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1. Introduction^ We consider here a facet of the problem of justi-
fying the methods of the operational calculus and in particular the use
of the "Dirac Delta Function". L. Schwartz's "Theorie des Distribu-
tions* ' [6] is the most complete exposition to date on generalized func-
tions but the operational calculus as such is largely omitted. B. Van
Der Pol [8] discusses the latter but not in the context of distributions.
Ketchum and Aboudi [4] suggested using unilateral Laplace Transforms
to construct a link between Schwartz's theory and the operational calculus.
This paper will enlarge on the latter suggestion. Two principal results
are obtained. An imbedding space is constructed and a comparison be-
tween the topologies is made.

Let S denote the strip σx < R(z) < σ2, in the complex plane. Con-
sider the one parameter family of functions {ezt}, where the parameter
z ranges over S and — oo < t < oo. This family is not a linear space
but each member possesses derivatives of all orders. In a manner analo-
gous to Schwartz we define an L5-Distribution to be an analytic complex-
valued functional on the above family of functions, where by analytic
we mean with respect to the parameter z. If a is any complex scalar
and F, σ are two such functionals then we require that F ezt + σ ezt —
(F+σ)-σzt, and (aF) ezt = F-{aezt). The latter property then allows
us to define the derivative in a manner similar to that of Schwartz,
that is Ff -ezt = F-(ezt)' = F - zezt = zF-ezt. It also follows that the
Laplace Transform supplies an integral representation of some of the
functionals. The other L?-Distributions define generalized functions for
similar integral representations. That is, each function analytic for z e S
has for its values, the values of an L5-Distribution acting on a function
ezt and the L9-Distribution has an integral representation utilizing the
symbolic inverse Laplace Transform of the analytic function. In most
of this paper we deal only with analytic functions whose inverse trans-
forms exist but the definitions and theorems will be stated without this
restriction where possible. Following a practice used by other authors,
we will call the inverse Laplace Transform, symbolic or not, an L5-
Distribution rather than the functional. Because of the relation between
the functional and an analytic function we concentrate on the latter and
utilize the already known properties of such functions. By emphasizing
the integral representations rather than the functionals we utilize the
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Riesz Representation Theorem for continuous linear functionals to es-
tablish a correspondence to Schwartz Distributions.

As stated above each functional has a representation by an analytic
functions, using this we will define convergence in a fashion similar to
that of Schwartz. That is, a sequence of L5-Distributions will converge
if the sequence of values, when operating on an arbitrary member of
the one-parameter, converges. Because of the parameterization this
definition can be stated directly in terms of the representations by the
analytic functions.

2 Ls-Distributions,

DEFINITION 1. If an L^-Distribution is determined by an analytic
function f(z), then f(z) is its bilateral Laplace Transform. Denote this
Ls-Distribution by [f(z)]t or ft. Further, abbreviate I/^-Distribution by

DEFINITION 2. The derivative of an L -̂D, [f(z)]t = ft is the WD,
[zf(z)]t = ft- For a fixed S, the set of all L^-D's is metrized by a
Frechet type metric on the transforms. See [7], page 137. For a pair
of functions f(z), g(z) analytic in S, denote the metric by Ns(f, g). The
following property of this metric could have been used a definition since
it is the only property used in this paper.

THEOREM 3. A sequence of functions, all analytic in S, converges
with respect to the metric Ns if and only if the sequence converges
uniformly on every compact subset of S.

DEFINITION 4. ρs(ft, gt) = Ns(f, g) where ft, gt are the L5-D's whose
transforms are f(z), g{z) respectively.

DEFINITION 5. If f(z), analytic in S, is the bilateral Laplace Trans-
form of a point-function F(t), then F(t) is called a Point-Function L̂ -D
or P.F.Lj-D.

THEOREM 6. If Fi{t), i = 0,1, 2, 3, all possess bilateral Laplacd
Transforms analytic in a strip S, σ1 < R(z) < σ2y and

|e-σ»tjP<(t)|adt<
J - σ o

for all i, then let
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d(Fk, Fj) =
ηi/2

Fk(t) - F,{t) |2 dtJ

l/2

If d(F{, F ^ O a s i - c o then

^(ί) -> F0(ί) as P.F.LS-D's.

Proof. Write the transform of F&) - F0(t) as

f° e-tι-'i>e-**[F((t) - F0(t)]dt

+ ("e-t<«- i»e-<r' [F<(ί) - F0(t)]dt .
Jo

By the Cauchy-Schwartz Inequality

^ ["Si ^ Γ T i Γ
L.2[<72 - i?(z)]J

2[R(z) — σj]

If

= max 1 , J 1 Ί
) - σ,) y 2(σ2 - R(z))J

then

and hence ft(z) —* fQ{z) uniformly on each compact subset in S if d(Fif Fo) —••
0 a s i —• oo.

An interpretation of Theorem 6 might be that if {e~σitFi(t)} converges
in L2[0, oo] to e-σίtF0(t) and {e-^F^t)} converges in L2[oo, 0] to e'σ^F0(t)
and each F^t) has a bilateral Laplace Transform then the sequence of
P.F.L5-D's converges with respect to the metric ps.

THEOREM 7. Let fj(z), j = 0, 1, 2, 3, be an infinite sequence of
functions analytic in a strip S, σλ < R(z) < σ2, and further suppose
there exists a C such that \f3 (z) | < Ce~volIiz)] for some ηQ > 0, in all of
S. If Nsifj, /0) —> 0 as j —• oo then F5{t) —> F0(t) uniformly on every
bounded interval in the t-line. Fά{t) denotes the inverse bilateral Laplace
Transform of fά{z).

Proof. The hypothesis is sufficient to ensure the existence of the
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inverse transform of each fj(z), [2]. That is,

F&) = Γ ~AeitvUχ +
for σ1 < x < <72 .

Then

~2jt

l l fPil
27Γ

\ " eitv[fΛ% + iy) ~ fo(x + i.

- iy) — fo(n + iy)]dy \

2π I Jp

For ε > 0, and α < t < b, let p be such that ^ ^ g

and / such that Γ—1 Ns(fj9 /„) < ε/2 for j > J, then
L 7Γ J

I Fs(t) - F0(ί) I <ε for i>and

< ε/2 and J such

THEOREM 7.1. / / m Theorem 7, OΊ < 0 < σ2 then F, (t) —> F0(t) uni-

formly fOr — OO < t < CXD .

DEFINITION 8. For each Ls-D, /„ define / ί+f t to be [eΛβ/(«)]t.

THEOREM 9. If ft is an arbitrary Ls-Ό then

pi ft+n. - ft , // ) -> o as Λ -> 0 .
\ h I

Proof. By definition

so that

it

h

_ϊeh°f(z)-f{z)-zf{z)-
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and since

hz2 , hV , _ n+ -j- —> 0
2! 3!

uniformly on each compact set in S as h —• 0, the theorem is proved.

DEFINITION 10. An L -̂D ft is said to have point-values F(t) for
c < ί < d if there exists a σ(t) such that for some k, f(z) = 2*0(2), #(2)
being the bilateral Laplace Transform of σ(t) and finally that σ{k)(t) —
F(t) for (c < t < d).

For example [l]t has zero-point values in every open interval, in
the ί-line, that does not contain the point t — 0. Since

(1, ί > 0 has for
w ~ j θ , t > 0

its transform 1/2 and [1^ = [z—]t finally iϊ '(0 = 0 for all t Φ 0. UL is
2

the ^Dirac Delta Function'\

THEOREM 11. If {nft} is a sequence of Ls-D's converging to an Ls-D
o/t ίλe^ {TO//

fc)} converges to Jίk) for all k = 0, 1, 2,

Proof. By definition {n/J converges to

0/ t ϋ; max | w/(«) - J(z) \ -> 0
zβK

as w-* 00 for all compact KczS. Since in the complex plane, a set is
compact !z; if it is closed and bounded, there exists an Mκ for each
K\z\ :g Mκ for 2Gfc.

Then max \J(z) - 0/(s) | - 0 ^
zeK

\Mκ\
k\ J{z) - f(z) I -> 0 as w -> co for each fixed

positive integer fc apply Definition 2.

EXAMPLE. The following will be used as a counter-example in the
last section. Consider the Taylor-expansion for

[e~z]ί is the "Delta Dirac Function'' translated so that L5-D has zero
point-values for all t except for

t = 1. [(-i) -̂ L = ( - ^ m =-^τίίiL(n).
! ! !
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The latter L -̂D has zero point-values for all t Φ 0. Since the Taylor
Series converges for all z and hence uniformly for compact sets the
series of Ls-D's converges

3* General L5-Distribution* The set of all L^-D's for any fixed
S does not contain a subset isomorphic with the set point-functions having
pointvalues a.e. For example, the function F{t) = 1 does not have a
transform even though it is continuous for — co < t < oo. However
each member of the sequence of functions

= 0, (t > i, t < —i)

i = 0, (0,1,2,3,4, . . .)

does possess a transform. Further for each open interval (c, d) only a
finite number of the elements of the sequence have different point-values
than F(t) in (c, d). The sequence represents F(t).

DEFINITION 12. A sequence {nft} of L5-D's is called Fundamental
if for each open interval (c, d) there exists an integer N such that for
w > Nnft — n+pft, p = 0, 1, 2, 3, is an L -̂D with zero point-values in
(c, d). Fundamental sequence of Ls-D in abbreviated by F.S.S.

DEFINITION 13. Two F.S.S.'s, {ngt} and {nft} are said to be Similar
if for each open interval (c, d) there exists an integer N such that for
n> Nngt — nft is an Ls-D with zero pointvalues in (c, d).

LEMMA 14. The Similarity defined in Definition 13 for pairs of
F.S.S.'8 is an Equivalence relation and is invariant under addition
and differentiation.

THEOREM 15. The equivalence classes under the Similarity relation
are called G.L5-D's or General L5-D's. They form an Abelian group,
closed with respect to scalar multiplication and differentiation.

The Representation Theorem.

THEOREM 16. Let A denote the entire complex plane, then there is
a subset, D, of the set of all G. LA-D's that is isomorphic with the
set of all Schwartz Distributions. The isomorphism is invariant v)ith
respect to addition, scalar multiplication and differentiation.

(a) By definition, a Schwartz Distribution is a linear functional on
the space of infinity differentiable point-functions with compact supports
and is continuous when restricted to the set. Each Schwartz Distribu-
tion has an integral respresentation when restricted to a bounded closed
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interval, [3]. This representation has the form

Dt(ψ) = (~iγ\bF{twt]dt

where F(t) is continuous on [a, b] and r is an integer dependent on [a, b\
and the distribution Dt. φ(t) is any function with support the closed
interval [a,b]. Let [an, bn] be a sequence of intervals where — ™ <—
an+ι ^ an <Ξ bn ^ 6n+1 -> oo as n -> oo. For each n there is an FJt) and
an rn. Let

Gn(ί) - ( - l r ^ ί ί ) , ( α ^ ί ^ δn)
- 0, (ί > bn, t < αj .

Then let

/n(«) - \bne-"z'»Gn(t)dt .

It remains to be shown that the sequence {nft} is an F.S.S. and that
the equivalence class is independent of the sequence of covering intervals.
The G.Ls-D determined is the representative of Dt.

(b) Let / be an arbitrary open interval in the £-line, denoted (c, d).
There exists an N then such that for n > N[an, bn] ID (C, d). Let Fn(t),
Fn+P(ί), rn, rn+p be the continuous functions and integers given for the
representation of the distribution Dt on the intervals [an, bn] and [α%+p,
bn+p] respectively. Using Halperin's notation, let S[an, bn] denote the
class of testing functions associated with the interval [an, bn] that is, if
φeS[an, bn] then φ{IC](t) is zero for tφ[anJ bn], and φ<]c){t) exists for all
t e [αn, bn] for k = 0, 1, 2, 3, . It is seen that S[an, bn] c S[αn4ll, bn+p\.
If 0eS[αw, 6Λ] c S[anlp, bnVp\ then

( - i r«+p ίδw 'pFn+

or

- 0

since

φ ( Λ ) ( 0 - 0 for tφ[an,bn]

Let

T-Fn(t)= Γ Fn(
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T*-Fn(t)= T.[T.Fn(t)]

Then if rn+p ^ rn

0 =

It follows then that

is a polynomial Qw(ί) of degree m ^ rn+p — 1 for an ^ t ^ bn. Similar
results are obtained if rn ^ rn + p.

Using QJt) we have

~ «/(*) = P e-'z'»* *Gn+p(t)dt

The first integral can be considered as the transform of the r w + p t h
derivative of a function with zero point-values exterior to the interval
[an+p, an] and hence interior to the interval (c, d). The second integral
can be considered as the transform of the rnlpth derivative of a poly-
normial of degree less than or equal to rn+p — 1. Hence the Ls-Ό
determined has zero pointvalues on the interior and exterior of the inter-
val [αn, bn] and hence on the interior of (c, d). This L5-D may not have
zero point-values at t — an or t = bn. Finally then the third integral
considered as a transform determines an Ls — D with zero pointvalυes
exterior to the interval [bn, bn+p] and hence on the interior of (c, d).
n+pft — nft is an L<j-D with zero pointvalues on the interior of (c, d),
if n > N. The sequence constructed in part (a) is an F.S.S.

(c) Suppose [an, bn] and [cn, dn] are two expanding sequence of closed
intervals covering the real line. Let {nft} and {ngt} be the F.S.S.'s
obtained from the consturuction of part (a) using the former sequences.
Let I be an arbitrary open interval in the ί-line. Then there exists
integers N}, JV/ such n+pff — nft for n < Nj and n+pgt — ngt for n g ΛΓΓ

2

Ls-D's with zero point-values for t e I. Further there exists an integer
MB [an, bn] c [CN, dN] for n ^ M and N = N}. Consider
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,// - nΰt = nft - Kft + Kft - Kgt + Kgt - ngt

where K is the largest of N}, N}9 M. For n > K then the first differ-
ence on the right is an L5-D with zero point-values for t e I since
{nft} is an.F.S.A. The second difference can be shown to be an L5-D
with zero point-values for t e I by the method of part (b). Finally the
third difference is an L^-D with zero point-values for t e / since {ngt}
is F.S.A. The two F.S.A.'s are similar and hence determine the same
G.LA.-D. The correspondence between the Schwartz Distribution and
the G.L4.-D. is one-to-one. The invariance of this isomorphism with
respect to addition, differentiation and scalar multiplication follows from
Lemma 14.

4. A Topology for G.L-D's

DEFINITION 16. An F.S.S. {nft} is said to have point-values F(t)
for t e (c, d), an open interval, if there exist an integer NiCιd) such that
for n > N, nft is an Ls-D possessing pointvalues F(t) for t e (c, d). A
G.L5-D is said to have pointvalues F(t) for t e (c, d) if there is an F.S.S.
unit equivalence class possessing that property.

DEFINITION 17. Let {nft}19 •••,{»/*}*> ••• be a sequence of F.S.S.'s.
Denote the wth element of the i t h F.S.S. by (nft)j. Then sequence is
said to converge to the sequence of Ls-D's {nft}0, if for ε > 0 there
exist integers N2, J2 such that p [(nft)j, (nft)o\ < e when n > AΓε, j > J ε.

DEFINITION 18. Let Dlf D2, be a sequence of G.L^-D's. Further
suppose Llf L2, ••• is a sequence of F.S.S.'s each having support [a, b]
and that for each j — 1, 2, Lj represents D3 is (a,b). That is, for
some F.S.S. in Djy the difference of Lj and the F.S.S. has zero point-
values in (α, b). Then if Lly L2, is convergent in the sense of Defi-
nition 17, Dly D2, is said to converge to Do where Do is the G.L5-D.
determined by Lo.

THEOREM 19. // a sequence of Schwartz Distributions is convergent
in an open interval (α, b) in Schwartz's sense then the sequence ofG.Ls-D's
isomorphic to the respective Schwartz Distributions is convergent in
the interior of every closed interval contained in (a, 6).

Proof. Let D19 D2, be a sequence of Schwartz Distributions con-
vergent in Schwartz's sense in (α, 6). For any closed interval [c, d] con-
tained in (α, b) there exists a sequence of representation
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for φ e S[c, d\. Since the sequence D19 D2, is convergent there exists
one integer r c which can be used in all the representations and also the
limit representation.

For each j , construct the F.S.A. {nft}j where {nft}ό = (ft)s and

where

Gj(t) = (-l)'^(t) , c^t^d

— 0 , otherwise .

Since the sequence of Distributions is convergent

lim TrcFj(t) = FQ(t) [uniformly [c, d]] j — oo

K = I \Λz^e-βt[τ^Gj(t) - G0(t)\dt

^\d-c\ e~c^ I T^Gjit) - Gd(t) \\ dr* \ .

It follows that

K = I (f(z)h - (/(^))01 ^ Me

for j > Js, M=\d- c\ e~cσi \ σ2

r* \ .

Then (f(z))j -> (f(z))0 uniformly on every compact set in the strip a1 S
R(z) £ σ2 and hence in the metric p8. By definition then (ft)β —> (ft)0

and hence

{nfthf •> L/ί}i, converges to {W/Jo in the interior of (c, d). The
sequence of G. L^-D's converges for t e (c, d).

The example given earlier for a series representation of "Delta"
Distribution with a discontinuous at t = 1 converges in the sense defined
herein but not in Schwartz's sense. The L5-D [e~z]t and its series
representation furnish a solution to the differential equation
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problems of asymptotic behavior in ordinary differential equations . . . . . . . . . . . 1511
Peter Perkins, A theorem on regular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529
Clinton M. Petty, Centroid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
Charles Andrew Swanson, Asymptotic estimates for limit circle problems . . . . . . . . . . 1549
Robert James Thompson, On essential absolute continuity . . . . . . . . . . . . . . . . . . . . . . . . 1561
Harold H. Johnson, Correction to "Terminating prolongation procedures" . . . . . . . . . . 1571

Pacific
JournalofM

athem
atics

1961
Vol.11,N

o.4


	
	
	

