A i A TΓ> 7I> [ TΓ> 1 TΓ>

be the decompositions of Ax and R1 described in Theorem 9.2. Then
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have the properties described in Theorem 9.3. If λ = 0 set

Λ.\+ ~ A.x , y±λ0 = 0 , ^T-X- = = A2

If x = _μ < 0 let

-"•2 ~ ^ 2 μ + "I Ά2μθ "Γ ^ 2 μ — » -*̂ 2 = -*^2μ+ ~Γ -Π/2μθ I tίiμ-

be the decomposition of A2, i?2 described in Theorem 9.2. Then

^ λ + = -^-1 I ^ 2 μ - > ^ - λ θ : = : ^ 2 μ O » ^ - λ - = r ^ - 2 μ + \[A ~ -~ X)

n+ - -̂ 1 - ^ 2 μ ~ - » •* λθ = = -^2μO > -*- λ— =Z -*^2μ +

have the properties described in Theorem 9.3. The uniqueness of the
decomposition follows from (9.7) and the connections between T and R.

COROLLARY. The operators Tλ = Γλ0 + Γλ_, ^ λ = ^ λ 0 + ^λ_ = Γλ

= A*Γλ have the following properties:

(1) lim Tk = Γ , lim Γλ = 0 , lim Aλ = Λ , lim Aλ = 0 .

λ=r + oo λ=-oo λ= + oo λ=-oo

(2) If X < μ, Tλ is a section of Γμ, Aλ is a section of Aβ

(3) lim Tμ= Tλ, lim Aμ - Aλ .
μ = λ + 0 μ^λfO

(4) (Tkx, Aλx) ^ λ || Γλα; ||2 /or α/ϊ a? in &A .

In view of the results obtained in the last corollary we shall define
the spectrum Λ of A relative to T to be the set of all real numbers
λ0 such that the operators Aλ described in the last corollary is constant
on no neighborhood of λ0. The spectrum of A* relative to T* is also
Δ. Similarly the spectrum of A*-1 relative to T and A~ι relative to
Γ* is the closure of the reciprocal 1/λ of the points λ Φ 0 in A.
Moreover A and A* are representable

A - Γ XdTλ , A* = Γ XdTt .

If $lA = STCΓ, then

A*"1 - Γ λ^dΓx , A-1 = Γ λ - ^ Γ , .
J-oo J-oo

When ξ) = § ' and T7 is the identity one obtains the usual spectral
resolution for self-adjoint operators.

lO Spectrum of the gradient operator* Let ξ> be the class of all
complex valued Lebesgue square integrable functions x(t) = x(tu •••,*»)
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of points t = (tlf •••,*„) in an m-dimensional Euclidean space. It is
convenient to normalize a function in ξ> to be equal to the limit of its
integral mean whenever these limits exist and setting x(t) = 0 elsewhere.
The class so normalized forms a Hubert space over the field of complex
numbers with

- o o

as the inner product, where x(t) denotes the conjugate of x(t). As is
well known the Fourier transform

(10.1) x(s) = c[° e'ίstx(t)dt , st = sA + + smtm ,
J-oo

where c = (2/τr)m/2, defines an isometry on § onto ξ> and hence is an
elementary operator, whose inverse is given by

(10.2) x(t) = cί~ eίstx(s)ds .

Let & be the class of all functions x in ξ> that are linearly abso-
lutely continuous5 and whose partial derivatives are in ξ>. A function
x in ^ is characterized by the condition that Siί(s), •••, smx(s) are
square integrable, where x(s) is the Fourier transform of x. In fact
one has

= c Γ β ί 5 ίsαφ)cίs .

The gradient operator A defined by — iid/dtj, •••, —i(θldtm) is a closed
operator from §> to the cartesian product § ' of ξ> by itself m times.
The domain A is ^ . It is not difficult to see that A is the closure of
the restriction of A to the class of functions of class C°° with compact
support.

Let y(t) = [yλ{t)y •• ,^/m(ί)] be a function in £>'. If y(t) is of class
C°° and has compact support, then the divergence

dh dtm

is in ξ>. This operator from ξ>' to ξ> is preclosed and its closure is the

adjoint A* of A. If #(s) is the Fourier transform of y(t) then y is in

^ A * if and only if the sum 8ωya(s) is square integrable. Moreover

eίstsΛyΛ(s)ds , (α: summed) .

- o o

5 Calkin J. W. ''Functions of several variables and absolute continuity I," Duke Math
J. Vol 6 (1940) pp. 170-186. See also Morrey Jr. C. B. "Functions of several variables
and absolute continuity II, Duke Math J. 6 (1940), 187-215.
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The elementary operator R associated with A is given by the
formulas.

(Rx)Λ = c\~ eίs*^β^-ds (a = 1, ... m) ,

R*y = c[~ eist s«y«(sϊ ds
J | s I

where \s\ is the distance from s to the origin. The carrier of R* is
the set of all functions y in ξ>' whose Fourier transforms ya(s) are of
the form sax(s)l\ s | such that x(s) is in ξ>. Similarly the carrier of A*
consists of all functions y in £>' whose Fourier transform is of the form
ya(s) = sαί(s)., such that | s \2x(s) is in ξ>. It is easily seen that

(A*-χx)Λ = c\~ eist s ^ ( 8 ) ds
J-~ I s | 2

A-'y = c[~ eίst 8»V*Wd8 .
J I si2

The operator A*A is, of course, the Laplacian.
The operators Aλ, Rλ described in Corollary 2 to Theorem 9.2 are

defined by the formulas

(Aλx)a = c\ eίstφλ(s)sΛx(s)ds
J—co

s«x{s) ds

where <pλ(s) is the characteristic function of the sphere | s \ g λ. The
principal spectrum of A is accordingly point set 0 ^ λ < co.

ll Principal values and principal vectors* In the present section
we shall be interested in certain special points of the principal spectrum
of A which we shall call principal values of A. Before defining this
concept it will be convenient to introduce the concept of the rank of
an operator. By the rank of an operator A will be meant the dimen-
sion of its carrier, or equivalently the dimension of its range. It is
clear that the ranks of A, A*, A"1, A*"1, A*Ay AA* are the same. If
the rank of A is finite, then A is bounded and reciprocally bounded.

A number λ on 0 < λ < co will be said to be a principal value of
an operator A if the rank of the section Aλ0 = λϋ?λ0 of A described in
Theorem 9.2 is not zero. The rank of Aλ0 will be called the order of
λ as a principal value of A and Aλ0 will be called the corresponding
principal section of A. The non-null vectors in the carrier of Aλ0 will
be called the principal vectors of A corresponding to λ, The non-null
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vectors in range of Aλ0 will be called the principal reciprocal vectors
of A corresponding to λ. The latter are the principal vectors of A"1

corresponding to 1/λ. The order of 1/λ as principal value of A'1 is
equal to the order of λ as a principal value of A. A number λ is a
principal value of A if and only if it is a principal value of A* and its
order as a principal value of A is equal to its order as a principal
value of A*. A positive number λ is a principal value of A if and
only if λ2 is a principal value of A*A. Again the order of corresponding
principal values are the same. The principal values of A*A are the
nonzero eigenvalues of A*A. The eigenvectors A*A corresponding to
nonzero eigenvalues are the principal vectors of A. Similarly the
eigenvectors of A A* corresponding to nonzero eigenvalues are the princi-
pal reciprocal vectors of A. Principal values of A belong to the princi-
pal spectrum of A. Isolated points of the principal spectrum of A are
principal values of A.

A principal value λ of A can be characterized in another way. A
value λ is a principal value of A if and only if there is a non-null
vector x in its carrier such that Ax = XRxf where R is its associated
elementary operator of A. The vector y = Rx is a principal reciprocal
vector of A and satisfies the relation A*y = XR*y. Consequently,

(11.1) Ax = Xy , A*y = Xx .

Conversely if λ is a positive number such that there exist a vector
x Φ 0 on s&A and a vector y φ 0 in £& A such that (11.1) holds, then
λ is a principal value of A, x is a principal vector and y is a principal
reciprocal vector. From these remarks, it follows that the principal
values of A are the positive eigenvalues of the self-adjoint operator

0 A*

A 0

from the cartesian product ξ> x ξ>' to § x ξ>\ It is clear that the
foregoing results could have been obtained from the study of this self-
adjoint operator. However, the author prefers the more direct approach
here given.

THEOREM 11.1. Suppose the principal spectrum of A apart from
X = 0 consists of a set of isolated points XlfX2f •••. Then X4 is a
principal value of A and has associated with it a unique elementary
operator R{ as described in Theorem 9.2. The elementary operators
Rl} i?2, •••, are mutually ^-orthogonal and

A = ΣX& , A* = ΣX,R* , A*-1 = iJ^R, , A'1 = Σ^LR* .
Xi Xi
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12 Further results on **commutativity. Throught this section we
shall be concerned with a closed operator A and bounded operator B
from ξ> to ξ>'. As a first results we have the following converse of a
statement in Lemma 8:4.

LEMMA 12.1. If B ^-commutes with aA + βA*"1 for every pair
of positive numbers a and β, then B ^-commutes with A.

Suppose that B ^-commutes with C = axA + AA*"1 and D = a2A +
β2A*~ι where a19 β19 a2, β2 are positive numbers such that aβ2 — β2ax

— 1. These operators have the common domain 3$ — & A π j ^ ^ -i.
The operator β2C — aλD is the restriction of A to S . Since C*B —
B*C and D*B= B*D on &r it follows that A*5 = B*A on ^ . In
order to show that A*B = ΰ*A on &rA consider a vector x in &Λ.
Let ^w = JS7na; — Ellnx9 where Eκ = RZRλ and ϋ?λ is the section of R
described in Corollary 2 to Theorem 9.2. The vector xn is in ^ and
xn =φ a?, A^n =Φ> Ax. Consequently A*Sα?n = B*Axn =#> β*Ax. Since A.*^
is closed we have A*Bx = B*Ax. We have accordingly A * β 3 5*A.
Similarly Ai?* 3 £ M and the lemma is proved.

COROLLARY. / / £>' = § and aA + βA*-1 is self-adjoint for all
pairs of positive numbers a and β, then A is also self-adjoint.

This result is obtained from lemma by selecting B = I, the identity.

LEMMA 12.2. Suppose that § ' = ξ> and that B ^-commutes with
A. // one of A or B is self-adjoint and positive, the other is self-
adjoint.

Consider first the case in which A is bounded and A = A* > 0.
Since AB = B*A and A 5 * = BAf the difference C = B - J5* satisfies
the relation AC = -CA. Hence AnC = {-l)nCAn and etΛC = Ce~tA.
The inverse etA is e~tA. We have accordingly

C = β- ί 4Cέr ί 4 .

Since A > 0 it follows from the spectral theorem for A that limί=+00 e~tAx
— 0 for each x in ξ). Consequently C — 0, that is, B = B* for the
case here considered.

If A is reciprocally bounded, then A*"1 is bounded and B ^-commutes
with A*"1. If A is self-adjoint and positive, so also is A*~x = A~ι and
β ^-commutes with A"1. Hence B = B* by virture of the result just
obtained. If B = i?* > 0 then A*"1 is self-ad joint and hence A is also
self-adjoint.
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In the general case if A — A* > 0, then A + A'1 is self-adjoint,
reciprocally bounded and positive. Since B ^-commutes with A + A"1,
it follows that B = B*. If on the other hand B = B* > 0, then C =
aA + /3A*-1 is self-adjoint whenever a and /3 are positive. This follows
because C is reciprocally bounded and ^-commutes with B. By virtue
of the last corollary the operator A is self-adjoint and the lemma is
established.

LEMMA 12.3. Let R and S be the elementary operators associated
with A and B respectively. If B ^-commutes with A, then B ^-com-
mutes with R, and S ^-commutes with A.

In order to prove this result we may suppose, by Lemma 8.3 that
%lA = 3lB and 9^* = 3ΪΛ>. In fact, we may assume that SSlΛ = 3lB — 0,
3lA* — 3lB* = 0. Under these assumptions P = A*R = R*A is positive
and self-ad joint. Setting Q = R*B we obtain

PQ = A*RR*B = A*B 2 B*A = B*RR*A = Q*P

P*Q = R*AB*R 3 R*BA*R = QP .

Hence Q ^-commutes with P and Q — R*B — B*R by the last lemma.
Similarly RB* = 5i2*. Consequently B ^-commutes with R.

In order to prove that S ^-commutes with A it is sufficient, by
Lemma 12.1, to show that S ^-commutes with C = aA + βA*'1, where
a and β are positive numbers. The operator C is reciprocally bounded
and ^-commutes with B. The operator C*"1 is bounded and ^-commutes
with B. Hence S ^-commutes C*"1 and also with C. This completes
the proof of the lemma.

LEMMA 12.4. / / an elementary operator T ^-commutes with A,
then T ^-commutes with a section Ax of A if and only if it ^-commutes
with the elementary operator Rx associated with Alm

Let Aλ be a section of A and let AQ be the section of A such that
A — Ao + Alm Let Ro, Rλ be the elementary operator associcated with
A09 Aλ respectively. Suppose that T ^-commutes with Rx. Since T
^-commutes with R = Ro + R19 it follows that T ^-commutes with RQ.
Consequently TQ = RQT*RQ and Tx = RλT*Rλ are ^-orthogonal sections
of T. The section T2 = T — To — Tλ is ^-orthogonal to A. Consequently
the operators A*Γ and AT* are expressible as sums

A* T = At To + A* T19 AT* - A0Γ0* + Λ Γ *

of orthogonal operators. Hence A*Tt and AXT* are self-ad joint and Γx

*-commutes with A,. Since AX*Γ= AίTt and AXΓ* = Λ^i*, it follows
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that T ^-commutes with Ax as was to be proved.

13 Representations of operators as products. The present section
will be devoted to an extension of Lemma 5.2 and some of its con-
sequences.

THEOREM 13.1. Let A be an operator from ξ) to φ' and let R be
its associated elementary operator. There is a unique pair of opera-
tors C and D from ξ> to ξ>' such that

(13.1) C + Z> = R, A = D^R^C = CR*D*~ι .

The operators C and D are determined by the formulas

(13.2) C - 1 = A - 1 + J B * , D~1 = A*+R*

and have R as their associated elementary operator. The operators C
and D are bounded and ^-commute. In addition

(13.3a) C-'RD-1 = D^RC'1 = C'1 + D~λ

(13.3b) A'1 = C-ΉD* = D*RC-χ , A* = C^RD'1 = D~ιRC* ,

A*-i = c*~1R*D = DR*C*~1 .

This result is an easy consequence of Lemma 5.2. The operator
Ax — R*A is self-ad joint and nonnegative. Let d and Dx be the
bounded nonnegative self-adjoint operators related to Ax as described in
Lemma 5.2. The operators C = RClf D = RD1 have the properties
described in the theorem, as one readily verifies. An alternate proof
can be made by defining C and D by (13.2) and making computations
analongous to those made in the proof of Lemma 5.2. Finally, a proof
can be made by the use of the integral representation (9.5) of A. In
this case C and are defined by the formulas.

1 ~Γ Λ>

THEOREM 13.2. Let C be the operator related to A as described
in Theorem 13.1. A bounded operator B ^-commutes with A if and
only if B ^-commutes with C.

If B ^-commutes with A, then B ^-commutes with R and A*"1 =

c*_i __ % Consequently B ^-commutes with C*"1 and hence with C.
Conversely if B ^-commutes with, C, then B ^-commutes with R, C*" 1

= A*"1 + R, A*"1 and A. This proves the theorem. It is clear that
the results described in the theorem hold equally well with C replaced
by D = R - C.
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We state without proof the following

THEOREM 13.3. Let C be the operator related to A as described
in Theorem 13.1 and let

Ct = (l^LL^R + tC , Dt = R - Ct ( -1 ^ t ^ 1) .

The one-parameter family of operators

At = DrWCt - C^DT1 ( -1 ^ ί ^ 1)

contains A for t = 1, A*"1 for t — — 1, R for t = 0 and is swc/& £/&a£
A, ( — 1 < t < 1) is bounded and reciprocally bounded.

As a further result we have

THEOREM 13.4. Let C and d be the bounded operators related
respectively to two operators A and A1 as described in Theorem 13.1.
Then Ax is a section of A if and only if d is a section of C.

Let R1 and R be the elementary operator associated with Ax and A
hence also with Cx and C. If Ax is a section of A, then

R.C-'R, = R.A-'R, + R,R*RX = Ar1 + J2X = Cr1 .

Since Rx ^-commutes with C it follows that C1 is a section of C. The
converse is readily verified.

The result given in Theorem 13.2 enables us to extend the defi-
nition of *-commutativity to two unbounded operators Ax and A2. To
this end let CΊ and C2 be the bounded operators related respectively to
Ax and A2 as described in Theorem 13.1. The operators Ax and A2 will
be said to ^-commute if the operators CΊ and C2 ^-commute. This
definition is consistent with the one given heretofore for the case in
which one of the operators is bounded. The result described in Lemma
12.3 is valid without the assumption that B is bounded.

14 Further decomposition of operators* In this section we assume
that A and B are arbitrary operators from ξ> to £>'. As an extension
of Theorem 9.1 we have

THEOREM 14.1. Let R and S be the elementary operators associated
with A and B respectively. If B ^-commutes with A, then A, R, B
S are expressible uniquely as sums and differences

A = AQ + A+ + A-, R = R0 + R+ + R-
[ ' } B = BQ + B+-B-, S = So + R+ - R-
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of mutually ^-orthogonal operators such that (a) ROf R+, R_ are the
elementary operators beloging to Ao, A+, A_ respectively; (β) So, R+, R~
are the elementary operators belonging to Bo, B+, JB_ respectively; (7) Ao

and Ro are ^-orthogonal to Bo and So; (δ) B+ ^-commutes with A+ and
2?_ ^-commutes with A-. Conversely if A, R, B, S are so expressible
then B and S ^-commute with A and R.

In view of the results given in the last section we may assume
that A and B are bounded. Suppose that B ^-commutes with A> then
B *-commutes with R, and S ^-commutes with A, by Lemma 12.3. By
virtue of Theorem 9.1 applied to A, R, S, it is seen that A, R, S have
the decomposition (14.1) such that condition (a) holds and So is ^-or-
thogonal to RQ. Applying Theorem 9.1 to the operators B, S, R it is
seen that B, S, R have the decomposition (14.1) such that condition (β)
holds and So is ^-orthogonal to Ro. Since the decomposition of R and
S are unique, the decomposition (14.1) holds such that (a), {β)y and (7)
hold. Since

A*J5 - A1B+ - AtB- , AB* - A+Bt - A^B*_

are self-adjoint it follows that each of the operators on the right are
also self-adjoint. Consequently B+ ^-commutes with A+ and 2?_ *-com-
mutes with A-. The converse is immediate and the lemma is established.

COROLLARY. // B ^-commutes with A there is elementary operator
T such that A = ΓA*Γ and B = TJB*T.

The operator T = So + R has this property.

THEOREM 14.2. Suppose that A and B ^-commute and are self-
adjoint relative to an elementary operator T. Then the operators Ao,
A+, A_ Bo, B+, B- described in Theorem 14.1 are also self-adjoint re-
lative to T.

Since the elementary operators R and S belonging to A and B are self-
adjoint relative to T it follows that

R+ = |(Si2*S + RS*R) , Λ_ = i(SR*S - RS*R) ,

are self-adjoint relative to T. The same is true for Ro and So. The
theorem follows readily with the help of Lemma 12.4.

The result just given can be extended as described in the following

THEOEM 14.3. Suppose that B ^-commutes with A and T is an
elementary operator such that A= TA*T and B= TB*T. Then T,
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A and B can be decomposed uniquely in the form

T= Γo = Tx+ T2 + Tz+ T,+ Γ6 + Tβ+ T7 + Ts

(14.2) A = Λ - A2 + A3 + A, + Aδ - Aβ

B = B3- B4-Bδ + B6 + B7- B8

into mutually ^-orthogonal operators such that (a) Tά is the elementary
operator associated with Aά (j = 1, 2, •••, 6) (β) Tk is the elementary
operator associated with Bk (k = 3, 4, , 8) (y). The operators Tif

Ajf Bk *-commute.

In order to prove this result let A, B, R, S have the decomposition
(14.1). By virtue of the last theorem the operator T ^-commutes with
each of the operators given in (14.1). Applying Theorem 14.1 to Ao

and T we see that Ao can be expressed as the difference Ao = Ax — Ai
of ^-orthogonal operators A1 and A2 whose associated elementary operators
ϊ\ and T2 are sections of T. Similarly Bo = B7 — B8, where B7 and B8

are ^-orthogonal operators whose associated elementary operators T7 and
T8 are section of T. Applying Theorem 14.1 to A+, T; B+, T; A-, T
and 5_, T we obtain differences A+ — A3 — Aif B+ = B3 — Bif A^ = A
— A6, B-. = Bΰ — BQ of ^-orthogonal operators such that Aif B{ have the
same associated elementary operator Ti9 a section of T.

From these relations one obtains the decomposition (14.2), the section
To of T being ^-orthogonal to A and B. In view of Theorem 14.1, the
operator Tif Aif Bk ^-commute. This proves the theorem.

THEOREM 14.4. Let Aκ+, Aλ0, Aλ_ (0 < λ < oo) be the sections of A
described in Theorem 9.2 and let J5μ+, B^, B^ (0 < μ < oo) be the
corresponding sections of B. Suppose that B ^-commutes A. Then the
operators B, J5μ+, Bμ,0, 2?μ_, Bμ = 5 μ 0 + 2?μ_ ^-commute with each of the
operators A, Aκ+, Aλ0, Aλ_, Aκ = Aλ0 + Aλ_.

In order to prove this result recall, by Theorem 9.2, that T = Rκ+

— iϋλ_ is the elementary operator associated with C = A — λR. Since
i? ^-commutes with A it ^-commutes with R,C, T,RC*T and hence
also with

) , C_ = C - i2C*Γ = 2(Λ- - λ22λ.) .

The elementary operators of C+ and C_ are Rλ+ and i?λ- respectively.
It follows that B ^-commutes with Aλ+, Aλ_ and hence also with Aλ0.
Similarly Bμ+, Bμ0, B^ ^-commutes with A. The operators therefore
^-commute, as described in the theorem.

THEOREM 14.5. Suppose that B ^-commutes with A and that T is
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an elementary operator such that A— TA*T,B = TB*T. Let Aλ, Tκ

(—00 < λ < 00) be the sections A and T described in the corollary to
Theorem 9.3. Let Bμ, Tμ. (— 00 < μ < 00) be the sections of B and T
obtained by having B playing the role of A in this corollary. Then
A, Aλ, Tλ, B, Bμ., Tμ., Tλfl = TxT^Tμ, *-commute with each other. More-
over

A = Γ XdTλ = (~ Γ XdTKμ , B = Γ μdTμ = (" (°°

// the scalars are the complex numbers, then

A + iB=

15* Bounded normal operators relative to 2\ In the present
section it will be assumed that the scalars are the complex numbers.
Let T be an elementary operator from ξ> to ξ>' and let 2I(T) be the
class of all bounded operators A such that the relation

(15.1) A Γ Γ = ΪΎ*A = A

holds. Let &{T) be the class of all operators A in 2ί(Γ) that *-com-
mute with T. These are the operators A in 2ί(Γ) that satisfy the
relation A = TA* T, that is, the operators in ^ ( T) that are self-adjoint
relative to T. Every operator A in 2ί( T) is expressible uniquely in the
form A — Ax + iA2 where Ax and A2 are in 23(JΓ). The operators Ai
and A2 are given by the formulas

(15.2) Λ = i(A + TA* Γ) , A, = &A - ΓA* Γ) .

It should be observed that, by virtue of Lemma 8.4, two operators A
and B in &{T) ^-commute if and only if A Γ ΰ = BT*A.

Let 9f(Γ) be the class of all operators A in Sί(Γ) such that TA*A
— AA*T. An operator A in ^{T) will be said to be normal with
respect to T. It is clear that an operator that is self-adjoint relative
to T is also normal relative to T. An operator A in 2ί(Γ) is in ^ ( Γ )
if and only if the operators A± and A2 defined by (15.2) ^-commute. In
order to prove this fact observe that

B = A1T*A1 + A2T*A2, C = Λ T M ,

are in ^ ( Γ ) and

TA*A = B + iC , AA*T= B-iC .

Consequently ΓA*A = AA* T if and only if C = 0, that is, if and only
if Ai ^-commutes with A2. If A is in ^ ( Γ ) , there is by virtue of
Theorem 14.5, a section TΛ corresponding to each complex number a
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such that

A=[adTΛ

where the integral is taken over the complex plane.
Given an operator A in ί f(T) let <g*(A, T) be the class of all

operators B in <&{T) such that TA*B = BA*T and AT*5 = BT*A.
If 5 is in 9f(A, Γ), then TB*A = AB*T also. Moreover, TB*T is in
i f (A, T). Let 2JΪ(A, Γ) be all operators 5 in 9f(T) such that if (A, Γ)
c &(B, T). If 5 and C are in 2R(A, Γ), so also are aB + βC and
BT*C, where a and β are complex mumbers. Moreover

It follows that if we define BT*C to be the product of B and C, the
class 9Ji(A, T) is a Banach algebra with the operator Γ as a unit
element and TB*T as an involution. The subclass _S^(A, T) of all
operators B in 2K(A, Γ) such that 5 = Γ5*? 7 form a Banach algebra
over the reals.

16 Compact and reciprocally compact operators. An operator A
from § to φ' will be said to be compact if given a bounded sequence
{#J in £&A, the sequence {Aα;w} has a strongly convergent subsequence.
An operator A will be said to be reciprocally compact if its reciprocal
is compact. Since compact operators are bounded, it follows that re-
ciprocally compact operators are reciprocally bounded. It should be
observed that an operator A is compact if an only if given a weakly
convergent sequence {xn} in £%rA9 the sequence {Axn} converges strongly.

THEOREM 16.1 An operator A is of finite rank if and only if it is
compact and reciprocally bounded. An operator A is of finite rank
if and only if it is bounded and reciprocally compact An operator
A is of finite rank if and only if it is compact and reciprocally
compact.

Suppose that A is compact and reciprocally bounded. Then 9^ and
&A are closed. Let {xn} be a sequence in WA converging weakly to a
point x0. Since A is compact yn = Axn converges strongly to y0 = Aoc0.
it follows that x = A~xyn converges strongly to x0 = A~ιy. Consequently
weak convergence on ^A implies strong convergence. It follows that
<ifA is of finite dimension. Hence A is of finite rank. Conversely if A is
of finite rank, then A is compact and reciprocally bounded. The re-
maining statements follow readily.

THEOREM 16.2 Let A be the sum A = B + C of two ^-orthogonal
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operators B and C from ξ> to ξ>\ Then A is compact, reciprocally
compact, bounded, or reciprocally bounded if and only if B and C
have the same property. If C is of finite rank, then A is compact,
reciprocally compact, bounded, or reciprocally bounded if and only if
B has the same property.

The first conclusion is immediate from the definitions of the terms
involved. The second follows from the first. In view of the second
statement sections of finite rank can be disregarded in determining the
properties of compactness, reciprocal compactness, boundedness and
reciprocal boundedness.

THEOREM 16.3. An operator A is compact if and only if its re-
ciprocally bounded sections are of finite rank. Similarly, an operator
A is reciprocally compact if and only if its bounded sections are of
finite rank.

The second statement follows from the first. If A is compact, its
sections are compact and hence its reciprocally bounded sections are of
finite rank, by Theorem 16.1. Suppose now that A is an operator whose
reciprocally bounded sections are finite rank. Then as was seen in § 9,
given a number λ > 0, the operator A can be written as the sum A =
Aλ+ + Aλ of two ^-orthogonal operators such that Aλ+ is reciprocally bounded
and Aλ is of norm at most λ. In view of our hypothese Aλ+ is of
finite rank and hence is compact. It follows that A is bounded and
that & A = ξ>. Let {xn} be a sequence in <£ίA converging weakly to
zero. Then,

|| Axn || g || Aλ+xn || + || Aκxn \\ ^ \\ Aλ+xn || + λ || xn || .

Since Aλ+ is compact we have lim% = = 0 O | |^lλ +#n | | = 0. Consequently limΛ=ooSup
II Axn || ^ XM where M is a bound for the sequence \\xn\\. Since λ is
arbitrary it follows that Axn =Φ 0 and hence that A is compact, as was
to be proved.

THEOREM 16.4. An operator A is compact if and only if its
spectrum (apart from X = 0) consists of a bounded set of isolated
principal values of finite order. It is reciprocally compact if and
only if its spectrum consists of isolated principal values of finite
order bounded away from zero.

Again, the second statement follows from the first. In order to
prove the first statement we use the decomposition A = Ax+ + Aλ of
A into the ^-orthogonal sections described in § 9, where λ is an arbi-
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trary positive number. The points of the spectrum of A that exceed
λ comprise the spectrum of Aλ +. The remaining points of the spectrum
of A comprise the spectrum of Aλ. If A is compact, then Aλ+ is of
finite rank. Consequently the points of the spectrum of A that exceed
λ consist of a finite number of principal values of Aλ+, each being of
finite order. Since λ is arbitrary it follows that the spectrum of A
consists of a bounded set of isolated principal values of finite order.
Conversely if the spectrum of A consists of a bounded set of isolated
principal values of finite order, then Aλ + is of finite rank for every
value of λ. Consequently A is compact, as was to be proved.

The following corollary is immediate.

COROLLARY. / / one of the operators A, A*, A*A, AA* is compact,
then the others are compact. Similarly, if one of the operators A,
A*, A*A, AA* is reciprocally compact so also are the others.

17 Operators of finite character* By the nullity of an operator
will be meant the dimension of its null space. An operator A will be
said to be of finite character if it is of finite nullity and if its bounded
sections have finite rank, or equivalently by, if it is of finite nullity
and is reciprocally compact. Operators of this type play an important
role in the calculus of variations and in existence theorems for elliptic
partial differential equations. In fact the condition of ellipticity is
equivalent to the condition that an operator be of finite character
relative to a suitably chosen norm, provided the domain of the inde-
pendent variable is bounded. The operators described in § 4 are of
finite character.

THEOREM 17.1. An operator A is of finite character if and only
if given a bounded sequence {xn} in & Ά such that {Axn} is also bounded,
then {xn} has a strongly convergent subsequence. An operator A is of
finite character if and only if it is of finite nullity and given a
sequence {xn} in the carrier <g^ of A such that {Axn} is bounded, then
{xn} has a strongly convergent subsequence.

Suppose that A is of finite character. Then the nullity of A is
finite, and A"1 is compact. Let {xn} be a sequence in ^ such that
{Axn} is bounded. Setting yn = Axn we have xn = A~xyn. Since {yn} is
in the carrier of A"1 and A"1 is compact it follows that {xn} has a
strongly convergent subsequence. Suppose next that {xn} is a bounded
sequence in & A such that {Axn} is bouneded. Then x is expressible in
the form xn = xn0 + xnl, where xn0 e 5Jΐ̂  and xnl e <^Λ. Since $lA is of
finite dimension and Axn = Axnl, the boundedness conditions imposed
imply that {xn} has a strongly convergent subsequence. The criteria
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given in the theorem are accordingly necessary conditions for A to be
of character.

Suppose conversely that every bounded sequence {xn} in 2$ A for
which {Axn} is bounded has a strongly convergent subsequence. Then
the nullity of A is finite, since otherwise there would exist a orthonormal
sequence {xn} in sJίA. Such a sequence would have Axn = 0 and would
possess no strongly convergent subsequence. The reciprocal A"1 is
bounded. If this were not so we could select a sequence {xn} in ^A

such that || xn || = 1 and || Axn || ^ \\n. In view of the last inequality
the sequence could be chosen so as to converge strongly to a vector x0.
Since A is closed it would follow that xQ would be in <g ,̂ || χQ\\ = 1 and
Ax0 =0. This is impossible. Hence A'1 is bounded. Consider next a
bounded sequence {yn} in C<^A-Ύ. Set xn = A~fy». Since A'1 is bounded
the sequence {xn} is also bounded and hence, by our criterion, has a
strongly convergent subsequence. The operator A'1 is therefore com-
pact. Hence A is of finite character, as was to be proved.

COROLLARY 1. Let A be an operator from ξ> to ξ>' and let B be
the operator that maps a point x in &A into the pair {x, Ax} m § x § ' ,
The nullity of B is zero. Moreover A is of finite character if and
only if B is of finite character.

COROLLARY 2. / / B and C are ^-orthogonal operators and C is
finite rank, then A = B + C is of finite character if and only if B
is of finite character.

Let T be an elementary operator such that A = TA* T and let R
be the elementary operator associated with A. By Theorem 9.1, T is
expressible uniquely in the form T = To + R+ — J?_ where TQ, R+, R-
are ^-orthogonal and R = R+ + jβ_. The operator T will be said to be of
finite index relative to A in case one of the operators R+ and i?_ is of
finite rank. The minimum of the ranks of R+ and R- will be called
the index of T. Clearly the index of T is the minimum of the ranks
of the sections A+ = R+A*R+ and A- = J?_A*ίL of A. In the self-
adjoint case with T — /, the identity, this index is the smaller of the
ranks of the orthogonal nonnegative operators Alf A2 such that A — Ax

— A2. In this event this index is frequently called the index of A or
of the quadratic form (Ax, x).

THEOREM 17.2. Let T be an elementary operator such that TA* T
= A. Every bounded sequence {xn} such that {{AxnJ Txn)} is bounded
has a strongly convergent subsequence if and only if A is of finite
character and T is of finite index relative to A.



RELATIVE SELF-ADJOINT OPERATORS IN HILBERT SPACE 1353

This criterion, stated in a somewhat different form, is the basis
for a large class of existence theorems for weak solutions of partial
differential equations.

Since || T*Ax || = || Ax || it follows from Theorem 17.1 that A is
finite character if and only if T*A is of finite character. Moreover
T*A is self-adjoint. It follows that it is sufficient to consider the case
A — A* and T = I. Let {xn} be a bounded sequence such that {Axn} is
bounded. From the inequality

\(Ax,x)\^\\x\\\\Ax\\

it follows that {(Axn, xn)} is bounded. Consequently if the criterion
described in the theorem holds, then {xn} has a strongly convergent
subsequence. By virtue of Theorem 17.1 the operator A is of finite
character. It remains to show that if A is expressed as the difference
A — B — C of two orthogonal nonnegative self-adjoint operators, then
either B or C is of finite rank. If this were not the case one could
select an orthogonal sequence {yn} in <g=i and {zn} in <g*σ such that
(Bym, yn) = (Czmzn) = Smn. The vectors xn = an(yn + zn) then satisfy the
relation

(Axm, xn) = aman[(Bym, yn) - (Cym, yn)] = 0 (m, n = 1, 2, 3 . . ) .

Choosing an such that || xn || = 1, we obtain an orthogonal sequence {xn}
such that (Axn, xn) = 0. This sequence cannot have a strongly con-
vergent subsequence. Consequently either B or C is of finite rank, as
was to be proved.

Conversely suppose that B or C is of finite rank and A = B — C is
of finite character. For definiteness suppose that C is of finite rank.
Then B is of finite character. Consider now a bounded sequence of
vectors {xn} in <^A, such that {(Axn, xn)} is bounded. Select yn in ^B

and zn in <ĝ  such that #n = j / w + zn. Then

(ABW, a?w) = (Byn, yn) - (C«n, z) .

It follows that {(Byn, yn)} is bounded. Consequently, {yn} has a con-
vergent subsequence. Since {zn} is restricted to a finite dimensional
subspace of £grA, it follows that {xn} has a strongly convergent subse-
quence. This completes the proof of the theorem.

THEOREM 17.3. Let A be an operator from ξ> to ξ>' of finite char-
acter and let B be an operator from φ to a Hubert space φ". / /
&B a 2$A, then B is of finite character.

Since &B c &A there is a constant a such that if x is in ^ *
then
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II A » 1 1 ^ o f { | | fell+ 11 a? | | } .

If {xn} is a sequence in ^rB such that || xn ||, || Bxn \\ are bounded, then
|| Axn || is bounded also. It follows from Theorem 17.1 that {xn} con-
verges strongly in subsequence. Consequently B is of finite character,
by virtue of Theorem 17.1.

A linear transformation K from φ to φ " will be said to be compact
relative to A if &κ z> ϋ ^ and if for every bounded sequence {#„} in
£ ^ such that {Axn} is bounded, the sequence {Kxn} has a strongly
convergent subsequence.

THEOREM 17.4. Let A be an operator from ξ> to £>' of finite char-
acter. Let K be an operator from § to ξ>" such that &κ D <2tA.
Then K is compact relative to A if and only if given a positive
number a there is a number β such that the inequality

(17.1) \\Kx\\Sa\\Ax\\+β\\x\\

holds on &A.

Suppose that K is compact relative to A. Suppose further there
is an a > 0 such that (17.1) holds on £&Λ for no constant β. We can
select a non-null sequence {xn} such that

\\Kxu\\^a\\Axu\\+n\\xn\\.

We can suppose that || Kxn \\ = 1. Then || Axn \\ is bounded and xn =^0.
Since K is compact relative to A it follows that Kxn =Φ 0, in subsequence,
contrary to the fact that || Kxn || = 1.

Suppose that (17.1) holds as stated. Let {xn} be a bounded sequence
such that {Axn} is bounded. A subsequence, rename it {xn}, converges
strongly to a vector x0. The point x0 is in 3f A since A is closed.
Given a > 0 choose β so that (17.1) holds. Then

II K(xn - B0) II ^ a || A(xn - x0) \\+β\\χn- χ0 \\

and

lim sup || Kxn — Kx01| ^ a lim sup || A(xn — x0) \\ .

Since α: is arbitrary it follows that {Kxn} converges strongly to Kx0.

The operator K is therefore compact relative to A, as was to be proved.

THEOREM 17.5. Let A and K be operators from ξ> to $' such that
K is compact relative to A. The operator A is of finite character if
and only if B = A + K is an operator of finite character.
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In order to see t h a t B is closed when A is of finite character let
{xn} be a sequence such t h a t xn =Φ xQ, Bxn => yn. In view of (17.1) with
a<\

|| Kxn || ^ α || A s . || + β \\ xn \\ ̂  a \\ Bxn \\+a\\ Kxn \\+β\\ xn || .

We see that {Kxn} is bounded. Consequently {Axn} is bounded also. It
follows that {Kxn} converges to Kx0 and that Axn =Φ yQ — Kx0. Since A
is closed #0 — Kx0 = AxQ, that is, y0 — Bx0. The operator B is according-
ly closed. Since B and A has the same domain, B is of finite character.
Conversely if B is an operator of finite character, so also is A since

In a similar manner we obtain

THEOREM 17.6. Let A be an operator from ξ> to ξ>' and let K be an
operator from ξ> to ξ>" that is compact relative to A. Let B be the
operator that maps a point x in &A into the point {Ax, Kx] in £>' x
ξ>". Then A is of finite character if and only if B is an operator
of finite character.

THEOREM 17.7. Let A be an operator from ξ> to ξ> and suppose
that every bounded sequence {xn} in &Λfor which {(Axn, xn)} is bounded
has a strongly convergent subsequence. Then A is of finite character.
Moreover, a linear subclass & of &A on which {Ax, x) = 0 is of
finite dimension.

The proof of this result is like that of Theorem 17.2 and is equiva-
lent to the result given in Theorem 17.2 is A = A*. In this theorem
the role of (Ax, x) may be replaced by (Ax, x) + (x, Ax).

18. Elliptic partial differential equations* The purpose of the
present section is to indicate the connections between the results de-
scribed in the preceding pages with the theory of elliptic partial differ-
ential equations. To this end let β be a bounded region in an m-
dimensional Euclidean space of points t = (tl9 •••, tm). The boundary of
Ω will be assumed to be nonsingular and to be of class C°°. The results
given below are valid under much weaker assumptions but we shall not
consider them at this time.

The symbol a will be used to designate an m-tuple a = (alf , am)
of nonnegative integers. Let \a\ = aλ + + am. The symbol Da.
will be used to denote the differential operator

v ' dt? dtT

Let ξ>n4 be the class of all Lebesgue square integrable complex valued
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functions xί(t) (t e Ω; j = 1, , n; | a \ — k), normalized so as to be
equal to the limit of their integral means whenever this limit exists
and to be zero elsewhere. The class ΪQnk with

(j and a summed) as its inner product forms a Hubert space over the
field of complex number. The symbol xk will be used to denote an
element in &nk. The cartesian product of φn 0, φ n l , •••,&,* will be denoted
by φ£. Its elements x are of the form x = (a?0, a?lf , xk). An element
a; in φ£ such that &0: a?'(ί) is of class C* and such that xr is the set of
derivatives xί — DΛx

5 \a\~r of order r will be denoted by <&\% The
closure of <^t will be denoted by 3ϊk

n. In view of our normalization
of the functions in φ n r , it can be shown the formula x*(f) = D^xJ(t)
I a I = r ^ k holds almost everywhere on Ωy where xJ(t) are the functions
defining x0 in (a?0, xlf , a?A). The projection of &ΐ in $nk will be
denoted by Ξίnk. The class ^ n f c is a closed subspace of ξ)nJb.

Since an element (x0, xlf •••,»*) in ^ J is uniquely determined by
its inital element x0, a function Gk on ξ>°n = φw 0 to §^ is defined. The
range of the function is 3t\. Its domain &Θ* is the projection of
3f\ on ξ)n0. The functions Gk (k — 1, 2, 3, •) have the following pro-
perties:

(1) The function Gk is a closed and dense linear transformation
from ξ> = ξ)TO0 to φϊ.

(2) The operator Gfc (& > 0) is of finite character and zero nullity.

(3) The operator Gά {j < k) is compact relative to Gk.

These results follow from well known connections between partial
derivatives and can be found in papers on this subject.

Let C be a bounded operator from 3ίk

n (k > 0) to a Hubert space
£>g0. Given a restriction Bk of Gk that is closed and dense in ξ> = ξ>n0>
the product Ak = CBk defines a dense linear transformation. Such an
operator will be said to be elliptic in case it is closed. This definition
of ellipticity is an extension of the one usually given. An elliptic
operator of this type is necessarily of finite character by Theorem 17.3
since Bk has this property. It is clear that Ak is elliptic if and only if
there is a constant h > 0 such that

(18.1) \\Bkx\\^h[\\Akx\\ + \\x\\]

for all x in &B]C- It should be observed that if Ak (k ̂  1) is elliptic,
then the equation Akx = y has a solution x for all y orthogonal to the
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solutions z of A*kz = 0. The existence of strong solutions is thereby
established.

In order to illustrate these ideas consider the case in which the
operator C is defined by a formula of the form

(18.2) c δ j ( t ) x i ( t ) (δ = l,-. , q ; j = l , . . - , n : \ a \ ^ k )

where j and a are summed and the coefficients are continuous on the
closure of Ω. Select Bk — Gk. Then Ak — CBk is elliptic, that is, an
inequality of the form (17.1) holds if and only if the following two
conditions are met:

(1) Given a point t m Ω there is no non-null set of real numbers
ξ = (ξ19 . . . , ξm) and no non-null set of complex numbers ξ = (ξ\ . , ζn)
such that the relations

(18.3) Clψζ3 = 0 (σ = 1, , g, I α I = fc)

holds, where ξ* = ξpξp | ϊ » .
(2) Given a point t on the boundary of Ω the relations (18.3)

cannot be satisfied by non-null complex numbers ζ = (ζ1, , ξn) and by
non-null numbers ξ = (ξlf , ξm) whose normal component is complex
and whose tangential components are real.

If the first of these conditions is met then Ak = CBk is elliptic,
where Bk is the restriction of Gk defined by the closure of the subclass
of 3ϊ\ whose elements are continuous and have x3

a(t) = 0 (| a \ < k) on
the boundary of Ω.

These and related results can be found in the recent papers6) on
partial differential equations by Aronszajn Browder, Friedrichs, Gaarding,
Hormander, Morrey, Nirenberg, Schechter and the author.

For a list of references see Hestenes, Magnus R. Quadratic Variational-theory and
linear elliptic partial differential equations to be published soon in the Transactions of the
American Mathematical Society.
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