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W. H. MILLS

Let G be a group, and let H be its holomorph. There are two
situations in which H is known to be decomposable into the direct product
of two proper subgroups. If G is the direct product of two of its proper
characteristic subgroups, say Gλ and G2, then H is the direct product of
the holomorphs of Gλ and G2. If G is a complete group, then H is the
direct product of G and G*, where G* is the centralizer of G in H. In
this paper we will show that if G is not the direct product of two proper
characteristic subgroups, and if G is not complete, then H is indecom-
posable. Thus we have a complete characterization of those groups
whose holomorphs are indecomposable.

A decomposition of H into the direct product of indecomposable
factors is known for the case where G is a finite abelian group [1], Our
present results enable us to generalize this and give a decomposition of
H into the direct product of indecomposable factors, whenever G is the
direct product of a finite number of characteristically indecomposable
characteristic subgroups. In particular this gives a complete decomposi-
tion of H whenever G is a finite group.

Peremans [2] has shown that a necessary and sufficient condition for
G to be a direct factor of H is that G be either complete or the direct
product of a group of order two and a complete group that has no sub-
groups of index two. This result is related to the present paper. In
fact Peremans' result can be deduced from Lemma 1*.

l Preliminaries, Let G be a group, and let A be the group of all
automorphisms of G. Let e and / denote the identities of G and A
respectively. The holomorph H of G can be regarded as the semi-direct
product of G and A, i.e., the set of all pairs {g, σ), g e G, σ e A, with
multiplication defined by

(flr, σ)(h, τ) = (g(σh), στ) .

We identify g in G with (g, I) in H. Then H is a group that contains
G as an invariant subgroup, and every automorphism of G can be ex-
tended to an inner automorphism of H.

For all a in G we let λα denote the inner automorphism of G cor-
responding to the element α. Thus Xag = ago,'1.

All the results of this paper depend on the following lemma:

LEMMA 1. Let H = Hx x H2. Then G Π Hx and G Π H2 are char-
acteristic subgroups of G and
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G = (G n m x (G n

Proof. We note first that G Π Hx and G f) H2 are normal subgroups
of H, and hence they are characteristic subgroups of G.

For i = 1 or 2, let £; denote the projection of i ί onto H{ correspon-
ding to the decomposition H = fζ x fζ. Thus if ae Hx and β eH2, then
^(α/3) = a and ε2(α:/3) = /S. Put J{ = ε,G. Clearly J, g if, and /, is a
normal subgroup of H. Let F; and S< denote the set of all first and
second components respectively of elements of J;. Thus F^G and
SiSA.

Let (α, σ) be an element of Jλ. Then for some # in G we have
£i£ = (α, tf). Put ε2# = (6, τ). Then # = (α, σ)(6, r). Therefore τ = α-1

and (σδ-1, σ) = (6, τ)" 1 e J2. Hence σ e S2. It follows that Sx S Sa. By
symmetry S2S S19 and hence Sλ = S2.

Let σ be an element of Sx and let | be an element of A. Put
ε^e, I) = (gi9 ξ.)f ί = 1, 2. For some α and c in G we have (α, σ) e Jx and
(c, ί?) e J 2. Now

and

(<?, σ)(θu li) = (0i, li)(«, ^)

Comparing second components we see that σ commutes with both ξt and
ξ2. Since ξ = ^ | 2 , we have σ | = |<r. It follows that Sx is contained in
the center of A.

Let (α, tf) be an element of Jλ and let (d, //) be an element of J2.
Since σ is contained in the center of A and since (α, σ)"1 = (σ^a"1, 0~ι),
it follows that

d(a, σ)d-\e, λσΛ)(α, σj-^β, λ^)" 1

Therefore dίσcϊ)"1 € JEζ. Moreover

d M ) - 1 - (d, μ){e, σ){d, μ)-\e, σ)-1 e H2 .

Hence d{σd)~ι e Hx Π H2. This gives us d{σdyι = e and σd = d. Thus σ
leaves every element of 2^ fixed. By symmetry, since σ e SΊ = Sa, it
follows that σ leaves every element of JFΊ fixed. Now let g be an
arbitrary element of G. Then g = (/, v)(λ, ξ") with (/, ι̂ ) e Jλ and (A, f)
6 J2. Since gf = /(^Λ), σf = /, and σvfe = v^Λ = i Λ, it follows that σg = flr.

Hence σ = I. Therefore Ŝ  and S2 consist of the identity alone. I t fol-
lows that JΊ S G Π ίίt, / 2 C G Π iϊ2, and

G s Λ x Ji C (G Π fli) x (G n fli) S G .

Therefore G = (G Π ί ζ ) x (G Π ίί2) and the proof is complete.
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2 Some known results. Suppose G = Gx x G2 x x G B , where
the Gi are characteristic subgroups of G. Let A{ denote the group of
all automorphisms of G> We identify σt in At with the element σ\ in
A such that

σ i g ~ \ σ i g iί geGt.

Then A = 4i x 4 2 x x An. Moreover Hif the holomorph of Gi9 be-
comes a subgroup of if, and H — Hλ x iί2 x x i ί n .

The centralizer of a group in its holomorph is called its conjoint.
The conjoint G* of G consists of the elements {g~\ Xg), g e G. The map-
ping y] defined by

η(g, σ) = Gr\ λ,σ)

is an automorphism of H that maps G onto G* and maps G* onto G.
Therefore G and G* are isomorphic, and G is the centralizer of G* in
H. Furthermore Lemma 1 is equivalent to the following:

LEMMA 1*. Let H = Hλ x iϊ2. Then G* n ίfi and G* n ί ζ are
characteristic subgroups of G**

G* = (G* n fli) x (G* Π

If G is complete, i.e., if G is a centerless group with only inner
automorphisms, then H=G x G*.

3 Decomposable and indecomposable holomorphs. If G is the
direct product of two proper characteristic subgroups, then G is said to
be characteristically decomposable. If not, then G is said to be char-
acteristically indecomposable.

THEOREM 1. Let G be a group, and let H be its holomorph. If G
is either characteristically decomposable or complete, then H is decom-
posable. If G is characteristically indecomposable and not complete,
then H is indecomposable.

Proof. We have seen in § 2 that H is decomposable if G is either
characteristically decomposable or complete. Suppose that G is char-
acteristically indecomposable and that H = Hλ x H2. It follows from
Lemma 1 that either G Π Hx = G or G Π H2 = G. Thus either Gg JSi
or G S H2. Similarly it follows from Lemma 1* that either G* £ fli or
G* s H2. Without loss of generality suppose that G s f f 1 ( Then iJ2 is
contained in the centralizer of G, that is H2 §Ξ G*. If G* £ fζ we
ίί 2 £ Hx and i ϊ — i^. Thus we need only consider the case G* £
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Here G* = H2 and Hx is contained in the centralizer of G*. Thus Hλ £ G,
and hence Hλ = G. Now G Π G* is the center of G, and G Π G* =
JBi Π H2. Hence G is centerless. Since if = Hx x ff2 = G x G*, it
follows that G has only inner automorphisms. Therefore G is complete.
This completes the proof of the theorem.

4. Decomposition of the holomorph into indecomposable subgroups.
To complete our discussion we need the following result:

LEMMA 2. If a group is complete and characteristically indecom-
posable, then it is indecomposable.

Proof. Let G be a complete group and suppose G — Gλ x G2. Since
every automorphism of G is inner, it follows that every automorphism
of G maps Gλ and G2 onto themselves. Hence G± and G2 are character-
istic subgroups of G. This establishes the lemma.

THEOREM 2. Suppose G is the direct product of a finite number
of characteristically indecomposable characteristic subgroups: G =
Gi x G2 x x Gn. Suppose that G{ is complete for 1 fg i <; r, and
that Gj is not complete for r + 1 ^ j ^ n. Then a decomposition of H
into indecomposable subgroups is given by

(1) H=UGi x flGΐ x f[Hif

where G* and H{ are the conjoint and holomorph respectively of Gif

and where Π denotes a direct product.

Proof. It follows from § 2 that (1) is a decomposition of H. By
Lemma 2 the groups Gt and G* are indecomposable for 1 fg i <; r, and
by Theorem 1 the groups Hi are indecomposable for r + 1 g % £ n.

Since a characteristic subgroup of a characteristic subgroup of G is
itself a characteristic subgroup of G it follows that G satisfies the con-
dition of Theorem 2 whenever the characteristic subgroups of G satisfy
the descending chain condition. In particular Theorem 2 gives us a
decomposition of H into indecomposable subgroups whenever G is a finite
group.

If G is the direct product of an infinite number of characteristic
subgroups, then H is not the direct product of their holomorphs. Thus
Theorem 2 does not hold in this case.
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