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1. Among a number of interesting results in a paper of I. Fary
(see [2]) appears the following. Let C be a rectifiable closed curve of
length L(C) and total curvature £(C) enclosed by a sphere S of radius
r in Euclidean 3-space. Then

(1) L) = _;4? r&(C) .

The proof of (1) rests upon the corresponding inequality for plane closed
curves, which states that if C is enclosed by a circle of radius 7, then

(2) L(C) < rk(C) .

The latter inequality gives a sharp result, with equality obtained in case
C is a circle of radius 7.

In this paper we sharpen (1) to the following result. Let C be a
rectifiable closed curve enclosed by a k& — 1 dimensional sphere S of
radius 7 in Euclidean k-space, £ = 2. Then

(3) L(C) = r&(C) .

The proof of (3) again depends on the plane case and is motivated by
the following construction. We form the cone T over the curve C with
apex at the center of S, slit along a longest generator and develop the
result in a plane. The resulting plane arc C’ is completed to a closed
plane curve C"” by attaching an arc of a circle. It is noted that the
curvature of C' is equal pointwise to the geodesic curvature of C with
respect to 7T, which in turn is not greater, pointwise, than the curva-
ture of C. The length of C’ is the same as that of C. The inequality
(2) applied to C" now gives (3).

2. In this section we prove some lemmas which lead directly to
the main theorem.

LEMMA 1. Let C be a rectifiable plane are of length L. For any
line G, let n(p, 0) be the number of intersections of G with C, where
(p,0), p=0, 0 <0< 2m, are the normal coordinates of G. Then

(4) L = %Szﬁg:n(p, 0) dpdd .
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This striking formula of Crofton is proved by Blaschke, [1], page 46.

LEmMmA 2. Let C be a closed plane curve parametrized by arc
length s. Let ¥ =7%(s), 0 =s <L, be the tracing wvector of, C, and
assume 7' exists and is continuous except at a finite number of points
7(8y), * + +, #(8,), where there are corners with “exterior” angles a,, -+, «,,
respectively. Given any direction 0, 0 < 0 < 2r, let n(0) be the number
of tangents to C orthogonal to that direction, where a tangent to C at
7(s;), 1=1,2, -+, m, means a line through the point but not crossing
C at that point. Then

2w m
(5) %So n6) do = S] #'(s)| ds + S\a, = total curvature of C,
where the integral on the right is extended over the smooth part of C.

Proof. We may write n(0) = >\, n,(0), where n,(0) counts the
number of tangents to the smooth part of C and n,(0), 7 #+ 0, counts
the number of tangents at 7(s;). Clearly n,; takes only the values 0 or
1, for ¢ # 0, and

(6) %S%ni(()) Q0 =a, i+0.

Finally, we have that

(7) 1] (o) do = ||7(s) s,
0

since the left hand side is just the measure of the spherical image
(counting multiplicity) of the smooth part of C.

LEMMA 8. Let %, %, ++-, Z,, be the successive vertices of a plane
polygon P enclosed by a circle S of radius r,. Suppose further that
the “initial ” and “end” points, %, and Z, respectively, lie on S. Let
a;, 0 < a; <z, be the angle between %, — %; and %, — Ty, 1 =1, ¢,
n— 1. If & # %,, let a, 0 < a, =, be the angle between %, — %, and
the unit tangent vector to S (with counterclockwise orientation) at %,
and let a, 0=a, =<, be the angle between %, — %,-, and the unit
tangent vector to S (with counterclockwise orientation) at 2,. If %, = 1,,
then simply let a(= ,), 0 < a, < «, be the angle between %, — %, and
%, — Z,.. Let L(P) be the length of P.

Then if %, + %,, we have that

(8) L(P) = yza
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If %, = %,, we have
(8) LP)<mSa.

(This lemma is a special case of Fary’s theorem for the plane. See
[2], page 121. The proof we give here is essentially that of Fary.)

Proof. We consider first the case where %, = #,. Let S be the arc
of S traversed in a counterclockwise direction in going along S from
%, to . Let C=PUS. Let & be the angle subtended at the center
of S by S. Then Lemma 1 gives,

(9) L(P) + 18 = L(C) = %Sgn(p 0) dpdd .

It is easy to see, however, that n(p, 6) < n(d) for 0 < 0 < 2r. Hence,
by (9) and (5), we have

(10) L(P) + rd < irorn(ﬂ) 6 — ro(ﬁ; a + 8> .
0 70
This gives the assertion for %, # %,. The case %, = %, is now clear.

LeMMA 4. Let P be a closed polygon enclosed by a k — 1 dimen-
stonal sphere S of radius r in Euclidean k-space. Let ¥y, Yy, =+, Yn="Ho,
be the successive vertices of P. Let B, 0 =<8, < «, be the angle between
Yir — Y; ond §; — Y;yy 1=0,1, -+, n — 1, where y_, is defined to be
Yoa. Define the total curvature, £(P), of P, by

(11) #(P)= S8, (See Milnor, [3], p. 249.)

Let L(P) be the length of P. Then
12) L(P) = r k(P).

Proof. Let ¢ be the center of S. Assume that the vertices of P
are labeled so that %, is no closer to 6 than any other vertex. Let 5,
0 < B! <z, be the angle between %, — ¢ and §; — %;..; let B/, 0= B! <=,
be the angle between %; — ¢ and %; — ¥;—, ¢ =0,1,---,n— 1. The
triangle inequality applied to a spherical triangle cut out of a sphere
centered at ¥, shows that

Bi+piza—B, and (—F) +(x—B) =7 — 6.
Hence,

(13) Iﬂ—(B:_"Bil)léﬁvy ’I:ZO,].,"',%—"]..
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We now form the cone over P with apex at ¢, cut along the edge
connecting 0 to %, and develop the result in a plane as follows. Let
be a fixed point in the plane R®. We map %, into any point Z,c R®
satisfying |%, — p| = |% — 0| = 7,. We next map %, into a point %, c R*
satisfying |, — P| = |%, — 0| = 7, and such that the angle 5, from
%, — P to % — P, measured in a counterclockwise direction, is equal to
the angle &, 0=<§, <=z, between 9, — 06 and %, —o. In general we
map ¥, into ¥,€ R? so that |Z, — p|=|%; —0| =7, and the angle §,
from #,_, — P to %; — p, measured counterclockwise, is equal to the angle
8;, 0 <8, <m, between %,_, — 0 and %; — 0. This construction gives us
a polygon P in R®. Construct the circle S’ of radius r, centered at .
Then P is enclosed by S’, and %, and %, (in general ¥, # ¥,) are on S'.
It is easily seen that the angle a;,, 0 = a, =7, between % — Z,_;
and %, — %, Is |7 — (B, +8N,1=1,2,---,n—1. It is also seen
that the angles &, and «, described in Lemma 3 are equal to (7/2) —
By >0 and (x/2) — B > 0 respectively if Z, + %, and are both equal to
T — (B + BY) >0 if % = %,. Hence if %, + &,,

n

(14) L,

2=0

I

n—1 7
SRt S lE = @8N+ =AY

il

Sim— @+ 61,

and if &, = &,,

(1) Sa="Slm— 8+ 81
Therefore, by (8), (8'), (14), and (14'),

L(P) = L(P) < mg; T — (8 + BY)| < rogjlﬂi = rk(P) < ri(P) .

3. THEOREM 1. Let C be a rectifiable closed curve enclosed by a
k — 1 dimensional sphere S of radius v in Euclidean k-space, k = 2.
Let L(C) be the length of C and k(C) be the total curvature of C.
(x(C) = 1.u.b. &(P), where P runs over all polygons inscribed in C.
See Milnor, [3].) Then

L(C) £ re(C) .
Proof. Given any & > 0, there is a polygon P inscribed in C such
that L(C) — L(P) <¢. We have that #(P) = £(C). Hence
L(C) — e = L(P) = re(P) = re(C) .

The theorem follows.
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COROLLARY. Let C be a closed curve of class C" enclosed by «
unit k — 1 dimenstonal sphere in Euclidean k-space. Let £(s) = |7"(s)]| =
curvature of C at 7(s), 0 <s < I(C). Then

(15) maxk = 1.
Proof.
L(C) < k(C) :Sum/c(s) ds = max £-I(C) .

Note that we have used the fact that the above integral form for
the total curvature coincides with the previous definition. This is proved
by Milnor in [3].
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