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In this paper it will be proved that if any nonnegative, square
matrix P of order r is such that Pm > 0 for some positive integer m,
then P r 2- 2 r+ 2 > 0. This result has already appeared in the literature,
[2], but the following is a complete and elementary proof given in detail
except for one theorem of I. Schur in [1] which is stated without proof.
The term regular is taken from Markov chain theory1 in which a regular
chain is one whose transition matrix has the above property.

A graph GP associated with any nonnegative, square matrix P of
order r is a collection of r distinct points S = {slf s2, , sr}, some or all
of which are connected by directed lines. There is a directed line (indi-
cated pictorially by an arrow) from s* to sά in the graph GP if and only
if Pij > 0 in the matrix P = (pi3). A path sequence or path in G> is
any finite sequence of points of S (not necessarily distinct) such that
there is a directed line in GP from every point in the sequence to its
immediate successor. The length of a path is one less than the number
of occurrences of points in its sequence. A cycle is any path that begins
and ends with the same point and a simple cycle is a cycle in which no
point occurs twice except, of course, for the first (and last). Two cycles
are distinct if their sequences are not cyclic permutations of each other.
A nonnegative, square matrix P is regular if Pm > 0 for some positive
integer m. Likewise, a graph GP associated with a nonnegative. square
matrix P is regular if there exists a positive integer m such that an
infinite set of paths Ao, Al9 , An, can be found, the length of each
path being Ln — m + n, n = 0,1, 2, . The usual notation plf is used
to denote the ijth entry of the matrix Pm. In all that follows we shall
consider only regular matrices P and their associated graphs GP.

Some immediate consequences of these definitions and the definition
of matrix multiplication are the following:

(1) There is a path skl skm+l in GP if and only if p$n+ί > 0 in P w .
(2) P is regular if and only if GP is regular.
(3) There exists some path from any point in GP to any point in GP.
(4) For any given i and j there exists some m such that p f > 0.
(5) If Pm > 0 then Pm+n > 0, n = 0,1, 2, . . .

Let C = {Clf C2, , Ct} be all the distinct simple cycles of GP and
{Ci9c2, •• ,cί} be the corresponding lengths.

Received November 21, 1960. I wish to thank Professor R. Z. Norman for his sugges-
tions in the writing of this paper.

1 This is as treated by Kemeny and Snell in [3].
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LEMMA 1. The length of any cycle C* is always of the form c* —
Σt=iαA> where a{ is some nonnegative integer.

Proof. Let any cycle C* = ski, sk2, , skm be given {kλ = km). Let
C* = Cί and form C*+1 in the following manner from C*: Wherever
simple cycle C{ occurs in cycle C* delete it except for its last point,
thus forming the new cycle C*+1. It is clear that after the tth step
there will remain only a single point of the original C*, which has of
course zero length. If we let α̂  be the number of times simple cycle
Ci occurred in cycle C* then the lemma follows.

THEOREM 1. If GP is any regular graph then it must contain a
set of simple cycles whose lengths are relatively prime.

Proof. By the regularity assumption and (1) there exists a positive
integer m such that cycles of lengths Ln = m + n, n = 0,1,2, ••• can
be found in GP. Also, from Lemma 1, Ln = X - ^ α ^ for n = 0,1, 2, ,
and suitable a{. Let d be the common factor of the simple cycle lengths
c{. Then

which could never equal m + n, n — 0, 1, 2, unless d = 1.
We would like to find a Zβαsί integer M such that for arbitrary

points Si and s, there are paths beginning at s* and ending at s, and
whose lengths are Ln = ikf + w, w = 0,1, 2, . If we can do this, then,
by (1), we shall have also found a least integer M such that PM > 0
where P is the regular matrix associated with GP.

Let us say that a path touches a given set of points if there is
some point belonging to both the path and the set. Then we have

LEMMA 2. Let GP be a regular graph with r points, let S be a
subset containing rk distinct points of the graph, and let g be any point
of GP. Then there always exists a path from g which touches S whose
length is less than or equal to r — rk.

Proof. If g e S then the lemma is trivial. Suppose g $ S. By (3)
there is at least one path which starts at g and touches the set S. Let
V = 9o, 9i, , s be such a path of shortest length. Obviously no point of S
can precede the final point s in this path sequence p. Furthermore,
there can be no repeated points in p, for the deletion of any cycle
(except for its last point) would produce a path from g to S shorter
than path p, contrary to the choice of p. Therefore, p can have at
most r — rk points.
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We shall say that a minimal set of relatively prime integers is a
set of relatively prime integers such that if one of the integers is de-
leted the remaining integers are no longer relatively prime. A step
along a path in GP is a pair of consecutive points of the path sequence.

THEOREM 2. IfR = {Rl9 R2, , Rk} is a set of simple cycles of
graph GP whose lengths {rl9 r2, , rk} form a minimal set of relatively
prime integers and if s{ and Sj are arbitrary points of GP, then there
is always a path which starts at sif ends at sjf touches each cycle of
R and whose length L ^ (k + l)r — Σi=i ri ~~ l

Proof. Note that the set of distinct points belonging to a simple
cycle contains a number of points exactly equal to the length of the
cycle. Hence, by Lemma 2 there is a path from an arbitrary point st

which touches a particular cycle Rp and whose length is less than or

greatest number of steps needed
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We shall now state without proof I. Schur's theorem cited above
and use it in our final theorem.

THEOREM 3. (Schur) If {alf a2, •••, an} is a set of relatively prime
integers with aλ the least and an the greatest, then B = Σ?=i#iαi ^as

solutions in nonnegative integers x{ for any B ^ (a1 — l)(an — 1). This
is a best bound for n = 2.

THEOREM 4. If M is the least integer such that paths between any
two points of GP can be found whose lengths are Ln — M + n, n —
0,1, 2, , then M ̂  r2 - 2r + 2.

Proof. Given any two points Si and sd of GP we know by Theo-
rem 2 that there is a path from s< to sό touching each of the cycles
{Rlf R2, , Rk} and whose length is
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We can, then, interject into this path the simple cycles {Rlf R2,..., Jtk}
at the touching points, interjecting cycle R{ say x{ times. The length
L of the original path has now been increased to L + Σ ί U ^ ϊ = L + B,
the second part of which, by Schur's theorem, can be made to take on
any integral value B where B ̂  (r8 — l)(rg — 1), and rs = min (r19 r2, , rk),
rg — max (rlf r2, , rk). Therefore, we have:

(7) M ̂  L + B = (k + l)r - Σri - r8 - rg + rsrg
i = l

Case I. Suppose k = 2. Then M <̂  3r — (rs + rα) — r8 — rff + ̂ r , =
3r - 2r8 - 2rg + rsrg = 3r + (r, - 2)(r. - 2) - 4. The right side of this
inequality is obviously maximum when rs and rg are as large as possible.
Recall that rg ^ r and r s ^ r — 1. Therefore we have:

(8) M^ 3r + (r - 2)(r - 3) - 4 - r2 - 2r + 2 .

Case II. Suppose & ̂  3. The reader may wish to skip the following
formidable looking, though straightforward calculations. They result in
a proof that the integer M with the desired property is in fact smaller
when the arbitrary graph contains a larger set of these cycles.

Since the lengths of these cycles are a minimal set of relatively
prime integers, it is certainly true that

Σ r, ^ r. + [r. + 2] + [r. + 4] + + [r8 + 2(k - 2)] + rg
i = l

= (k - l)r. + (k - l)(fe - 2) + rg .

Thus, with (7) we have:

M^(k + l)r- [(k - l)r. + (fc - l)(fc - 2) + rα] - r8 - r, + r8r,

= (fc + l)r - krs - 2rg + r 8r, - (k - l)(fc - 2)

= (fc + l)r + (r. - 2)(r, - k) - 2k - (k - l)(fc - 2) .

Since rσ must be larger than fc, the right side again is maximum when
rg and r8 are as large as possible. But rg g and r8 ^ r — k + 2. So

ikf ^ (fc + l)r + (r - fc)(r - k) - k2 + k - 2

- r2 + (1 - k)r + k - 2 .

This is easily seen to be less than r2 — 2r + 2 of Case I, if r > 1. So
in any case M ̂  r2 — 2r + 2.

To see that r2 — 2r + 2 is the least value for an arbitrary graph
of r points and thus for an arbitrary matrix of order r, we need only
consider the following example in which r = 3 and M = 5,
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\

GP

As a matter of fact it can be shown for any regular matrix P of
order r whose graph GP contains only two cycles, one of length r and
one of length r — 1, that Pr2-2r+1 is not positive. We have, therefore,
established the claim of the paper as stated in the opening paragraph.
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problems of asymptotic behavior in ordinary differential equations . . . . . . . . . . . 1511
Peter Perkins, A theorem on regular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529
Clinton M. Petty, Centroid surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
Charles Andrew Swanson, Asymptotic estimates for limit circle problems . . . . . . . . . . 1549
Robert James Thompson, On essential absolute continuity . . . . . . . . . . . . . . . . . . . . . . . . 1561
Harold H. Johnson, Correction to "Terminating prolongation procedures" . . . . . . . . . . 1571

Pacific
JournalofM

athem
atics

1961
Vol.11,N

o.4


	
	
	

